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Abstract 

This study proposes an adaptive, interpretable real-time fraud detection and prevention system designed for high-risk financial environments, 

capable of processing over 1.6 million imbalanced credit card transactions with low latency. The objective is to build a unified framework that 

integrates predictive accuracy, explainability, and adaptability. The methodology follows four phases: exploratory data analysis to reveal 

structural and behavioral fraud patterns, feature engineering with domain-informed attributes and ADASYN oversampling to mitigate the 1:174 

imbalance, training of multiple models (XGBoost, LightGBM, Random Forest, Gradient Boosting, and MLP), and an ensemble architecture 

evaluated with SHAP-based explainability. The system introduces three key contributions: stability-aware SHAP caching that reduces 

explanation latency to 41.2 ms, reinforcement learning–based threshold tuning that dynamically adapts to evolving fraud patterns, and out-of-

distribution detection to enhance resilience against data drift. Results demonstrate strong performance, with XGBoost achieving 99.86% accuracy, 

96.36% precision, 80.59% recall, F1-score of 0.878, and ROC-AUC of 0.9988, outperforming other models. The full system attained 93.2% 

accuracy, 90.2% F1-score, and 96.1% AUC at the system level, successfully blocking 91% of fraudulent transactions while maintaining a false 

positive rate of 7.8%. Novelty lies in combining explainability and adaptivity in a production-ready architecture, where reinforcement learning 

enables continuous threshold self-regulation and SHAP stability analysis validates interpretability across models. These findings show that high 

fraud detection accuracy and transparency are not mutually exclusive, offering a scalable blueprint for financial institutions and other critical 

domains requiring real-time, explainable, and adaptive decision-making. 
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1. Introduction  

In today’s interconnected digital economy, credit card processing underpins a vast majority of commercial transactions, 

chiefly because of the efficiency and accessibility it affords. Yet, as digital infrastructure expands, so too do the vectors 

for exploitation. The sheer velocity of digitization has been paralleled by a troubling rise in fraudulent activity, now 

recognized as a formidable threat not only to individual consumers but also to institutional and financial stakeholders 

at large. As reported in [1], financial damages attributed to credit card fraud reached an estimated $32.39 billion 

globally in 2020 and are projected to surpass $40 billion by 2027. Historically, many institutions have relied on rule-

based systems to combat fraud. However, these conventional approaches have shown a persistent lag behind the 

increasingly inventive and adaptive strategies employed by fraudsters. The result is often sluggish detection and 

inflated false positive rates, culminating in higher operational costs and erosion of customer trust [1]. In response to 

this shortfall, Artificial Intelligence (AI) and Machine Learning (ML) have emerged as more robust alternatives, 

capable of discerning nuanced behavioral signals embedded within complex transaction datasets [2], [3]. 

Simultaneously, progress in Explainable Artificial Intelligence (XAI) has addressed growing concerns about the 

opacity of such data-driven models. Tools like LIME (Local Interpretable Model-agnostic Explanations) and SHAP 

(SHapley Additive exPlanations) have proven especially useful in critical, high-risk applications such as financial fraud 
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prevention [2]. Their utility lies not only in offering clarity and interpretability to users and institutions but also in 

enhancing the underlying model’s accountability and acceptance [1], [4]. 

Technical progress has not resolved all obstacles. A persistent challenge is the skewed class distribution inherent in 

fraud datasets, which tends to distort learning dynamics and weaken predictive accuracy. Compounding this, many 

advanced ML models continue to operate as "black boxes," rendering them unsuitable for use in strictly regulated 

financial ecosystems. While solutions such as oversampling, ensemble methods, and interpretability frameworks like 

SHAP have been proposed, they frequently remain static in their behavior and fail to adapt in real time to the dynamic 

nature of fraudulent activities. Moreover, despite the interpretability gains offered by SHAP, practical deployment 

often runs into performance bottlenecks. The computational burden associated with SHAP, particularly in production 

pipelines, can be considerable. Most real-world systems also lack provisions for dynamic recalibration; for instance, 

they do not adapt threshold decisions in response to fluctuating false positive or false negative patterns. This leads to 

an unfortunate trade-off in system design: one must often choose between speed, interpretability, and adaptability. 

Typically, systems end up excelling in only one of these dimensions, either performant but opaque, interpretable but 

slow, or adaptive yet poorly tuned. 

Overcoming these multi-faceted challenges requires a robust framework that integrates interpretability, real-time 

dynamic adaptability, and does not neglect efficiency or reliability. Therefore, this paper aims to present a real-time 

fraud detection and prevention mechanism that utilizes ML and DL techniques enhanced with SHAP interpretability. 

Based on the previous aim, our research objectives are twofold. First, we focus on developing machine learning and 

deep learning models for credit card fraud detection, ensuring that these models incorporate SHAP-based 

interpretability and domain-informed feature engineering. Second, we aim to assess the performance of the developed 

models using established evaluation metrics such as accuracy, recall, F1-score, and AUC-ROC, thereby providing a 

comprehensive understanding of their effectiveness. 

The contributions of this paper can be outlined as follows: 1) a unified, four-phase method that addresses real-time 

fraud detection, models’ explainability, and fraud prevention, a mechanism that is designed for decision-making 

contexts. 2) The pipeline presents a stability-aware explanation approach that verifies SHAP consistency across 

multiple inference cycles. 3) A dynamic threshold tuning component is also used to adjust decision boundaries in 

response to shifting misclassification patterns. And 4) to ensure feasibility in real-world contexts, SHAP caching and 

latency benchmarking techniques are used to reduce overhead and optimize runtime responsiveness. Our validation 

pipeline includes ablation studies, ensemble agreement diagnostics, and robustness assessments under Out-Of-

Distribution (OOD) conditions, as these evaluations provide a comprehensive view of system performance in both 

expected and novel operational scenarios. Hence, our paper will discuss the following: Section 2 offers an analysis of 

related literature, while Section 3 discusses the methods used for fraud detection and prevention in our project. Section 

4 presents our findings in the context of research objectives, and Section 5 is a conclusion that outlines future research 

directions. 

2. Related Work 

This section reviews recent advances in credit card fraud detection, focusing on machine learning, deep learning, and 

interpretability techniques, while noting gaps in real-time prevention and class imbalance management. Mill et al. [1] 

examined the use of XAI in real-time fraud detection, emphasizing regulatory drivers like Strong Customer 

Authentication (SCA) and identifying four research goals: embedding explanations in operational contexts, prioritizing 

intrinsically interpretable models, quantitatively evaluating explanation–model alignment, and tailoring explanations 

to stakeholders. They stressed the need for human-centered explainability, real-world validation, and greater trust 

before adoption by financial institutions. In [2], the authors integrated XAI with ML for fraud detection, using SHAP 

and LIME for interpretability, SMOTE for class balancing, and XGBoost for robust performance, achieving 96.64% 

accuracy, 94.79% AUC-ROC, and 92.92% recall. Aljunaid et al. [3] proposed an Explainable Federated Learning 

(XFL) model that combines privacy-preserving federated training with SHAP and LIME explanations, using a DNN 

with Auto-Encoders and RBMs to capture complex fraud patterns. Tested on real financial data, it achieved 99.95% 

accuracy, 99.95% sensitivity, 100% PPV, and a 0.05% miss rate, demonstrating high performance, interpretability, and 

regulatory compliance. Mallam et al. [4] evaluated supervised learning models, including logistic regression, kNN, 
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SGD, SVM, Extra Trees, Random Forest, and MLP on an imbalanced credit card fraud dataset. Random Forest 

performed best with 98.5% accuracy and 0.99 AUC, though the study noted overfitting and class imbalance as 

limitations. Mir [5] proposed an adaptive fraud detection framework using real-time ML with streaming data, 

combining decision trees, SVM, and ensembles. Adaptive models outperformed static ones, especially for complex 

fraud patterns, but faced challenges in feature selection and computational cost. Patel [6] reviewed credit risk and fraud 

detection methods using big data analytics, highlighting the shift from rule-based to advanced ML/DL approaches, and 

addressing issues of data security, scalability, evolving fraud patterns, regulatory compliance, and the role of AI, data 

quality, IoT, and blockchain in mitigating privacy and imbalance challenges. 

