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Abstract 

This study investigates cadet performance segmentation during on-board maritime training using clustering analysis of data from the On Training 

Monitoring (OTMon) system. Grounded in the competency-based education framework and experiential learning theory, the research aims to 

identify behavioral patterns and competency levels among 80 maritime cadets over a twelve-month sea-based training program. The OTMon 

application continuously recorded task completion rates, feedback interactions, sign-on consistency, and report submissions. K-Means clustering 

and Principal Component Analysis (PCA) revealed three distinct cadet profiles: Cluster 1 (high-performing) with average task completion of 

92.4% and feedback frequency of 15.2 times/month; Cluster 2 (administratively consistent) with 88.1% completion but only 6.3 feedback 

interactions/month; and Cluster 3 (at-risk) with 67.5% completion and 3.8 feedback interactions/month. Linear Discriminant Analysis (LDA) 

validated the clusters with 98.8% resubstitution accuracy and 97.6% cross-validation accuracy, supported by generalized squared distances above 

9.5 between all cluster pairs, indicating strong separation. These findings demonstrate that unsupervised clustering can reliably distinguish high-

performing cadets from those needing targeted intervention, enabling data-informed mentoring and adaptive learning strategies in maritime 

education. The contribution of this study lies in integrating digital monitoring data with both unsupervised and supervised machine learning 

methods to enhance competency assessment. The novelty is in applying maritime-specific learning analytics for real-time performance 

segmentation, offering a scalable diagnostic framework for improving supervision quality and supporting individualized cadet development in 

vocational training contexts. 
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1. Introduction  

In the rapidly evolving landscape of maritime education, the effectiveness of On-Board Training (OBT) [1], [2], [3] 

has become a critical determinant of cadet competency and career readiness. As part of vocational education, OBT 

serves as a real-world application of classroom theory, enabling cadets to acquire technical skills, adaptive behavior, 

and problem-solving capabilities essential for maritime operations. However, traditional monitoring systems used 

during this critical phase remain largely manual, fragmented, and incapable of providing timely or personalized 

feedback, limiting the potential of experiential learning [4], [5], [6]. 

Recent studies underscore the increasing relevance of digital learning tools in competency-based education. For 

instance [7], [8], [9] emphasize the value of integrating real-time monitoring systems to enhance engagement and 

supervision quality [10], [11], [12]. Moreover, educational technology powered by data analytics and mobile 

accessibility has proven effective in improving student performance in various fields [13], [14], [15]. Despite these 

advances, there is a lack of scholarly work that explicitly applies unsupervised machine learning techniques particularly 

clustering to analyze cadet training behaviors in maritime education. 

To address this gap, this study employs clustering analysis specifically K-Means and Ward's hierarchical method on 

digital data collected via the OTMon application. The selected clustering variables include feedback frequency, task 

completion rates, and self-reported difficulties, as these are directly linked to key OBT learning outcomes and reflect 

measurable behavioral indicators. The rationale for using both K-Means and Ward’s methods lies in their 
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complementary strengths: K-Means is effective for large, spherical clusters, while Ward's method enables a hierarchical 

structure that supports exploratory pattern discovery. Furthermore, while OTMon automates feedback collection, the 

operational definition of “feedback” in this study refers to cadet–supervisor interactions logged digitally, such as task 

comments or performance notes, rather than peer input or system-only notifications [16], [17], [18]. 

Unlike existing literature in maritime education, this research brings novelty by empirically applying clustering 

methods for the segmentation of performance profiles, supported by clearly defined variables such as task completion, 

feedback frequency, and difficulty levels, which are operationalized within the OTMon system. Although similar 

applications of clustering are found in other sectors such as aviation and logistics, the maritime sector has yet to adopt 

such methods at scale, making this research both timely and necessary. The main objective of this research is to utilize 

data-driven clustering methods to generate performance-based profiles that can inform targeted educational 

interventions and enhance supervisory strategies in maritime training programs. Theoretically, this study contributes 

to the field of learning analytics by applying machine learning for educational diagnostics in vocational settings. 

Practically, it provides actionable insights for maritime institutions to identify student needs, improve mentoring 

systems, and optimize learning outcomes [19], [20], [21]. 

This research adopts a quantitative approach involving 80 cadets enrolled in a one-year OBT program. The data, 

collected via OTMon including variables such as task completion rates, feedback frequency, and reported difficulties 

are preprocessed using Z-score normalization before being analyzed with both K-Means and Ward’s Hierarchical 

Clustering. Principal Component Analysis (PCA) is employed not merely as an optional tool, but as a key 

dimensionality reduction technique to enhance cluster interpretability and visualization [22], [23], [24]. To increase 

methodological clarity, a process flowchart is presented to illustrate the steps from data collection to clustering 

validation. 

In sum, this study introduces a novel, data-driven framework for cadet performance segmentation in maritime education 

and advocates for the broader use of machine learning as a diagnostic tool in digitalized vocational training 

environments [25], [26], [27]. 

