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Abstract 

Uneven food distribution across Indonesia’s regions continues to trigger critical supply-demand imbalances, manifesting in price inflation, stock 

shortages, and systemic market volatility. These inefficiencies are exacerbated by the rigidity of traditional logistics systems, which struggle to 

adapt to rapidly shifting demand patterns. Addressing this issue, the present study proposes a novel solution by implementing Deep Reinforcement 

Learning (DRL) to optimize food distribution policies using real-world datasets sourced from Indonesia’s Central Bureau of Statistics (BPS). 

The primary objective is to comparatively evaluate the effectiveness of four prominent DRL algorithms—Double Deep Q-Network (Double 

DQN), Dueling DQN, Proximal Policy Optimization (PPO), and Advantage Actor-Critic (A2C)—in generating adaptive, reward-driven 

distribution strategies. Each model was trained on 500 episodes within a custom simulation environment constructed using the Markov Decision 

Process (MDP) framework. The models were assessed using five core metrics: cumulative reward, average reward, best reward, success rate, and 

sample efficiency. The results show that A2C outperformed all others, achieving the highest average reward of –2.30, best reward of –1.61, and 

success rate of 94%, followed closely by PPO with a success rate of 92% and efficient convergence behavior. Dueling DQN offered improved 

stability over standard DQN but was limited by higher variance. These findings highlight the superiority of policy-gradient methods—particularly 

A2C—in handling high-variance, real-time decision-making problems in national food logistics. As one of the first comparative DRL benchmarks 

in this domain, this research contributes significantly to the literature by demonstrating the viability of intelligent, adaptive reinforcement learning 

agents in formulating data-driven public policy. The proposed framework opens new avenues for integrating AI into national logistics systems, 

with strong potential for enhancing food security and distribution efficiency in Indonesia. 
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1. Introduction 

The stability and efficiency of food distribution systems play a critical role in ensuring food security, particularly in 

countries with vast geographic territories and uneven consumption patterns [1], [2], [3]. Effective and efficient food 

logistics serve as foundational pillars in safeguarding national food resilience, especially in nations with large 

populations or complex geographic constraints. However, food distribution systems are frequently challenged by 

imbalances between surplus and deficit regions, inadequate logistical infrastructure, delayed decision-making 

processes, and highly volatile demand dynamics. Inefficiencies in distribution policy not only result in resource waste 

but also exacerbate food crises, widen social disparities, and provoke broader economic instability [4], [5], [6]. In many 

developing countries including Indonesia mismatches between food supply and regional demand frequently cause price 

fluctuations, shortages, and systemic wastage. These systemic inefficiencies are further compounded by delayed policy 

responses, a lack of real-time decision-making frameworks, and an inability to adapt to rapidly changing market 

conditions [7], [8], [9]. Traditional rule-based and optimization-driven logistics systems have proven insufficient in 

coping with the multidimensional and dynamic challenges of modern food distribution [10], [11]. Static policies often 

fail to account for fluctuating demand, regional disparities, and the feedback effects of previous actions [12], [13]. As 

a result, smarter, data-driven, and adaptive frameworks are urgently needed to reform the planning and execution of 

food logistics strategies [14], [15]. 
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Recent advancements in Deep Reinforcement Learning (DRL) have opened new pathways for optimizing sequential 

decision-making tasks in complex and uncertain environments [16], [17]. DRL models are capable of learning optimal 

policies through trial-and-error interactions with their environment, with the aim of maximizing long-term cumulative 

rewards [18], [19]. Their ability to integrate state-action dynamics, historical outcomes, and stochastic variations makes 

them highly suitable for planning in food logistics systems. By combining the representational power of deep learning 

with the strategic decision-making capabilities of reinforcement learning, DRL agents can effectively learn optimal 

policies in high-dimensional and dynamic settings [20], [21], [22]. Among the most widely applied DRL models, DQN 

has demonstrated effectiveness in discrete action spaces and value-based learning, although it often struggles with 

stability and sample inefficiency in non-stationary environments [23], [24], [25]. Proximal Policy Optimization (PPO), 

a policy-gradient method, offers more stable training and better exploration capabilities, making it well-suited for 

continuous control problems, albeit requiring careful hyperparameter tuning [26], [27], [28]. Advantage Actor-Critic 

(A2C) balances the roles of actor and critic networks to enhance learning efficiency and reduce variance, although it 

can be sensitive to delayed rewards and slower to converge in highly stochastic scenarios. Each of these methods 

presents trade-offs in convergence speed, stability, and computational complexity—factors that are critical when 

applied in domain-specific challenges such as food supply chain optimization [29], [30], [31]. 

Previous studies provide important but partial contributions. [32] explored the use of DQN in optimizing microgrid 

energy management, emphasizing the benefits of model-free approaches that adapt to stochastic variables such as 

electricity prices and renewable generation. Although the DQN method demonstrated competitive operational 

performance with significantly faster computation time, the study was limited by its exclusive focus on a single DRL 

algorithm and manual hyperparameter tuning, which constrained generalizability and replicability [32]. In a different 

context, [33] proposed an innovative integration of Digital Twin (DT) technology and DRL for adaptive routing and 

dispatching of Automated Guided Vehicles (AGVs) in smart manufacturing. Their work showcased the superiority of 

ID3QN over other models like DQN, DDQN, and D3QN in terms of energy efficiency and tardiness reduction. 