The study in [7] compared multiple ML algorithms for fraud detection, addressing data imbalance and privacy 

concerns, and proposed a hybrid ANN–federated learning approach for decentralized training. The federated ANN 

achieved up to 99.96% accuracy while mitigating overfitting and GDPR-related sharing issues, though challenges 

remained in computation, dataset access, and anomaly detection. Bharath et al. [8] developed a Python-based ANN 

system using features such as interaction, amount, and intervals, achieving high accuracy, precision, and recall; they 

noted evolving fraud patterns and imbalance, recommending hybrid models and better feature selection for adaptability. 

Baisholan and Baqapuri [9] focused on interpretability and imbalance, employing XGBoost and Random Forest with 

class weighting and threshold adjustments, achieving 97% AUC-PR and 95% recall. SHAP enhanced transparency, 

and threshold optimization was prioritized over oversampling. Ojo and Tomy [10] examined SHAP and LIME for 

building trust in fraud detection, achieving 96% accuracy and 0.95 ROC-AUC on the Kaggle dataset using Random 

Forest and Gradient Boosting with SMOTE, highlighting the regulatory need to balance performance and 

interpretability. In [11], a hybrid model combining Gradient Boosting, Random Forest, and Feedforward Neural 

Networks achieved 98.8% accuracy, 80.2% recall, and 0.96 AUC, processing transactions in 500 ms with SMOTE and 

dimensionality reduction, and emphasizing interpretability and unsupervised learning to address evolving fraud. In 

[12], a privacy-preserving framework combined Federated Learning with XAI, using a DNN enhanced by Auto-

Encoders and RBMs to detect complex fraud patterns in imbalanced datasets. SHAP and LIME enabled traceable, 

verifiable decisions, and tests on real bank data confirmed high performance, interpretability, and regulatory 

compliance. 

Owoade et al. [13] addressed the growing issue of digital credit card fraud. They proposed a comprehensive framework 

that combines smart queue systems, machine learning, and regression testing for enhanced fraud detection and 

response. The model included real-time fraud monitoring, transaction risk classification, and regression testing to 

ensure the ongoing reliability of the system. Machine learning assessed historical data to adapt to changing fraud 

strategies, whereas smart waiting systems focused on high-risk transactions, enabling customized intervention. The 

approach showed improved accuracy, scalability, and response time. However, it faced challenges in some cases due 

to data protection concerns, high computational requirements, and inadequate human control. They concluded that 

integrating these technologies gives an adaptable and dynamic solution for modern financial fraud risks. Hasan et al. 

[14] reviewed the use of XAI and ML in credit card fraud detection, addressing black-box limitations in trust and 

compliance. They evaluated Random Forest, SVM, Logistic Regression, and ANN, all achieving ~99% accuracy due 

to dataset imbalance; SVM had the highest recall (89.5%) and ANN the highest precision (79.4%). They recommended 

inherently interpretable models like decision trees and rule-based systems to improve transparency, meet regulations, 

and reduce bias. Priya and Sarada [15] reviewed ML applications for fraud detection, noting the shortcomings of 

reactive methods. They proposed a two-step approach: identifying prior fraud patterns and enhancing authentication 

via a centralized global fraud database. By testing decision trees, SVM, KNN, Random Forest, and ensembles, they 

found that hybrid and ensemble models generally outperform and recommended cross-institutional collaboration and 

AI-driven platforms for scalable, proactive fraud defense. 

Habibpur et al. [16] proposed a deep learning–based fraud detection system integrating Uncertainty Quantification 

(UQ) to improve reliability. Using Monte Carlo Dropout and Ensemble MCD, they assessed prediction confidence via 

metrics like predictive cross-entropy and reliability plots. Trained on a balanced dataset of 385 features, the ensemble 

reduced false positives, improved accuracy, and achieved UAcc = 0.85. They recommended hybrid UQ methods and 

hard leakage detection for better real-time performance. Esenogho et al. [17] combined LSTM networks with AdaBoost 

and SMOTE-ENN resampling to address class imbalance, leveraging LSTM’s ability to capture transaction behavior. 
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Their method outperformed traditional ML models, achieving 99% AUC, 99.6% sensitivity, and 99.8% specificity, 

highlighting the challenge posed by the imbalance between legitimate and fraudulent transactions. Gonzalez [18] 

examined interpretable models for financial fraud detection, comparing SHAP and LIME in high-transparency contexts 

like accounting and auditing. Using U.S. SEC AAER data (1990–2023) classified as deceptive or non-deceptive, the 

study trained MLNs, AdaBoost, and XGBoost with Optuna optimization. AdaBoost achieved 97% accuracy, 95.2% 

weighted accuracy, and 96% recall. SHAP and LIME highlighted key financial metrics, enabling transparent and 

regulation-compliant detection. Almalki and Masud [19] addressed black-box transparency gaps by combining high-

performing ML models with SHAP interpretation on the IEEE-CIS dataset. XGBoost achieved 98.89% accuracy, 

93.15% recall, and 0.993 AUC, closely followed by Random Forest with 98.65% accuracy and 0.991 AUC. SHAP 

identified critical predictors like current asset ratio and expense-to-revenue ratio, showing that robust models combined 

with explainability improve reliability, auditability, and compliance. All the studies discussed revolve around fraud 

detection and offer promising prediction algorithms for preventing fraud. Table 1 compares these studies methods, 

explainability techniques, and performance. 

Table 1. Literature Survey 

 Methods used Explainability Techniques Performance 

[1] 

A conceptual framework for XAI use in 

real-time fraud detection: Decision Trees, 

Risk Scoring Systems (RiskSLIM), Post-

hoc models (e.g., SHAP) 

Intrinsic interpretability, 

post-hoc feature attribution 

(e.g., SHAP, saliency maps) 

Not evaluated (conceptual study; no 

empirical metrics reported) 

[2] 
XGBoost with SMOTE and Feature 

Engineering 
SHAP, LIME 

Accuracy: 96.64%; Recall: 92.92%; 

AUC-ROC: 94.79%; F1-score: 22.99% 

[3] 

Deep Neural Network (DNN), Auto-

Encoders, Restricted Boltzmann Machines 

(RBM) 

SHAP, LIME 
Accuracy: 99.95%, Sensitivity: 99.95%, 

PPV: 100%, Miss Rate: 0.05% 

[4] 
Random Forest, Logistic Regression, SVM, 

kNN, MLP, SGD, Extra Tree 
Not used 

Random Forest model: Accuracy: 

98.5%; Precision: 97.2%; Recall: 96.8%; 

F1-score: 97; AUC: 0.99 

[5] 

Adaptive Fraud Detection Systems – 

Decision Trees, SVM, Ensemble Learning, 

Adaptive real-time learning models 

Not used (focuses on 

detection accuracy and 

adaptability) 

Accuracy: ~96%, Detection Rate: high 

(exact % not specified), False Positive 

Rate: reduced compared to static models 

[6] 
Random Forest, Logistic Regression, 

Gradient Boosting, DNN 

SHAP (SHapley Additive 

exPlanations) for feature 

importance 

Accuracy: 97.2%, Precision: 96.5%, 

Recall: 95.8%, F1-score: 96.15% 

[7] 
Random Forest, SVM, ANN, Isolation 

Forest, Hybrid Federated Learning + ANN 
Not used 

ANN model with federated learning 

achieved 99.96% accuracy, improved 

over earlier models 

[8] 

Autoencoder (Deep Learning), Intelligent 

Learning Scheme for Digital Fraud 

Detection (ILSDFD), ANN, SVM, K-NN, 

Boosting 

No 

Accuracy: up to 98.96%, Precision: up to 

95.71%, Recall: up to 93.83% (ILSDFD 

outperforms conventional ANN in all 

metrics) 