2. Literature Review 

The purpose of this literature review is to examine the current body of knowledge related to digital monitoring in 

vocational education, learning analytics in maritime training, and the use of clustering techniques to evaluate student 

performance. This section synthesizes relevant studies over the past decade, highlights existing gaps, and situates the 

present study within the context of emerging research trends. The review is structured thematically, focusing on four 

key areas: (1) digital transformation in maritime education [28], (2) learning analytics and feedback systems [29], [30], 

[31], (3) the role of clustering in education [32], [33], [34], and (4) research gaps and opportunities for innovation [35], 

[36], [37]. 

2.1. Digital Transformation in Maritime Education 

The shift toward digitalization in vocational and maritime education has been gaining momentum in recent years. 

Technologies such as simulation-based training, e-Logbooks, and online competency tracking systems have improved 

transparency and responsiveness in education delivery [38], [39], [40]. Applications like OTMon are examples of how 

monitoring systems can support continuous assessment and provide timely feedback in real-world training 

environments. Digital monitoring tools not only streamline administrative processes but also enhance pedagogical 

engagement and student accountability [41], [42], [43]. However, most digital monitoring tools remain focused on 

basic reporting functions and lack integration with advanced data analysis techniques, limiting their effectiveness in 

identifying deeper learning patterns. 

2.2. Learning Analytics and Feedback Systems 

Learning analytics has emerged as a promising field for evaluating educational processes and outcomes. Learning 

analytics involves the collection, measurement, and analysis of learner data to improve educational environments [44], 

[45], [46]. In maritime training, feedback systems, especially real-time ones, play a crucial role in enhancing cadet 

development. Studies have found that platforms providing structured, timely feedback significantly improved student 
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motivation and learning outcomes [47], [48], [49]. Nevertheless, much of the research in this area focuses on 

synchronous classroom settings, leaving on-board and field-based training contexts underexplored. 

2.3. Clustering Techniques in Educational Evaluation 

Clustering is a data mining technique that allows researchers to group individuals based on shared characteristics 

without predefined labels. In educational settings, K-Means and Hierarchical Clustering have been used to identify 

student learning profiles, engagement patterns, and performance risk groups [50], [51], [52]. These unsupervised 

learning techniques are particularly useful when analyzing large, unlabeled educational datasets. Despite their proven 

value, clustering methods have not been widely applied in maritime vocational education. Most maritime training 

assessments still rely on standard pre-post evaluations and supervisor ratings, which may not reflect the nuanced 

development of student competencies over time. 

2.4. Research Gaps and Contribution of This Study 

This review highlights a number of significant gaps in the literature. Learning analytics and machine learning 

approaches are not well integrated into field-based training systems, especially in marine contexts where competency 

development relies heavily on real-world, practical learning environments. Moreover, there are still few empirical 

studies that use clustering algorithms to analyze performance monitoring data from long-term vocational training 

programs like on-board cadetship. The field of student segmentation and performance profiling based on real-time 

monitoring data in maritime education is also understudied, which presents a big opportunity for future research to 

develop data-driven strategies that improve learner support and training efficacy. 

This study seeks to address these gaps by applying K-Means and Ward's Hierarchical Clustering to cadet performance 

data collected via OTMon. By doing so, it introduces a data-driven framework for understanding cadet learning patterns 

and offers an innovative method for competency evaluation in maritime training. The literature strongly supports the 

value of digital tools and learning analytics in vocational education. However, maritime training remains an 

underrepresented domain in this discourse, especially concerning the application of machine learning for educational 

assessment. This study fills that void by proposing a novel approach to cluster cadet performance using unsupervised 

learning techniques. The following section details the methodology employed in the analysis, including data collection, 

variables used, and clustering procedures. 

3. Methodology  

3.1. Research Approach and Rationale 

This study adopts a quantitative, exploratory design aimed at identifying latent patterns in cadet performance during 

on-board maritime training. The rationale for using a quantitative approach lies in the objective of the study to uncover 

meaningful groupings in training data using statistical and machine learning techniques. The focus is on analyzing 

digital learning behavior and performance data collected via the OTMon application using unsupervised learning 

methods, particularly K-Means and Ward's Hierarchical Clustering. In contrast to prior research in maritime education, 

this study introduces clustering analysis as a novel empirical strategy to address the absence of automated performance 

profiling methods 

3.2. Research Design 

The research design is a non-experimental, cross-sectional study with an emphasis on clustering analysis as a form of 

exploratory data mining. The study does not manipulate variables but observes and segments data to uncover inherent 

structures and relationships. The justification for using both K-Means and Ward’s Hierarchical Clustering lies in their 

complementary strengths: K-Means excels in large-scale partitioning, while Ward’s method helps validate structural 

cohesion via dendrogram analysis. Cluster analysis is chosen for its ability to identify subgroups within the population 

without the need for predefined categories, making it ideal for educational performance profiling. Figure 1 illustrates 

the workflow of this study. 
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Figure 1. Workflow of Clustering Analysis on OTMon Data 