However, their study lacked generalizability beyond simulated settings and did not address implementation constraints 

such as hardware requirements or real-world deployment challenges [33]. While DRL techniques such as DQN [34], 

Dueling DQN [33], PPO [35], [36], and A2C [37], [38] have achieved substantial success across domains including 

autonomous systems, finance, and healthcare, their comparative evaluation in the context of food supply logistics 

remains underexplored. Understanding which DRL method performs best under real-world constraints such as regional 

demand variability, limited resource availability, and fluctuating market prices is vital for shaping effective policy and 

logistics management strategies [39], [40]. Moreover, the application of DRL to food distribution remains relatively 

novel and is largely limited to experimental settings. Key challenges include determining which model architecture is 

most effective for distribution policy design, given unique real-world conditions such as daily demand fluctuations, 

logistical resource constraints, prioritization of vulnerable regions, and unexpected disruptions (e.g., natural disasters 

or supply chain shocks). The architectural differences and exploration-exploitation trade-offs among DQN, PPO, and 

A2C models often yield varying performance outcomes, depending on the complexity of the operational context [21], 

[22], [41], [42]. 

This study aims to address this gap by conducting a comparative evaluation of four DRL models using real-world food 

distribution data. Each model is assessed based on cumulative reward, average reward, success rate, and sample 

efficiency key indicators of operational performance and learning stability. The findings are expected to contribute 

actionable insights for data-driven decision support systems in public food distribution and further enrich the literature 

on AI for sustainable development. 

2. Literature Review 

In recent years, DRL has emerged as a promising approach for solving dynamic decision-making problems across a 

variety of complex systems, including energy management, logistics, and wireless communication networks. In the 

context of microgrid energy management, studies by [43], [44] have demonstrated that the DQN algorithm can generate 

near-optimal energy scheduling policies comparable to classical optimization methods such as Mixed-Integer Linear 

Programming (MILP), but with significantly lower computational costs. These findings validate the effectiveness of 

DQN in highly uncertain environments that demand real-time decision-making capabilities. In the realm of smart 
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manufacturing, DRL has been successfully integrated with DT architectures, as shown in the work of [45], who 

developed an ID3QN-based framework for the assignment and routing of Automated Guided Vehicles (AGVs). Their 

results highlight that DRL tailored to DT-enabled simulations can significantly reduce delivery delays and energy 

consumption when compared to baseline algorithms such as DQN, DDQN, and D3QN. 

In another domain, DRL has been utilized in wireless communication systems involving Unmanned Aerial Vehicles 

(UAVs) and Reconfigurable Intelligent Surfaces (RIS). The study by [46] proposed a UAV-RIS integrated system to 

support wireless energy and data transmission in Internet of Things (IoT) networks. Algorithms such as Deep 

Deterministic Policy Gradient (DDPG) and PPO were employed to optimize UAV flight trajectories, energy harvesting 

schedules, and RIS phase-shift matrices. Simulation results demonstrated substantial throughput improvements over 

conventional and random baseline strategies, with DDPG outperforming in mobile UAV scenarios, while PPO proved 

more effective in stationary UAV contexts [47]. A more recent study by Zhang [48] applied PPO in the management 

of heterogeneous cloud resources. The proposed system autonomously performed both horizontal and vertical scaling 

of virtual resources, leading to reduced operational costs compared to conventional threshold-based methods. PPO’s 

strength lies in its ability to generate stable, probabilistic policies and adapt to dynamic workload conditions. However, 

the approach also poses challenges in implementation, including the need for complex training simulations and 

sensitivity to hyperparameter configurations [48]. Taken together, DRL approaches such as DQN, PPO, A2C, and 

ID3QN offer distinct advantages for adaptive decision-making across various domains. Nonetheless, most of the 

existing literature focuses on isolated applications without systematically comparing these models within a shared 

environment. This gap signals a clear research opportunity for conducting comparative evaluations of DRL models 

within the context of food distribution policy an area that shares similar complexity and uncertainty characteristics with 

domains such as energy and cloud computing. 

3. Methodology 

This study adopts a systematic methodology aimed at evaluating the effectiveness of various DRL algorithms in 

optimizing food distribution strategies based on real-world supply and demand data. The methodological framework 

is structured around four interconnected components: environment formulation, data preparation, model design, and 

performance evaluation. The environment was formulated as a Markov Decision Process (MDP), where the food 

distribution system is represented through state, action, and reward elements that mirror actual market dynamics. Each 

state comprises relevant indicators such as food demand, stock availability, market price, and categorized market 

conditions. Actions correspond to the selection of distribution destinations (i.e., cities), while the reward function is 

designed to penalize deviations between demand and supply, as well as high market prices—thereby encouraging 

policies that are both efficient and equitable. 