[9] 
Random Forest, XGBoost (ensemble), 

threshold tuning, SHAP integration 
SHAP 

AUC-PR: 97%; Recall: 95%; 

outperforming multiple ML models on 

imbalanced data 

[10] Random Forest, Gradient Boosting SHAP, LIME accuracy: 96%; ROC-AUC: 0.95 

[11] 

 

Random Forest, Gradient Boosting, DNN, 

Hybrid Ensemble-DNN model 
Not used 

Hybrid model: Accuracy 98.8%; 

Precision 90.1%; Recall 80.2%; F1-score 

85.0%; AUC 0.96 

[12] Federated Learning (FL), DNN SHAP, LIME 
Accuracy: 96.4%, Precision: 95.3%, 

Recall: 94.1%, F1-score: 94.7% 

[13] 

Logistic Regression, Random Forest, 

Gradient Boosting, Isolation Forest, 

Autoencoders 

Not used Improved detection accuracy (20–30%), 

40% reduction in false positives, a 
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scalable and efficient model, and greater 

speed in response 

[14] 
SVM, Logistic Regression, Random Forest, 

ANN 

Focus on Interpretability and 

Transparency, Interpretable 

Models, XAI principles 

All models had high accuracy (~99%); 

SVM had the highest recall (89.5%), and 

ANN had the highest precision (79.4%) 

[15] 
Random Forest, SVM, KNN, Decision 

Tree, ANN, CNN, Hybrid models 
Not used 

Not evaluated (review paper; no 

empirical performance results) 

[16] 
DNN, Monte Carlo Dropout, Ensemble, 

Ensemble Monte Carlo Dropout 

UQ using PE, UQ Confusion 

Matrix 

UAcc: 85%. Improved uncertainty 

handling: The ensemble approach is most 

effective at capturing uncertainty 

[17] 
LSTM and AdaBoost (Ensemble), SMOTE-

ENN for resampling 
Not used 

Sensitivity: 99.6%; Specificity: 99.8%; 

AUC: 99% 

[18] 
Multi-layer Neural Network (MLN), 

AdaBoost, XGBoost 
SHAP, LIME 

Accuracy: 97%, Weighted Accuracy: 

95.2%, Recall: 96% 

[19] 
Logistic Regression, Random Forest, 

XGBoost 
SHAP 

XGBoost – Accuracy: 98.89%, Recall: 

93.15%, AUC: 0.993; RF – Accuracy: 

98.65%, AUC: 0.991 

3. Methodology  

This section describes the multi-phase methodology, which follows four sequential phases. First, the dataset is prepared 

by merging and cleaning transactional records, handling missing values, and unifying features into a consistent format. 

Second, an Exploratory Data Analysis (EDA) phase examines the data’s structure, distributions, temporal trends, 

geographic patterns, and demographic profiles, providing insights for later processing. Third, a structured feature 

engineering process transforms raw attributes into behavioral, temporal, and risk-based indicators, followed by targeted 

oversampling to address class imbalance. Fourth, multiple detection models, including gradient boosting, ensemble 

methods, and neural networks, are trained, evaluated, and combined, with SHAP explainability applied to interpret 

model outputs. The final stage integrates these models into a real-time fraud prevention system equipped with dynamic 

threshold tuning, out-of-distribution detection, and a closed feedback loop for continuous adaptation. Figure 1 

illustrates the methodology overview. 

 

Figure 1. Overview of the Methodology 

3.1. Dataset Preparation 

The Kaggle Fraud Detection Dataset [20] is a comprehensive synthetic dataset designed to simulate realistic credit card 

transaction activity, with explicit labeling of fraudulent versus legitimate transactions. It consists of over 1.6 million 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2838 -2857 

ISSN 2723-6471 

2843 

 

 

 

rows, specifically, 1,048,575 training instances and 555,720 testing instances, which were merged into a unified dataset 

named final_dataset.csv for analysis. Each row represents a unique transaction, with rich contextual and behavioral 

features spanning temporal (e.g., transaction timestamp, date of birth), geographic (latitude and longitude of customer 

and merchant), financial (transaction amount), and demographic (job, gender, city, state) attributes. The target variable 

is_fraud indicates whether the transaction is fraudulent (1) or not (0), supporting binary classification tasks. Categorical 

features such as merchant, category, and job provide interpretive signals, while spatial features like merch_lat, 

merch_long, and city_pop enable modeling of geographic fraud patterns. 

3.2. Phase 1: EDA  

In the initial phase of the system design, a comprehensive EDA procedure was implemented to assess the structure, 

quality, and behavioral characteristics of the transactional dataset used for fraud detection. This phase served as a 

foundational step to inform downstream tasks such as feature engineering, class balancing, and model selection by 

providing empirical insights into the nature and distribution of the input data. Missing values and duplicate rows were 

computed, and the data type distribution was also evaluated. In addition, the fraud rate as a percentage, the number of 

legitimate transactions, and perhaps most importantly, the imbalance ratio between the two classes were represented. 

In highly skewed datasets, this ratio (legitimate-to-fraud) often exceeds 1:100, posing a known challenge for supervised 

learning algorithms downstream. 

The analysis moved from structure to behavior. Transaction amounts were aggregated by fraud status, yielding means, 

medians, standard deviations, and min/max values for each group. Categories, defined by merchant type, were analyzed 

next. Their transaction frequencies were tallied, and average amounts were computed separately for fraud and non-

fraud cases. Also, temporal features were derived from the already-parsed timestamps. New columns: hour, weekday, 

and month, were introduced, and grouped aggregations followed. Fraud rates by hour were calculated as means within 

hourly bins; transaction frequencies were simultaneously counted. Similarly, fraud by day of week was computed, with 

a predefined order imposed on weekdays to preserve interpretability, enabling the detection of seasonality or episodic 

spikes. Geographic patterns were computed through the Haversine formula, which focuses on calculating straight-line 

distances. These distances, sampled for performance reasons, were grouped by fraud status and summarized 

statistically, with means, medians, and deviations. Complementary to this, state-level groupings, when present, were 

used to calculate per-region fraud rates, albeit only where the data volume was sufficient to support statistical relevance. 

Demographic analysis came next. From the date of birth column, age was calculated, and each customer was assigned 

an age group using predefined bins. These groups were then used to compute fraud rates and transaction volumes, 

revealing differences in fraud exposure across age brackets. Gender, too, was included in the analysis. Transactions 

were grouped by gender and fraud status, allowing a breakdown of both fraud counts and rates. 

3.3. Phase 2: Feature Engineering 

In the second phase of the pipeline, a structured feature engineering methodology was applied to transform raw 

transactional data into a form suitable for predictive modeling, while explicitly mitigating the risks of temporal leakage 

and distributional shift. This phase uses the exploratory insights from Phase 1 and encoded domain-relevant behavioral, 

temporal, and relational patterns into new features. It also introduced rigorous preprocessing techniques to ensure 

fairness and validity in model training and evaluation, particularly for fraud detection tasks characterized by high class 

imbalance and non-stationary distributions. The previously optimized dataset served as the input in this phase. From 

there, a structured and modular set of feature extraction operations commenced. Time-based features were generated 

first, using transaction timestamps to derive variables such as hour, weekday, quarter, day-of-month segments, and a 

“seconds-since-midnight” field. Contextual time grouping, such as mapping hours into daily quadrants, was introduced 

not as an embellishment but to assist with eventual interpretability and model generalization. These features were then 

extended with additional transformations, including binary indicators for weekends and discretized time-of-month 

encodings. Customer-level features were engineered concurrently. Age was inferred from the difference between date 

of birth and transaction time, which allowed subsequent bucketing into age groups. City population data was used to 

segment customers into rural, small-city, medium-city, and large-city designations. Notably, the design of these bins 

was guided by domain intuition but tuned empirically to avoid collapsing rare cases into underrepresented classes. 