3.3. Data and Data Sources 

80 maritime cadets who took part in a 12-month on-board training program at a maritime vocational institution provided 

the primary data used in this study. The OTMon tool provided the data, which methodically logs interactions in real 

time, task submissions, feedback exchanges, and self-reported difficulties faced throughout training. A thorough picture 

of cadets' performance and engagement during the training period is provided by the variables that are analyzed, which 

include the weekly average task completion rate, the frequency of feedback received, the reported task difficulty, the 

response time for report submission, the consistency of sign-on and sign-off records, and the total number of uploaded 

reports. 

These variables were selected based on their relevance to assessing individual learning behavior and digital 

engagement. However, the exclusion of peer or supervisor evaluations is acknowledged as a limitation, given their 

potential to enrich performance insights. Data collection was conducted with informed consent, and students were 

anonymized using unique identifiers within the application. 

3.4. Data Processing and Analytical Techniques 

To guarantee scientific rigor and appropriate interpretation of the data, the analysis procedure was carried out in a 

number of successive steps. To facilitate comparability among features, Z-score normalization was used to standardize 

all numerical variables after data cleaning and normalization. Mild outliers were purposefully kept to preserve 

behavioral diversity that could affect clustering performance, even though the normal distribution assumptions were 

not rigidly enforced; this choice is further recognized in the study's limitations. Then, instead of being an optional step, 

PCA was used as a crucial diagnostic and dimensionality reduction tool. While the final clustering was done on the 

original variables to preserve data purity, the PCA results guided the scree plot analysis and evaluation of component 

contributions. 

After then, two clustering techniques were put into practice. The Elbow Method and Silhouette Coefficient were used 

to find the ideal number of clusters when K-Means Clustering was used to divide the cadets according to their 

performance indicators. In order to verify the cluster structure and evaluate inter-group distances through dendrogram 

examination, Ward's Hierarchical Clustering was also utilized. The Results section provides a comparison of the two 

approaches, highlighting the similarities and variations in cluster assignments. By computing and comparing the mean 

scores of each input variable, each group was profiled after clustering. This allowed for the discovery of unique 

performance patterns, including high achievers, late responders, and disengaged cadets. 

3.5. Validity and Reliability 

The clustering structure was assessed using a number of complementing metrics and techniques to guarantee validity. 

The Davies–Bouldin Index examined the compactness and separability of clusters, whereas the Silhouette Coefficient 

was used to evaluate intra-cluster cohesiveness and inter-cluster separation. Cross-validation via bootstrapping, which 

involved rerunning the algorithms on various sub-samples and comparing the consistency of group assignments, was 

used to further investigate cluster stability. By avoiding circular interpretation based on the same metrics used for 
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model generation, clustering-validation separation was preserved to reduce the danger of overfitting. The OTMon 

system's consistent and timestamped logging features, which reduced human subjectivity and made sure the analysis 

could be reliably replicated between users and sessions, strengthened reliability. 

3.6. Ethical Considerations 

This study adheres to institutional research ethics. Participants provided informed consent when registering in the 

OTMon application. No Personally Identifiable Information (PII) was used in the analysis. All raw data were 

anonymized and securely stored on a restricted-access server. Only authorized researchers had access to process and 

interpret the dataset. 

3.7. Methodological Limitations 

It is important to recognize a number of methodological constraints even if clustering provides insightful information 

about cadet performance segmentation. Because the sample was taken from a single maritime institution, it may not 

accurately reflect the variety of training situations, which limits the findings' generalizability. Furthermore, erratic 

internet connections at sea may cause late or partial submissions, which could compromise the integrity of the data. 

The lack of a longitudinal dataset makes it even more difficult to evaluate the consistency and stability of clusters 

across long time periods. Even though segmentation is based on statistical analysis, some subjectivity is unavoidably 

introduced by the manual interpretation of cluster characteristics. Furthermore, measurement bias could be present in 

the data produced by the OTMon system due to things like erroneous timestamps, irregular feedback logging, or even 

user manipulation problems that are hard to identify after the fact. 

In order to give more comprehensive and contextualized performance data, future research should broaden the variable 

set by including peer and supervisor ratings. The ability to record and examine behavioral trajectories over time may 

be improved by the use of temporal sequence models, such as Long Short-Term Memory (LSTM) networks. External 

validity and adaptability to various training environments would be enhanced by testing the methodology across a 

range of marine institutions. Additionally, investigating hybrid clustering strategies that use supervised classification 

layers may improve segmentation precision and make it possible to model cadet performance patterns predictively. 