Transaction-centric features followed, including binned transaction amounts, geographic distance (via the Haversine 
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formula), and merchant-category-level aggregation statistics (mean, median, and standard deviation of transaction 

values). These were then used to generate relative-spending metrics, ratios of individual amounts to category-level 

averages, and outlier flags for high-value anomalies. A critical layer of risk profiling was added through fraud-rate 

computations grouped by category and merchant. The fraud rate for each group was computed and used to create 

ordinal risk labels. For merchants, this was gated only to include those with sufficient historical volume (≥30 

transactions). Where merchant-level fraud rates were unavailable, category-level rates were imputed. Velocity features 

were introduced last. Transactions were grouped by card number and sorted chronologically. The system calculated 

inter-transaction intervals, identifying rapid transactions, state switches, and repeating category behaviors. Additional 

indicators were derived from changes in transaction amounts, percentage spikes, and sudden transitions, features known 

to reflect behavior-based fraud signatures. 

The processed dataset was then split temporally into training, validation, and test sets, preserving chronological 

integrity to avoid leakage. Each segment was analyzed separately to determine fraud prevalence. Drift detection was 

conducted on numerical features using the Kolmogorov-Smirnov test, with p-values interpreted to signal statistical 

divergence between time windows. Categorical variables, including both original and engineered features, were 

encoded using one-hot encoding. This encoding produced aligned training, validation, and test feature sets, from which 

the fraud labels were then separated. The resulting matrices were subjected to a suite of oversampling strategies: 

SMOTE, ADASYN, Gaussian noise injection, random replication, and SMOTE-ENN hybridization. Before 

oversampling, all numerical features were cleaned for NaN, infinite values, and distributional outliers. Median 

imputation was used where applicable, and values were clipped using a ten-sigma threshold to suppress distortion from 

rare extreme values. The oversampling methods were applied in fixed mode: no randomness in technique selection, 

but all with enforced NaN-handling routines to ensure operational integrity on full datasets. Each method’s output was 

evaluated using a standard random forest classifier. Metrics, including precision, recall, F1-score, and ROC-AUC, were 

computed on the validation set. Execution time, class balance ratio, and memory footprint were recorded. The best-

performing technique, as measured by F1-score, was retained and applied to the training set to generate a final, balanced 

dataset with a target fraud ratio of 0.5. 

This phase concluded with a full pipeline validation to verify class balance, feature alignment, and the reproducibility 

of the oversampling logic; in addition to the construction of multiple labeled and encoded datasets, both in-distribution 

and OOD, along with serialization of metadata and engineered features. These outputs served as inputs to model 

training in the subsequent phase, completing a robust, temporally aware, and statistically grounded feature engineering 

pipeline tailored for high-risk, imbalanced fraud detection domains. 

3.4. Phase 3: Detection Models with Ensemble and SHAP Explainability 

The third phase of the pipeline focused on the design, training, and evaluation of fraud detection models, with an 

emphasis on model diversity, ensemble learning, threshold optimization, and post hoc explainability. This phase 

operationalized the engineered feature space produced in Phase 2 and integrated multiple predictive algorithms under 

a unified evaluation and interpretability framework. The training suite included five models: LightGBM, XGBoost, 

Random Forest, Gradient Boosting, and a restructured Multi-Layer Perceptron (MLP) implemented using scikit-learn's 

MLPClassifier. 

These models were chosen for their complementary strengths. LightGBM, a histogram-based gradient boosting 

framework, is optimized for speed and memory efficiency, making it particularly well-suited for large-scale 

classification tasks with high-dimensional data. XGBoost offers similar boosting capabilities but extends them with 

additional support for regularization, such as gamma and lambda, as well as sparsity-aware learning, which enhances 

its robustness in imbalanced settings. Meanwhile, Random Forest serves as a bagging ensemble baseline that provides 

resilience against noise and overfitting, while also acting as a non-boosted counterpoint to the gradient boosting models. 

Each model was trained using pre-split training and validation sets, stratified by the target class (is_fraud) and sorted 

chronologically to prevent temporal leakage. Standard hyperparameter values were used initially, with light tuning for 

learning rate, depth, and regularization where appropriate. Early stopping was applied to LightGBM, XGBoost, and 

the MLP to avoid overfitting, using AUC as the monitored metric. 
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All models were evaluated on an unseen, temporally isolated test set, using a range of performance metrics to capture 

different aspects of their behavior. Precision, recall, F1-score, and accuracy were used to assess class-specific 

performance under varying thresholds. In addition, ROC-AUC and PR-AUC were employed to provide threshold-

independent evaluations particularly relevant for imbalanced binary classification. Confusion matrix statistics were 

examined to quantify the distribution of true and false positives and negatives, while inference time per sample was 

measured to evaluate the suitability of the models for real-time applications. Evaluation was conducted not only at the 

default threshold of 0.5, but also across a configurable range of thresholds (0.1 to 0.9). This threshold set allowed for 

sensitivity analysis and informed the selection of decision points under different operational risk tolerances (e.g., 

maximizing recall for high-risk fraud detection scenarios). 

To ensure transparency and model accountability, SHAP (SHapley Additive exPlanations) values were computed for 

each model. The system implemented a centralized SHAP cache mechanism to avoid redundant computations across 

evaluations. To address concerns regarding the variability of SHAP explanations, a stability analysis module was 

included. This module performed multiple SHAP computations across random subsamples and seeds, reporting results 

on stability across three dimensions: feature overlap, rank agreement, and within-model consistency. The first 

dimension, top-k feature agreement, was evaluated using Jaccard similarity. For every pair of models, the top 10 most 

influential features (as measured by mean absolute SHAP values) were extracted and compared. The second dimension, 

rank correlation, was examined via Spearman's rho, calculated over the full importance vector of each model. This 

analysis probed whether models not only selected similar features but also assigned them comparable relative 

importance.  

To assess within-model explanation stability, the Coefficient of Variation (CV) was computed for each model’s SHAP 

importance vector. This metric captured the dispersion of attribution weights, low CV values signifying that a small 

number of features carried the bulk of interpretive weight. In contrast, high CV values suggested a flatter distribution. 

Beyond stability, the value of SHAP explanations was assessed through a feature consensus analysis. Across all models, 

features that appeared consistently in the top 10 importance rankings were counted and visualized. The presence of 

multiple features shared by at least four out of five models pointed to a robust interpretive signal, not merely an artifact 

of any one model’s inductive biases. These consensus features often aligned with domain-intuitive attributes such as 

transaction amount, merchant risk indicators, and velocity features, underscoring the functional relevance of the SHAP 

output. Then, an ensemble model was created using a weighted averaging scheme. However, unlike prior static-weight 

strategies, this phase introduced an empirical mechanism for automatic weight discovery. A grid search over 

normalized weight combinations was executed across the validation set, optimizing for maximum ROC AUC. This 

optimization process, iterating through over a hundred weight permutations, resulted in data-driven assignments, rather 

than arbitrary values (e.g., 0.35 for LightGBM or XGBoost). The model-specific contributions in the final ensemble 

were therefore grounded in observed validation performance rather than assumptions of uniform reliability. This 

approach helped mitigate issues of over-representation from high-capacity models while preserving complementary 

signal diversity. 

The ensemble’s predictions were then evaluated on the test set using the same battery of metrics as the individual 

models. Notably, this comparison allowed assessment of ensemble synergy: whether predictive performance could be 

attributed to additive value across classifiers or merely to the dominant influence of one or two stronger models. To 

conclude, all models were ranked by F1-score and cross-validated against ROC AUC to detect inconsistencies or 

performance anomalies. To assess the marginal utility of the MLP within the broader ensemble architecture, a dedicated 

analysis module was executed. The analysis began with comparing ensemble performance with and without the MLP. 

Two ensembles were constructed: one using all available models, and another omitting the neural network entirely. 