4. Results and Discussion 

4.1. Data Presentation and Key Findings 

This study applied K-Means clustering through the FASTCLUS procedure to group 80 maritime cadets into three 

clusters based on six standardized training variables derived from the OTMon monitoring system. The clustering 

process converged in five iterations with a final criterion value of 0.8800 and a Pseudo-F statistic of 10.59, indicating 

strong group separability and internal cluster coherence. The summary of clustering results is presented in table 1, 

which outlines the parameters and settings applied during the analysis. 

Table 1. Cluster Summary Report (Replace=FULL Radius=0 Maxclusters=3 Maxiter=100 Converge=0.02) 

Cluster Frequency 
RMS Std 

Deviation 

Maximum Distancefrom 

Seedto Observation 
RadiusExceeded 

Nearest 

Cluster 

Distance 

BetweenCluster 

Centroids 

1 28 0.8836 3.1119  3 1.9052 

2 24 0.8662 3.5163  1 1.9589 

3 28 0.9352 3.1400  1 1.9052 

The clusters were distributed relatively evenly: Cluster 1 (28 cadets), Cluster 2 (24 cadets), and Cluster 3 (28 cadets). 

Cluster 2 had the highest internal variance with a maximum distance of 3.5163 from centroid to observation. Despite 

this, no radius violations occurred, confirming cluster cohesion. Table 2 gives a thorough overview of the performance 

characteristics within each group by displaying the centroids for each variable across the three clusters. 

 

 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2741-2757 

ISSN 2723-6471 

2746 

 

 

 

Table 2. Cluster Centroids for Each Variable 

These numbers show the cadets' various performance typologies. Cluster 1, which represents the group of high-

performing cadets, is distinguished by frequent feedback, high task completion rates, and low reported difficulty. 

Cadets in Cluster 2 are administratively dependable but may not participate as much in interactive learning exchanges, 

as seen by their consistent reporting behavior and comparatively minimal feedback. On the other hand, Cluster 3 is 

identified as at-risk cadets who could need more support because of their higher perceived difficulty levels, lower 

feedback frequency, and poorer job completion rates. Table 3 offers a thorough statistical overview of the clustering 

variables, providing more in-depth understanding of the numerical distinctions that characterize each performance 

group. 

Table 3. Statistics for Variables in Clustering 

Variable Total STD Within STD R-Square RSQ/(1-RSQ) 

Task_Completion 1.00000 0.98986 0.044979 0.047098 

Feedback_Frequency 1.00000 0.87233 0.258313 0.348278 

Task_Difficulty 1.00000 0.77490 0.414731 0.708616 

Report_Timeliness 1.00000 0.94240 0.134366 0.155222 

Sign_On_Consistency 1.00000 0.99742 0.030346 0.031296 

Total_Reports 1.00000 0.77671 0.411995 0.700666 

OVER-ALL 1.00000 0.89698 0.215788 0.275166 

According to the analysis, task complexity, the total number of reports, and feedback frequency were the main factors 

that contributed to clustering, suggesting that these three factors most significantly affect how engaged and proficient 

cadets are. Proactive involvement, above-average task completion rates, active feedback exchanges, and low perceived 

difficulty a sign of good competence are characteristics of Cluster 1, which consists of 28 cadets. Cluster 2, which 

consists of 24 cadets, represents those who routinely fulfill administrative obligations, such submitting reports on time, 

but show little interpersonal interaction through feedback, indicating a pattern of robotic compliance without 

meaningful involvement. 

Those that suffer the most are represented by Cluster 3, which likewise has 28 cadets. They report significant work 

difficulty, produce little output, and show little initiative in asking for help. This tripartite division offers a useful 

framework for focused mentoring techniques, like maintaining Cluster 1's high performance, strengthening the 

feedback culture for Cluster 2, and providing more academic and practical support for Cluster 3. These results show 

how OTMon data may be used practically to guide individualized training programs in maritime education. 

4.2. Analysis and Interpretation of Results 

The clustering analysis identified three distinct segments of cadet behavior based on performance indicators obtained 

from the OTMon system. As shown in table 4, cadets were distributed relatively evenly across the three clusters: Cluster 

1 (n = 28, 35%), Cluster 2 (n = 24, 30%), and Cluster 3 (n = 28, 35%). This balanced distribution minimizes the risk 

of statistical bias due to unequal group sizes and ensures that comparison across clusters remains valid. 