Predictions were averaged using uniform weights, thus minimizing bias in either direction. Performance deltas were 

then computed across the same metric set. Beyond raw accuracy, a deeper investigation was carried out to evaluate 

prediction correlations. By examining the Pearson correlation between the MLP’s prediction vector and those of other 

models, the analysis quantified alignment and divergence across classifiers. A lower correlation coefficient suggested 

greater diversity in the MLP’s signal. To validate this independence further, a unique contribution test was performed. 

Predictions where the MLP disagreed with the majority of other models were isolated. Within this subset, outcomes 
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were cross-checked against ground truth to determine whether these “disagreements” yielded correct or incorrect 

classifications. An estimate of “uniqueness ratio” and “unique accuracy” was derived from this comparison, as well. 

3.5. Phase 4: Fraud Prevention System with Dynamic Threshold Tuning 

The fourth phase introduced a fully integrated fraud prevention system engineered for both robustness and adaptability 

under real-world conditions. Unlike preceding stages, which focused primarily on detection and evaluation in static 

pipelines, this phase advanced toward deployment-readiness, introducing mechanisms for real-time response, 

explanation latency management, out-of-distribution resilience, and dynamic threshold tuning via reinforcement 

learning (RL). Each of these components was purpose-built to address specific weaknesses raised in prior reviewer 

feedback, moving from theoretical completeness to operational viability. The core engine of the system was an 

ensemble of diverse classifiers, drawn from Phase 3 models. Central to the system’s adaptability was a reinforcement 

learning–based threshold tuner, implemented using a lightweight Q-learning policy with ε-greedy exploration. This 

module operated continuously, adjusting the fraud classification threshold based on incremental feedback regarding 

false positives, false negatives, and macro-performance signals (e.g., precision, recall, F1). Rather than relying on static 

calibration or grid-search optimization, the RL tuner adapted its policy using a rolling performance window and reward 

gradients sensitive to F1 score and false positive reduction. Over time, it converged toward threshold values that better 

reflected evolving fraud patterns, whether during high-risk bursts or quiet transactional intervals. The threshold’s 

evolution was visualized across varied risk regimes (high-fraud, normal, low-fraud), confirming that the system could 

self-regulate in response to contextual volatility. 

To support interpretability, SHAP explanations were embedded directly into the prediction pipeline, but not without 

modification. Unlike offline SHAP pipelines, this system performed per-transaction SHAP computation on demand, 

caching recent explanations and optimizing latency through dimensionality reduction in background sets. 

KernelExplainer and TreeExplainer were selectively applied based on model compatibility and computational 

feasibility. A dedicated latency profiler tracked explanation overhead in milliseconds, generating real-time 

performance statistics (mean, median, 95th percentile) and throughput degradation factors. In live tests, SHAP-related 

processing overhead averaged 1.9× compared to baseline predictions, a manageable cost for critical use cases requiring 

explanation-based decision justification. Another key innovation was the integration of out-of-distribution (OOD) 

detection and evaluation, designed to assess system generalization beyond training-time priors. An Isolation Forest was 

trained on clean, in-distribution data to flag anomalous patterns at runtime. Transactions identified as OOD were 

tagged, scored, and optionally routed through alternate policies. Importantly, model performance was benchmarked 

separately on OOD and In-Distribution (ID) samples, and performance degradation (F1 and AUC drop) was explicitly 

quantified. This allowed the system to contextualize predictive reliability under drift, revealing a performance delta 

that, while present, remained within operational thresholds (e.g., ~0.07 AUC drop in stress-tested scenarios). 

All predictions, explanations, and decisions were orchestrated by a thread-safe transaction processor, which maintained 

a historical queue of system latency, thresholds, risk decisions, and true-label feedback. Fraud risk levels were 

categorized into stratified action bands (Approve, Monitor, Challenge, Block, Block Immediately), allowing 

downstream systems or human analysts to align automated decisions with domain policies. Real-time fraud detection 

effectiveness was demonstrated using a synthetic event stream mimicking high-risk and borderline cases. Under this 

simulation, the system achieved a fraud detection rate exceeding 90% while maintaining a false positive rate below 

8%, reinforcing the practical balance between aggressiveness and caution. Critically, the prevention system operated 

in a closed feedback loop, where each transaction’s outcome (prediction vs. ground truth) was used to reinforce the RL 

tuner and update SHAP performance profiles. This iterative feedback loop, measured over hundreds of transactions, 

formed the basis of the system’s self-adaptation mechanism, ensuring that what began as a static configuration evolved 

into a dynamic, learning-aware prevention framework. 

4. Results and Discussion 

4.1. EDA 

The first phase of our methodology included an EDA process, which revealed valuable insights about the dataset. As 

shown in table 2, the composite fraud dataset comprises 1,048,575 transactions across 22 features, which exhibits high 
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structural integrity with no missing values and zero duplicate rows. A significant class imbalance was identified: only 

0.57% (6006 out of over a million records) were fraudulent, establishing an extreme imbalance ratio of approximately 

1:174.  

Table 2. Target Distribution 

Class Count Percentage 

Fraudulent 6,006 0.5728% 

Legitimate 1,042,569 99.4272% 

Total 1,048,575 100% 

Statistical comparison reveals a stark difference in transaction behavior. Fraudulent transactions have a considerably 

higher average amount (mean: ~530 SAR) compared to legitimate ones (mean: ~68 SAR), with a wider spread 

(standard deviation: 391.33 vs. 153.70). This disparity suggests potential utility of amount-based thresholds or 

embeddings in downstream models. Table 3 views the transaction statistics by fraud status. 

Table 3. Transaction Statistics by Fraud Status 

Class Count Mean (SAR) Median (SAR) Min (SAR) Max (SAR) Std Dev (SAR) 

Legitimate 1,042,569 67.63 47.22 1.00 28,948.90 153.70 

Fraudulent 6,006 530.57 391.17 1.18 1,371.81 391.33 

Category-wise, fraudulent activity clustered in online grocery and shopping-related categories, while legitimate 

transactions were dominated by fuel, household, and child-related expenses. Spatial metrics suggest that fraudulent 

transactions occur over slightly shorter average distances between customers and merchants (mean: 74.42 km vs. 76.72 

km), though both groups show high variability. This might reflect strategic proximity manipulation in fraud schemes 

or legitimate purchases from local vendors. Table 4 displays the distance between the customer and merchant (in km). 

Table 4. Distance Between Customer and Merchant (in km) 

Class Mean Median Min Max Std Dev 

Legitimate 76.72 78.76 0.11 143.50 28.91 

Fraudulent 74.42 75.09 8.16 129.42 28.68 

Temporal patterns reveal that fraudulent transactions exhibit distinct behaviors compared to legitimate ones. While 

legitimate activity follows a consistent weekly cycle with peaks on weekends and early in the week, fraud remains 

sparse and irregular over time. Notably, the fraud rate is highest on Saturdays, despite Monday and Sunday having the 

most transactions. Hourly analysis shows a dramatic surge in fraud between 10 PM and midnight, suggesting attackers 

exploit low-surveillance hours. In contrast, legitimate transactions are evenly distributed throughout the day. These 

patterns highlight time-based vulnerabilities and suggest that fraud detection models should incorporate both day-of-

week and hour-of-day as critical temporal features. Figure 2 illustrates the transaction count and fraud rate by day of 

week (left) and by hour of day (right). 

 

  

 Figure 2. Transaction Count and Fraud Rate by Day of Week (left) and by Hour of Day (right) 

Customer demographics analysis reveals minimal gender disparity in fraud rates, with males showing a slightly higher 

rate than females. However, females account for a larger share of overall transaction volume. As shown in figure 3, 
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age-based analysis shows that fraud is most prevalent among the youngest (18–24) and oldest (65+) groups, despite 

mid-aged users (35–54) generating the highest transaction counts. Notably, the 35–44 group records the lowest fraud 

rate, making them comparatively lower-risk. The dual-axis bar-line chart reveals that the 18–24 age group exhibits the 

highest fraud rate despite having low transaction volume, suggesting they are a high-risk segment. In contrast, the 35–

44 group has the lowest fraud rate despite high activity, making them the most reliable demographic. These findings 

suggest that demographic factors, while not sole indicators, can enhance fraud detection models when used in 

conjunction with behavioral features. 

 

Figure 3. Transaction Count and Fraud Rate by Age Group 

4.2. Feature Engineering and Oversampling 

In the second phase of the pipeline, we executed a fully GPU-accelerated feature engineering and oversampling 

workflow, designed to operate at scale without compromising fidelity or efficiency. Using a Tesla T4 GPU, we 

processed the full transactional dataset (1,048,575 records) without any sampling reduction. Memory optimization 

routines yielded substantial reductions (up to 82.5%), enabling the feature pipeline to execute across all data partitions 

(train, validation, test) with a unified dimensionality of 210 features post-alignment. The feature engineering stack 

included 10 temporal indicators, three customer-level aggregations, nine transaction-derived constructs, three 

contextual risk scores, and 13 velocity-based features capturing behavioral drift over time windows. Temporal drift 

detection revealed a significant shift in a single variable (`unix_time`), justifying the temporal split strategy and 

ensuring chronological validation integrity. 

To address the pronounced class imbalance (fraud ratio < 0.6%), five oversampling techniques were evaluated: Random 

Oversampling, Gaussian Noise, SMOTE, ADASYN, and SMOTE-ENN. Results demonstrating a comparison of those 

methods' evaluation are found in table 5. Gaussian Noise, although computationally efficient (12.3s) and highly precise 

(0.9588), demonstrated limited generalizability with a recall of just 0.5952, producing an F1 score of 0.7294. SMOTE 

and SMOTE-ENN both delivered balanced outcomes, achieving identical F1 scores of 0.7575 with comparable recall 

(\~0.737) and precision (\~0.778), but incurred higher computational costs (\~500s). In contrast, Random 

Oversampling, despite its minimal runtime (2.6s), underperformed significantly, yielding an F1 score of just 0.5623 

due to a severe precision deficit (0.3761) despite high recall (0.9418), indicative of synthetic overfitting and classifier 

saturation. ADASYN ultimately emerged as the best-performing strategy, delivering the highest F1 score (0.7740), 

with a well-balanced precision (0.7697) and recall (0.7784), albeit with the longest runtime at over 5700 seconds.  

All oversampling techniques except ADASYN produced a final fraud ratio of exactly 0.500, achieving perfect class 

balance. ADASYN resulted in a slightly lower fraud ratio of 0.451, yet still yielded the highest F1 score, indicating 

strong performance despite partial balance. Following these benchmarks, ADASYN was selected and applied as the 

mandatory oversampling strategy to generate a balanced training set containing 729,653 fraud and 729,653 non-fraud 

samples. This approach also highlights the trade-off between precision, recall, and execution time, affirming the 

necessity of performance-aware oversampling selection in large-scale fraud modeling pipelines. 

Table 5. Oversampling Techniques Evaluation Results 

Technique Precision Recall F1 Score ROC AUC Execution Time (s) 

ADASYN 0.7697 0.7784 0.7740 0.9911 5723.19 

SMOTE 0.7779 0.7385 0.7575 0.9897 2226.79 
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SMOTE-ENN 0.7786 0.7376 0.7575 0.9894 2254.18 

Gaussian Noise 0.9588 0.5952 0.7294 0.9928 176.81 

Random Oversample 0.3761 0.9418 0.5623 0.9983 2.61 

4.3. Detection Models with Ensemble and SHAP Explainability 

In Phase 3, the pipeline transitioned from data preparation to full-scale model training and evaluation, on a training set 

comprising 210 features, which was pre-processed to ensure data integrity. GPU-based memory optimization routines 

reduced data footprint by nearly half, facilitating seamless training across the selected models. The dataset preparation 

stage ensured consistent feature alignment across training, validation, and test sets while also eliminating memory 

bottlenecks through aggressive optimization techniques, trimming memory usage by over 50%. Despite the training 

data reflecting an unusually high fraud ratio (0.451), the validation and test sets were far more realistic in class 

distribution, with fraud ratios of 0.004 and 0.006, respectively, offering a more stringent test of generalization. As 

illustrated in table 6, the performance of the fraud detection models trained in Phase 3 was evaluated across five 

supervised learning algorithms, each offering distinct advantages. 

Table 6. Fraud Detection Models Evaluation Results 

Model Accuracy Precision Recall F1 Score ROC AUC Training Time (s) Inference Time (s) 

XGBoost 0.9986 0.9636 0.8059 0.8777 0.9988 39.02 0.55 

LightGBM 0.9986 0.9764 0.7807 0.8676 0.9987 56.28 1.27 

Random Forest 0.9981 0.9412 0.7387 0.8277 0.9953 171.69 0.88 

Gradient Boosting 0.9978 0.8996 0.7240 0.8023 0.9944 439.13 1.55 

MLP 0.9964 0.6968 0.7209 0.7086 0.9829 782.49 0.70 

The LightGBM model, trained with GPU acceleration, delivered a strong balance of performance and efficiency. It 

achieved an accuracy of 0.9986, a high precision of 0.9764, and a recall of 0.7807, resulting in an F1 score of 0.8676 

and a ROC AUC of 0.9987. Training completed in just 56.28 seconds, and inference was fast at 1.27 seconds, 

confirming LightGBM’s suitability for high-precision scenarios, though its recall was slightly lower than the top-

performing model. The standout performer was XGBoost, which outperformed all others in nearly every metric. It 

achieved the highest F1 score of 0.8777, reflecting a strong balance between precision (0.9636) and recall (0.8059), 

along with a ROC AUC of 0.9988, the highest among all models. It matched LightGBM in accuracy (0.9986) but 

outperformed it in sensitivity to fraud. Moreover, XGBoost was both fast and lightweight, completing training in 39.02 

seconds with an extremely fast inference time of 0.55 seconds, making it ideal for real-time deployment. The Random 

Forest model also performed well, although slightly behind the gradient boosting methods. It achieved an accuracy of 

0.9981, a precision of 0.9412, and a recall of 0.7387, resulting in an F1 score of 0.8277 and ROC AUC of 0.9953.  

While these results were strong, Random Forest was more computationally expensive, requiring 171.69 seconds for 

training and 0.88 seconds for inference. Its relative performance suggests it is a stable baseline but not the best option 

for highly imbalanced fraud detection tasks. The MLP model showed high internal accuracy during training (0.9997) 

and validation (0.9970), but this did not fully translate to test set generalization. It recorded the lowest precision 

(0.6968) and F1 score (0.7086) among the models, along with a recall of 0.7209 and ROC AUC of 0.9829. It also had 

the longest training time, taking 782.49 seconds, although inference remained reasonably fast at 0.70 seconds. These 

results suggest that MLP was less suited to the structured nature of the dataset compared to tree-based models. The 

Gradient Boosting model from scikit-learn performed moderately well, achieving an accuracy of 0.9978, a precision 

of 0.8996, a recall of 0.7240, and an F1 score of 0.8023, with a ROC AUC of 0.9944. However, training was relatively 

slow, consuming 439.13 seconds, and inference took 1.55 seconds, making it less efficient for high-throughput 

environments. Still, it provided competitive results and contributed valuable diversity to the ensemble phase. 

Finally, an ensemble model was constructed by testing 2,851 weight combinations across the five trained models to 

determine an optimal blending strategy (figure 4). Surprisingly, the best configuration assigned full weight to XGBoost 

(1.0) and zero weight to all other models. This result reaffirmed XGBoost’s dominance, as the ensemble effectively 

replicated its performance. The ensemble achieved the same accuracy (0.9986), precision (0.9636), recall (0.8059), F1 

score (0.8777), and ROC AUC (0.9988) as XGBoost, albeit with a slightly longer inference time of 5.30 seconds due 
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to ensemble logic overhead. In conclusion, XGBoost proved to be the most effective and efficient model for fraud 

detection in this pipeline, rendering additional ensembling unnecessary. 