Table 4. Distribution of Cluster Membership 

CLUSTER Frequency Percent CumulativeFrequency CumulativePercent 

1 28 35.00 28 35.00 

Cluster 
Task_ 

Completion 

Feedback_ 

Frequency 

Task_ 

Difficulty 

Report_ 

Timeliness 

Sign_On_ 

Consistency 
Total_Reports 

1 0.1953377068 0.5376561209 -.7123549686 -.4962482965 0.1974656850 -.1517910107 

2 0.1018093234 -.7119545701 -.1110448596 0.2549747140 -.2332207885 0.9231413144 

3 -.2826028411 0.0725906534 0.8075362768 0.2776985417 0.0024378480 -.6394729730 
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2 24 30.00 52 65.00 

3 28 35.00 80 100.00 

Analyzing each cluster's descriptive statistics to gain a deeper understanding of its unique features came after reviewing 

the distribution summary in table 4. It is feasible to pinpoint particular behavioral patterns, strengths, and difficulties 

within each group by comparing the mean and standard deviation of all performance indicators. The basis for analyzing 

how cadets in various clusters approach training exercises, look for feedback, and handle challenges is provided by 

these descriptive measures. Table 5 displays the whole statistical profile for every cluster. 

Table 5. Descriptive Statistics of Each Cluster (Mean and Standard Deviation) 

Cluster N Obs Variable Mean Std Dev 

1 28 

Task_Completion 

Feedback_Frequency 

Task_Difficulty 

Report_Timeliness 

Sign_On_Consistency 

Total_Reports 

0.20 

0.54 

-0.71 

-0.50 

0.20 

-0.15 

0.92 

0.86 

0.80 

0.86 

0.90 

0.95 

2 24 

Task_Completion 

Feedback_Frequency 

Task_Difficulty 

Report_Timeliness 

Sign_On_Consistency 

Total_Reports 

0.10 

-0.71 

-0.11 

0.25 

-0.23 

0.92 

0.97 

0.81 

0.66 

1.06 

1.08 

0.43 

3 28 

Task_Completion 

Feedback_Frequency 

Task_Difficulty 

Report_Timeliness 

Sign_On_Consistency 

Total_Reports 

-0.28 

0.07 

0.81 

0.28 

0.00 

-0.64 

1.07 

0.93 

0.84 

0.92 

1.02 

0.81 

The standardized mean and standard deviation of six variables for each cluster are shown in table 5, which makes it 

evident that the behavior and performance profiles of the cadets differ from one another. With above-average task 

completion (mean = 0.20) and frequent feedback exchanges (mean = 0.54), as well as low perceived task difficulty 

(mean = −0.71), Cluster 1's high-performing cadets demonstrate significant involvement and skill in task execution. 

Administratively oriented cadets in Cluster 2 submit a lot of reports overall (mean = 0.92) but interact with feedback 

less frequently (mean = -0.71), indicating a focus on following procedures without commensurately high levels of 

reflective communication. Cadets in Cluster 3 report increased task difficulty (mean = 0.81), poorer task completion 

(mean = -0.28), and lower reporting behavior (mean = -0.64), which may indicate underlying cognitive or motivational 

impediments to effective training participation. Table 6 gives additional information about the factors that most 

strongly distinguish the groups by presenting the coefficients from the linear discriminant function that was used to 

differentiate these clusters. 

Table 6. Linear Discriminant Function Coefficients per Cluster 

Variable 1 2 3 

Constant -1.56740 -2.22743 -1.63463 

Task_Completion -0.07112 1.04511 -0.82469 

Feedback_Frequency 1.35789 -1.98655 0.34486 

Task_Difficulty -2.00355 -0.06781 2.06167 

Report_Timeliness -1.56357 0.83518 0.84770 

Sign_On_Consistency 0.65077 -0.97107 0.18158 
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Variable 1 2 3 

Total_Reports -0.57287 2.69425 -1.73649 

The linear discriminant function coefficients for each cluster are shown in table 6, indicating the relative significance 

of each performance measure in differentiating between the three clusters that were found. While Task_Difficulty (-

2.00355) and Report_Timeliness (-1.56357) contribute negatively, indicating lower performance in handling complex 

tasks and submitting timely reports, Feedback_Frequency (1.35789) is the most significant positive contributor for 

Cluster 1, suggesting that cadets in this group tend to receive feedback more frequently. While Feedback_Frequency 

(-1.98655) has a large negative weight, indicating less frequent feedback, Total_Reports (2.69425) is the strongest 

positive differentiator in Cluster 2, showing substantial reporting activity. While Total_Reports (-1.73649) shows a 

smaller number of reports than other clusters, Task_Difficulty (2.06167) is the most prominent positive coefficient for 

Cluster 3, indicating that this cluster excels at handling difficult assignments. The Generalized Squared Distances 

between Clusters, which measure the level of difference among these clusters, are shown in table 7 to help evaluate 

their separation and resemblance. 

Table 7. Generalized Squared Distance between Clusters 

According to the findings, Cluster 2 and Cluster 3 have the greatest gap (11.69943), closely followed by Cluster 1 and 

Cluster 2 (11.25127). The clusters with the least distance (9.53517) are Cluster 1 and Cluster 3, suggesting that their 

performance profiles are more similar than those of Cluster 2. The classification's validity and the discriminant 

function's ability to distinguish amongst cadet performance patterns are supported by the substantial distance values 

that generally imply that the clusters are well-separated. To further verify the robustness of this classification, table 8 

presents the Classification Summary for Calibration Data based on the Linear Discriminant Function. 