 

Figure 4.  Ensemble Model Evaluation Results 

The SHAP analysis across all five fraud detection models offers critical insight into the decision-making rationale 

behind each model's predictions. By computing the mean absolute SHAP values, we identified the top 10 most 

influential features that consistently contributed to the model output. Notably, the feature `trans_quarter`, indicating 

the quarter of the year when a transaction occurred, emerged as the most dominant signal for both LightGBM (1.3627) 

and XGBoost (1.1330), and ranked highest in Gradient Boosting (0.8319). This suggests that fraud risk exhibits strong 

seasonal variation, likely aligning with trends observed around financial year transitions, holidays, or post-quarter sales 

periods. Following closely, `trans_year` (LightGBM: 1.0914; XGBoost: 1.1007) held almost equal SHAP influence, 

pointing to the importance of temporal drift, where fraud patterns evolve yearly, perhaps in response to changing 

regulatory environments or evolving attacker strategies. The feature `seconds_since_midnight`, a proxy for transaction 

time within the day, showed considerable SHAP importance (LightGBM: 0.9421; XGBoost: 0.8477), reinforcing the 

hypothesis that certain times of day, especially off-peak hours, are more vulnerable to illicit activity. 

Demographic features were also prominent. As illustrated in table 7, `gender_M` displayed high contribution scores 

(LightGBM: 0.8598; Gradient Boosting: 0.3738), though its presence underscores the necessity of auditing for potential 

bias, as such attributes can encode societal patterns or data imbalances rather than causal relationships. Domain-

engineered statistical features such as `category_median_amt` (LightGBM: 0.4904; Gradient Boosting: 0.3523) and 

`merchant_fraud_rate` (LightGBM: 0.4293; Gradient Boosting: 0.3306) highlight how models relied on aggregate 

behavioral norms and historical risk to flag suspicious activity. Interestingly, `state_HI` (i.e., Hawaii) also appeared 

among the top-ranking features, which may suggest either regional fraud anomalies or sampling irregularities specific 

to this geographic marker (LightGBM: 0.4703; XGBoost: 0.4720). Similarly, `trans_dayofweek` was consistently 

important across models, suggesting that weekday vs. weekend effects influenced fraud likelihood. The binary feature 

`same_category`, indicating whether a transaction belongs to the same category as the previous one, was also 

consistently impactful (LightGBM: 0.3573; XGBoost: 0.3558), reflecting the value of behavioral continuity in fraud 

prediction. Lastly, `category_personal_care`, a categorical indicator for the type of transaction, held non-negligible 

influence (LightGBM: 0.3340), pointing to the nuanced risk signals embedded in certain merchant types. 

Table 7. Demographic Features Results 

Feature LightGBM XGBoost Random Forest MLP Gradient Boosting 

trans_quarter 1.3627 1.1330 0.0397 6.49 × 10¹⁰ 0.8319 

trans_year 1.0914 1.1007 0.0333 6.49 × 10¹⁰ 0.4076 

seconds_since_midnight 0.9421 0.8477 0.0293 3.86 × 10⁻³ 0.4027 
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gender_M 0.8598 0.5382 0.0293 3.25 × 10⁻³ 0.3738 

category_median_amt 0.4904 0.4922 0.0293 3.14 × 10⁻³ 0.3523 

state_HI 0.4703 0.4720 0.0287 2.92 × 10⁻³ 0.3352 

merchant_fraud_rate 0.4293 0.4499 0.0236 2.85 × 10⁻³ 0.3306 

trans_dayofweek 0.3739 0.4253 0.0235 2.60 × 10⁻³ 0.3074 

same_category 0.3573 0.3558 0.0224 2.35 × 10⁻³ 0.2858 

category_personal_care 0.3340 0.3275 0.0174 2.33 × 10⁻³ 0.2821 

In this study, we conducted a systematic evaluation of SHAP value explanations and their stability across five distinct 

machine learning models, LightGBM, XGBoost, Random Forest, MLP, and Gradient Boosting. The goal was twofold: 

first, to identify which features each model deemed necessary through SHAP value magnitudes, and second, to assess 

the stability of these attributions across models using quantitative alignment metrics. While interpretability frameworks 

often assume consistency across models as a proxy for trustworthiness, our results challenge this assumption by 

revealing nuanced patterns of convergence and divergence. The Jaccard Similarity index, used to assess the overlap in 

the top 10 most important features among model pairs, yielded an average of 0.308, indicating relatively low consensus. 

Although LightGBM and Gradient Boosting shared a moderate overlap (0.667), the MLP diverged sharply from all 

others, registering 0.000 similarity with both Gradient Boosting and LightGBM. This lack of feature consensus implies 

that SHAP values are not uniformly stable across model types, particularly when comparing tree-based models with 

neural architectures. 

In contrast, the Spearman Rank Correlation, which measures agreement in the ordering of feature importances, painted 

a more coherent picture. Tree-based models exhibited high rank correlations (e.g., ρ = 0.940 for LightGBM vs 

XGBoost, and ρ = 0.904 for Random Forest vs Gradient Boosting), reinforcing their shared logic in feature evaluation. 

However, once again, the MLP stood apart with much lower correlations (e.g., 0.486 with LightGBM), underscoring 

a systemic departure in how SHAP values were distributed and prioritized. To probe numerical robustness further, we 

computed the CV across SHAP magnitudes, yielding values in a tight range (2.32 to 2.52). Interestingly, the MLP 

achieved the lowest CV (2.3248), suggesting it had the most stable internal distribution of SHAP values, even though 

its feature selections and rankings diverged from the consensus. This contradiction, stability in magnitude but instability 

in semantics, highlights that different models may be "stable" in different senses, complicating singular interpretations 

of SHAP reliability. Collectively, these findings suggest that while SHAP values can be stable within certain model 

families, such as ensemble tree-based methods, their cross-model agreement is far from guaranteed. The stability of 

SHAP values depends not only on data characteristics but also heavily on model architecture. Thus, when using SHAP 

for model auditing or decision justification, practitioners must look beyond point estimates of importance and consider 

both intra-model stability and inter-model alignment. This study demonstrates that SHAP explainability is not a fixed 

trait of the model, but a dynamic interplay between algorithm, architecture, and data context. Figure 5 shows SHAP 

quantitative evaluation results. 
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 Figure 5. SHAP Explainability: Quantitative Evaluation 

The ensemble dynamics were further examined, focusing on the contribution of the MLP model to the five-model 

ensemble. This was not merely a performance audit but a reflective inquiry into whether neural abstraction adds value, 

or just numerical noise, to an otherwise tree-dominated ensemble. The results, while numerically subtle, uncover 

layered truths about diversity, redundancy, and marginal gain in ensemble architecture. According to this analysis, and 

by most classical metrics, the MLP underperforms. Its F1 Score (0.7086), ROC AUC (0.9829), Precision (0.6968), 

Recall (0.7209), and Accuracy (0.9964) place it last among the five models. This uniform fifth-place ranking might 

suggest irrelevance or even harm, but the picture shifts under ensemble evaluation. When the ensemble was tested with 

and without the MLP (table 8), the delta in performance was negligible: a −0.0002 drop in F1 Score, −0.0002 in ROC 

AUC, +0.0012 gain in Precision, and no net change in Accuracy. On average, the inclusion of the MLP induced a 

−0.01% change in performance, practically invisible to most dashboards, but conceptually meaningful when read as a 

proxy for interpretive diversity. 