Table 8. Classification Summary for Calibration Data: WORK. CADET_CLUSTERS (Resubstitution Summary 

using Linear Discriminant Function) 

From CLUSTER 1 2 3 Total 

1 
27 

96.43 

1 

3.57 

0 

0.00 

28 

100.00 

2 
0 

0.00 

24 

100.00 

0 

0.00 

24 

100.00 

3 
0 

0.00 

0 

0.00 

28 

100.00 

28 

100.00 

Total 
27 

33.75 

25 

31.25 

28 

35.00 

80 

100.00 

Priors 0.33333  0.33333  0.33333    

Table 8 presents the Linear Discriminant Analysis (LDA) classification summary using the resubstitution method. Out 

of 80 observations, the model correctly classified 98.75% of the data. Specifically, 27 out of 28 cadets in Cluster 1 

were correctly assigned (96.43%), while Cluster 2 and Cluster 3 achieved perfect classification accuracy (100%). Only 

one case from Cluster 1 was misclassified into Cluster 2. This high accuracy demonstrates that the clusters are linearly 

separable based on the six selected variables Task Completion, Feedback Frequency, Task Difficulty, Report 

Timeliness, Sign-On Consistency, and Total Reports. These results suggest that the clustering approach generated well-

defined and meaningful groupings that can be reliably used for subsequent analysis or monitoring within maritime 

training systems. The Cross-Validation Summary utilizing the Linear Discriminant Function is shown in table 9 to 

further confirm the stability and generalizability of this classification. 

From CLUSTER 1 2 3 

1 0 11.25127 9.53517 

2 11.25127 0 11.69943 

3 9.53517 11.69943 0 
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Table 9. Classification Summary for Calibration Data: WORK. CADET_CLUSTERS (Cross-validation Summary 

using Linear Discriminant Function) 

From CLUSTER 1 2 3 Total 

1 
26 

92.86 

1 

3.57 

1 

3.57 

28 

100.00 

2 
0 

0.00 

24 

100.00 

0 

0.00 

24 

100.00 

3 
0 

0.00 

0 

0.00 

28 

100.00 

28 

100.00 

Total 
26 

32.50 

25 

31.25 

29 

36.25 

80 

100.00 

Priors 0.33333  0.33333  0.33333    

Table 9 shows the results of the Leave-One-Out Cross-Validation (LOOCV) procedure applied to the LDA model. In 

this method, each of the 80 observations was sequentially left out of the training set and used for validation. The model 

achieved a classification accuracy of 97.5%, with only two misclassified observations, both originating from Cluster 

1. The classification for Cluster 2 and Cluster 3 remained perfectly accurate. These results confirm the robustness and 

generalizability of the LDA model. The cross-validation accuracy supports the stability of the clusters formed using 

K-Means and Ward's method and highlights the effectiveness of using LDA as a tool for assigning new cadets to 

appropriate clusters based on their performance data. This finding strengthens the case for integrating such clustering-

based monitoring into platforms like OTMon. Table 10 displays the following findings for the dependent variable Task 

Completion. 

Table 10. Dependent Variable: Task_Completion 

Source DF Sum of Squares Mean Square F Value Pr > F 

Type 2 3.55335651 1.77667826 1.81 0.1700 

Error 77 75.44664349 0.97982654   

Corrected Total 79 79.00000000    

Table 10 presents the results of a one-way ANOVA test used to examine whether Task Completion scores significantly 

differed across the three clusters. The test returned an F-value of 1.81 and a p-value of 0.1700, indicating no statistically 

significant difference in Task Completion across clusters at the 5% significance level. Additionally, the R-squared (R²) 

value was 0.045, meaning cluster membership explained only 4.5% of the variance in Task Completion. This result 

has two key implications. First, although Task Completion was included in the clustering process, it does not 

individually distinguish clusters significantly in a univariate context. Second, this reinforces the necessity of using a 

multivariate perspective when analyzing cadet performance, as other indicators such as Feedback Frequency, Task 

Difficulty, and Total Reports appear to contribute more meaningfully to the differentiation among clusters, as supported 

by the discriminant function analysis. Figure 2 illustrates the standardized distribution of the Task_Completion variable 

based on the performance data of 80 cadets during their on-board training. 

. 
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Figure 2.  Distribution of Task Completion 

The histogram reveals a relatively symmetrical shape, centering around the mean, indicating that most cadets achieved 

a consistent task completion level during the training. The peak appears between z-scores of -0.5 to +0.5, representing 

cadets with moderate performance. Meanwhile, the tails beyond ±1 suggest a smaller number of high- and low-

performing cadets. This distribution provides a useful preliminary insight into performance segmentation. In the 

context of clustering, the Task_Completion variable serves as a foundational indicator when combined with other 

metrics such as Feedback_Frequency, Report_Timeliness, and Sign_On_Consistency to construct a comprehensive 

cadet performance profile. This also supports the development of data-driven interventions for targeted learning 

support. he relationship between these performance variables is further examined through the correlation matrix 

presented in table 11. 

Table 11. Correlation Matrix Between Research Variables 

 Task_ 

Completion 

Feedback_ 

Frequency 

Task_ 

Difficulty 

Report_ 

Timeliness 

Sign_On_ 

Consistency 
Total_Reports 

Task_Completion 1.0000 0.0033 -.1053 -.0998 0.1541 -.1869 

Feedback_Frequency 0.0033 1.0000 -.1201 0.0518 -.1507 -.1010 

Task_Difficulty -.1053 -.1201 1.0000 -.1198 0.0686 -.0963 

Report_Timeliness -.0998 0.0518 -.1198 1.0000 -.1507 -.0232 

Sign_On_Consistency 0.1541 -.1507 0.0686 -.1507 1.0000 -.0117 

Total_Reports -.1869 -.1010 -.0963 -.0232 -.0117 1.0000 

Table 11 displays the correlation matrix among the six key performance indicators. Most correlations are weak (|r| < 

0.20), suggesting that the variables represent distinct aspects of cadet learning behavior. For example, 

Task_Completion shows weak to moderate correlation with Sign_On_Consistency (r = 0.1541) and a negative 

relationship with Total_Reports (r = −0.1869), indicating that more frequent reporting does not necessarily imply better 

performance. The low inter-variable correlations justify the application of PCA to reduce data dimensionality while 

preserving interpretative integrity. The eigenvectors derived from the PCA results are summarized in table 12, 

providing insight into the contribution of each variable to the principal components. 

Table 12. Eigenvectors of Principal Components from PCA 

  Prince1 Prince2 

Task_Completion 0.365653 0.600118 

Feedback_Frequency -.375891 0.453435 

Task_Difficulty 0.334151 -.314293 

Report_Timeliness -.496223 0.067335 

Sign_On_Consistency 0.584616 -.003624 

Total_Reports -.159163 -.575263 
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Table 12 presents the eigenvectors of the two principal components extracted from the PCA. The first component 

(Prin1) emphasizes Sign_On_Consistency (0.58), Task_Completion (0.37), and negatively Report_Timeliness (−0.50). 

The second component (Prin2) loads heavily on Task_Completion, Feedback_Frequency, and Total_Reports. Figure 3 

shows the scree plot of the PCA, indicating that PC1 and PC2 account for approximately 23% and 20% of the variance, 

respectively. 

 

Figure 3.  Scree Plod and Variance Explained 

Cumulatively, these two components represent over 43% of the variance, which is substantial enough to guide 

clustering and visualization. The steep drop from PC1 to PC2 followed by a leveling slope supports the use of two 

dimensions in subsequent cluster analysis. This confirms that a significant portion of cadet performance diversity can 

be captured through just two latent components. 

Following the segmentation of the cadet data using Ward's hierarchical clustering and K-Means, three separate clusters 

were found, each of which represented a different performance trend. With high scores in task completion, consistent 

sign-on, and timely report submissions, Cluster 1 consists of cadets who exhibit good self-regulation and consistent 

involvement, demonstrating proactive behavior and efficient time management. Cadets in Cluster 2 consistently submit 

assignments on time, but they exhibit few feedback exchanges and poorer self-monitoring, indicating that although 

they follow procedure, their learning style is more mechanical than reflective. The cadets in Cluster 3, on the other 

hand, score lower on the majority of variables, especially task completion and feedback frequency. This indicates 

difficulties with task execution as well as reflective engagement, underscoring the need for focused interventions or 

extra support techniques. 

These profiles are consistent with Kolb's experiential learning theory, where self-regulated learning and reflection are 

essential for competency-based development. The use of multivariate clustering thus helps identify not only 

performance levels, but also behavioral patterns critical to learning outcomes. 

4.3. Implications of the Findings 

The findings of this study have both theoretical and practical implications. Theoretically, the research contributes to 

the emerging body of literature on learning analytics in maritime vocational education by demonstrating the use of 

unsupervised machine learning techniques for profiling cadet behavior an area that remains underexplored. From a 

practical standpoint, the clustering results from both K-Means and Ward’s method offer a new way to support cadet 

development during on-board training. For instance, Cluster 1 cadets, identified as highly self-regulated, can be given 

more autonomy, while Cluster 3 cadets may benefit from personalized mentoring or structured support. Additionally, 

institutions can integrate PCA-based radar chart visualizations into monitoring dashboards to detect performance 

anomalies and tailor feedback in real time. The PCA further supports the reduction of complexity in dashboard design, 

allowing instructors to interpret multi-dimensional behaviors through fewer variables. These implications suggest that 

data-driven systems like OTMon can be transformed from passive monitoring tools into active decision-support 

platforms that facilitate early intervention and competency-based evaluation. 