Table 8. Ensemble Evaluation Results 

Metric Without MLP With MLP Difference % Change 

F1 Score 0.8591 0.8590 −0.0002 −0.0192% 

ROC AUC 0.9972 0.9970 −0.0002 −0.0200% 

Precision 0.9697 0.9709 +0.0012 +0.1281% 

Recall 0.7712 0.7702 −0.0010 −0.1361% 

Accuracy 0.9985 0.9985 0.0000 0.0000% 

The prediction correlation matrix, as shown in figure 6, reveals that the MLP’s outputs correlated reasonably well with 

other models (average Pearson r ≈ 0.7997), suggesting that while its internal mechanics differ, its decisions overlap 

significantly with tree models. Yet, its unique prediction analysis paints a more nuanced picture: the MLP generated 

157 unique correct predictions, alongside 314 unique incorrect ones, yielding a uniqueness ratio of just 0.30% and an 

accuracy of 33.33% on those cases. This suggests that the MLP operates in fringe zones of the feature space, regions 

where tree-based models may hesitate or conform. Whether those fringes represent semantic noise or predictive novelty 

depends less on the metrics and more on the framing of the ensemble's purpose. The MLP seems to add orthogonal 

reasoning and injects diversity into the ensemble fabric, occasionally surfacing correct predictions where other models 

falter. 
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Figure 6.  MLP Contribution to Ensemble Performance 

These results do not contradict the SHAP evaluation previously conducted because it noted that MLP had the lowest 

Coefficient of Variation (2.3248), meaning it was internally consistent in its SHAP attributions, even if it disagreed 

with the others. Likewise, the contribution analysis noted that MLP's prediction correlation with other models remained 

high (~0.80). This seeming paradox, high output alignment with low explanation alignment, suggests that while the 

MLP reaches similar decisions in most cases, it uses different cues to do so. In ensemble theory, this is a known asset: 

diversity in reasoning, even with similar results, reduces overfitting and improves generalization. Thus, the SHAP 

instability of the MLP can be reinterpreted as constructive rather than pure noise. Whether that diversity is worth 

retaining depends not only on performance metrics but on the use case: in regulated environments demanding 

transparency, the MLP’s alien attribution logic might raise red flags, but in adversarial fraud detection domains, that 

very difference may help detect edge-case anomalies missed by consensus-driven models. 

4.4. Fraud Prevention System with Dynamic Threshold Tuning 

The final phase of evaluation, detailed in table 9, integrated multiple performance layers, fraud blocking efficiency, 

threshold self-regulation, explanation latency, and out-of-distribution (OOD) resilience, into a unified, real-time, 

feedback-driven protocol. Latency was measured in two execution modes: prediction-only averaged 21.6 ms per 

transaction (~46 TPS), while enabling SHAP explanations increased latency to 41.2 ms (~24.3 TPS), an overhead 

factor of 1.91× that remains acceptable in high-risk contexts. The 95th percentile latency stayed below 70 ms, indicating 

predictable performance under moderate load. OOD testing with temporally shifted samples showed F1/AUC scores 

of 0.861/0.911 compared to 0.927/0.978 for in-distribution data, a modest decline (−0.066 F1, −0.067 AUC) that did 

not destabilize performance. This robustness reflects the ensemble’s architectural diversity and the RL tuner’s capacity 

to adapt decision thresholds in real time. 

Table 9. Metrics Values 

Metric Category Metric Value 

Latency (Prediction Only) 

Mean latency 21.6 ms 

95th percentile latency 36.1 ms 

Throughput (TPS) 46.3 

Latency (With SHAP) 

Mean latency 41.2 ms 

95th percentile latency 69.8 ms 

Throughput (TPS) 24.3 
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SHAP Overhead Latency multiplier 1.91× 

OOD Robustness 

In-distribution F1 / AUC 0.927 / 0.978 

Out-of-distribution F1 / AUC 0.861 / 0.911 

AUC Drop −0.067 

The fraud prevention demonstration, summarized in table 10, involved 50 simulated transactions spanning high-risk, 

legitimate, and borderline categories. Of the fraud attempts, 91% were successfully blocked, while false positives were 

contained at 7.8%, producing a precision of 90.6% a strong indicator of confidence-calibrated decision-making. 

Average transaction processing time, inclusive of SHAP-based explanations and RL feedback, remained under 42 ms, 

confirming that the system can operate in production-scale pipelines without performance degradation. On the 

adaptivity front, the RL threshold tuner demonstrated stable, context-aware adjustments, increasing the threshold from 

an initial 0.500 to a peak of 0.580 during high-fraud periods, then scaling back in low-fraud intervals. Over the 

evaluation period, 16 threshold adjustments were recorded, based on feedback from 75 labeled transactions, with the 

tuner’s epsilon parameter decaying as expected, transitioning from exploration to exploitation as the feedback pool 

grew. Consolidated system-level metrics show an overall accuracy of 93.2%, a macro F1 score of 0.902, and an AUC 

of 0.961, confirming that the ensemble maintained robust calibration and operational stability across dynamic fraud 

scenarios. 

Table 10. System-Level Metrics Values 

Category Metric Value / Description 

Prevention Effectiveness 

Fraud detection rate 91.0% 

False positive rate 7.8% 

Precision 90.6% 

Threshold Adaptation 

Initial / Final threshold 0.500 → 0.538 

Threshold adjustments 16 

Feedback cycles processed 75 

System Metrics 

Overall accuracy 93.2% 

Overall F1 score 0.902 

Overall AUC 0.961 

Avg. end-to-end processing time 41.7 ms 

Transactions evaluated (end-to-end) 1000+ 
 

An interactive Gradio-based front-end enables result exploration, parameter tuning, and real-time analysis of malicious 

transactions. Multi-model testing compares performance on uploaded fraud or normal cases, providing case-level 

explanations to support model selection and early fraud prevention. Outputs include fraud status, an “expected risk 

score,” and classification into four risk levels: minimum, low, medium, high, linked to automated actions such as 

approval, reporting, objection, or blocking. SHAP-derived feature rankings offer clear interpretability for analysts. 

Figure 7 shows a real-time dashboard supporting transaction monitoring, adaptive detection calibration, model weight 

adjustment, comparative analysis, false positive evaluation, user verification enhancements, and fraud pattern 

simulation. Figure 8 illustrates dynamic tuning of model weights and risk thresholds. 
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Figure 7. Fraud System Dashboard: (a) Risk Score and (b) Model Predictions Comparison Chart 

 

Figure 8. Model Weights and Thresholds Tuning Settings 

5. Conclusion 

This study explored the development of an intelligent fraud prevention framework that integrates explainability, 

adaptability, and real-time responsiveness into a cohesive decision-making system. By combining multiple machine 

learning models, automated calibration mechanisms, and performance monitoring layers, the system demonstrated high 

accuracy, low latency, and strong resilience to unfamiliar input patterns. Across evaluation scenarios, the model 

maintained reliable fraud detection while minimizing false alarms and preserving interpretability. Nevertheless, the 

research is not without limitations. The system was evaluated in a controlled environment with partially synthetic 

transaction scenarios due to oversampling, which may not fully capture the complexity or adversarial nature of real-

world financial behavior. Furthermore, the computational costs of interpretability and continuous learning remain non-

negligible in high-volume deployment contexts. 

Future research should focus on validating the proposed framework under live operational conditions, where input 

noise, incomplete data, and behavioral drift are more pronounced. Additional work is also needed to assess how the 

system performs across diverse application domains, including insurance, e-commerce, and public sector fraud 

detection, where the nature of anomalies may differ significantly. There is also an opportunity to explore richer forms 

of user feedback, both implicit and explicit, to guide ongoing model adjustment and improve transparency. Expanding 

the interpretability layer to incorporate multilingual narratives or visual cues may further increase stakeholder trust and 

usability, especially in environments where decisions must be explained clearly to non-technical users. From a 

theoretical perspective, the study reinforces the importance of combining detection accuracy with transparency and 
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adaptability, particularly in dynamic, high-stakes settings. It contributes to the growing body of literature on responsible 

AI by demonstrating that real-time decision systems can be both high-performing and interpretable when designed with 

modularity and feedback in mind. Practically, the framework offers a blueprint for building risk-aware systems that 

evolve without sacrificing clarity or control. It suggests that adaptive systems, when thoughtfully integrated with 

human-centered safeguards, can serve as viable solutions to complex classification challenges where stakes are high 

and errors are costly. 
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