4.4. Comparison with Previous Literature 

In contrast to earlier studies in maritime education that largely examined usability and perception of digital monitoring 

platforms, this research shifts the focus to empirically driven learning analytics and clustering-based performance 

profiling. Prior work has typically evaluated cadet monitoring tools on user experience dimensions, rather than on 
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measurable learning outcomes. This study’s methodological approach aligns with the growing field of Educational 

Data Mining and Learning Analytics (NA and EDM), exemplified by comprehensive reviews such as by Romero and 

Ventura [53]. which highlight the utilization of machine learning and clustering techniques to discover hidden patterns 

in educational data. Additionally, key conceptual discussions by Ferguson have emphasized the role of analytics in 

personalizing learning paths and supporting instructional decisions [54]. However, unlike most existing research that 

focuses on general educational environments, our study uniquely applies these analytics within the maritime cadet 

training context, which remains underexplored. By integrating clustering and PCA-based visualization into OTMon, 

this research brings learning analytics into maritime vocational training a setting that has seen little empirical 

application of these approaches. In summary, our study bridges a gap by blending established EDM/LA frameworks 

(Romero and Ventura, Ferguson) with domain-specific clustering in maritime education, delivering both theoretical 

advancement and practical utility. 

4.5. Limitations and Future Research Recommendations 

Despite its contributions, this study has several limitations. First, the dataset is drawn from a single maritime education 

institution, which may limit generalizability across other academies or international contexts. Second, the study relies 

exclusively on quantitative metrics, such as the frequency and timeliness of task submissions, without incorporating 

qualitative insights like cadet reflections or mentor narratives. Moreover, although descriptive and clustering analyses 

revealed meaningful groupings, the ANOVA test for task completion across clusters was not statistically significant (p 

= 0.17). This result indicates that cluster differentiation is multivariate rather than univariate, underscoring the 

importance of multi-dimensional analysis like PCA and clustering rather than simple mean comparisons. 

Qualitative methods like interviews or logbook analysis should be used in future studies to give the discovered clusters 

a deeper context for interpretation. Additionally, longitudinal tracking might be used to see how cadet habits change 

over the course of various training sessions, providing information about trends of growth or deterioration. 

Furthermore, testing supervised learning methods like support vector machines or decision trees would make it possible 

to forecast cadet outcomes and identify at-risk individuals early on. These improvements would make learning analytics 

in maritime education more reliable and applicable, opening the door for data-informed mentoring to develop into a 

useful and significant part of educational initiatives. 

5. Conclusion and Recommendations 

This study aimed to develop a structured, data-driven framework for profiling cadet performance during on-board 

training using clustering and multivariate analysis. By applying K-Means, PCA, and LDA, the research successfully 

identified three distinct cadet profiles: high-performing, administratively consistent, and at-risk. These classifications 

directly address the core research problem by offering a practical and empirical method to segment cadets based on 

their digital behavior and performance logs in the OTMon system. The integration of radar chart visualizations and 

PCA projections (Revision #3) allowed for intuitive interpretation of cadet patterns across performance dimensions, 

thus enabling institutions to make timely and targeted mentoring decisions. The application of LDA further confirmed 

the clustering model’s internal validity, supported by high classification accuracy using both resubstitution and cross-

validation methods. Theoretically, this research enriches the literature on learning analytics in vocational education, 

especially in maritime contexts which remain underrepresented in empirical studies. The findings operationalize key 

concepts from experiential and self-regulated learning theories using real-time behavior data. Furthermore, this study 

aligns with the work of Romero and Ventura as well as Ferguson [53],[54], who advocate for data-driven educational 

decision-making, although this research uniquely applies those principles within the maritime education domain. On a 

practical level, the study demonstrates how clustering models can be embedded into digital supervision tools such as 

OTMon. This integration enables institutions to monitor cadet progress more effectively, offer early warnings, and 

design adaptive learning pathways tailored to individual performance patterns. The model’s structure provides a solid 

foundation for developing personalized mentoring systems within maritime training institutions. Nonetheless, the 

research has certain limitations. It utilized a single-institution dataset restricted to one academic cohort and relied solely 

on structured, quantitative data from OTMon logs. It did not include qualitative feedback, such as cadet perceptions, 

supervisory evaluations, or operational factors like network conditions and fatigue. These omissions may limit the 

depth and generalizability of the insights. Future studies should consider expanding the dataset across multiple 
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institutions and training contexts to validate the model externally. Qualitative methods, such as interviews or sentiment 

analysis, should be incorporated to capture the subjective and contextual aspects of cadet performance. Additionally, 

the use of supervised machine learning could be explored to build predictive models with early warning capabilities. 

Longitudinal studies are also recommended to monitor cadet behavioral development over time and support 

sustainable, personalized learning strategies. 
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