For data preparation, a comprehensive dataset sourced from Indonesia’s Central Bureau of Statistics (BPS) was utilized. 

The dataset includes daily food logistics records across multiple cities, capturing temporal variations in demand, 

supply, and pricing. Categorical variables such as city names and market condition levels were encoded numerically 

to ensure compatibility with machine learning models. Importantly, the dataset was not normalized or manipulated, 

preserving its economic integrity and reflecting authentic market signals. The study implemented four prominent DRL 

algorithms DQN, Dueling DQN, PPO, and A2C each tailored to fit the specific context of food logistics. All models 

were trained under identical conditions using the same environment structure, reward design, and hyperparameter 

configurations. This ensured a fair comparison across methods without bias introduced by differing experimental 

setups. 

To evaluate performance, the study employed a set of quantitative metrics: cumulative reward, average reward, success 

rate, and sample efficiency. These metrics collectively reflect not only the effectiveness of the learned policies but also 

the learning dynamics and stability of each model. The integration of these components provides a robust and replicable 

framework for benchmarking DRL methods, while also offering actionable insights for the development of intelligent, 

data driven food distribution policies in the future. 

3.1. Problem Formulation as Reinforcement Learning Environment 

The national food distribution system exhibits dynamic and complex behavior that can be effectively modeled using 

the MDP framework and specified that a discount factor (gamma) of 0.99 was used to emphasize long-term reward 
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optimization. Within this framework, an intelligent agent is tasked with selecting the most optimal distribution targets 

i.e., cities across Indonesia from a central distribution point, based on real time environmental factors. The components 

of the MDP in this study are carefully formulated to simulate a realistic and dynamic environment for optimizing food 

distribution policies. The state (S) of the environment at any given time is represented as a feature vector that 

encapsulates four critical variables: the level of food demand (in unit quantities), the amount of available stock, the 

current market price, and a numerically encoded indicator of market condition, which categorizes the state of the market 

as low, normal, or high. This multidimensional state representation allows the reinforcement learning agent to perceive 

and respond to key economic factors influencing distribution. 

In terms of action (A), the agent is tasked with selecting a target city from a predefined list as the destination for food 

distribution. Each city corresponds to a discrete action in the action space, thereby framing the decision-making process 

as a multi-class classification task within a discrete domain. The agent must evaluate the state and choose the most 

strategic location for distribution based on current conditions. 

The reward (R) function is structured to incentivize efficient and economically sensible distribution. It assigns penalties 

that are primarily driven by two factors: the absolute mismatch between supply and demand, and the prevailing market 

price in the selected city. A smaller difference between demand and available stock, coupled with a lower market price, 

results in a higher reward. This formulation ensures that the agent learns to prioritize actions that minimize wastage 

and avoid costly market interventions. Finally, state transitions (T) occur in a sequential manner, following the temporal 

index of the real-world dataset, thereby mimicking daily progression. While the transitions are deterministic due to the 

nature of the dataset, they still preserve a degree of realism by capturing spatial and temporal variation across different 

cities and days. These transitions enable the agent to identify evolving patterns and adapt its distribution strategy 

accordingly, reinforcing the learning process with insights drawn from real market dynamics.. 

3.2. Dataset Description and Preprocessing 

The dataset used in this study was obtained from Indonesia’s Central Bureau of Statistics (Badan Pusat Statistik/BPS) 

link: https://www.bps.go.id/id/publication/2024/12/31/a688dbac2f627b8b2f5b3b87/distribusi-perdagangan-

komoditas-beras-indonesia-2024.html, the official government agency responsible for the collection, processing, and 

dissemination of national statistical data. The dataset reflects real world food distribution activities and market 

conditions observed daily across various cities in Indonesia. It includes comprehensive information that captures the 

dynamics of national food logistics such as fluctuations in demand, stock availability, and market prices which are 

heavily influenced by geographic, economic, and regional policy factors. The dataset comprises 1,140 data entries and 

six primary attributes, each recording daily food distribution snapshots from a wide range of urban and mid sized cities 

across the country. Each row represents the condition of a single city on a specific day, allowing for granular and 

temporally rich data suitable for machine learning–based modeling. This spatial and temporal diversity enables the 

learning of complex distribution patterns and the identification of potential supply demand imbalances, making the 

dataset highly relevant and representative for Reinforcement Learning research in the context of optimal decision 

making for food distribution. An illustrative sample of the dataset is presented in table 1. 

Table 1. Sample of the Research Dataset 

Day City Demand Stock Price (Rp) Market Conditions 

1 Banda Aceh 2360 2129 14177 Tall 

1 Medan 2794 2798 15012 Low 

1 Padang 2630 2654 16508 Low 

1 Pekanbaru 2595 2570 16137 Tall 

1 Tanjungpinang 3138 2873 14691 Normal 

... … … … … …etc 

This table presents a snapshot of daily food distribution records across multiple Indonesian cities. Each row corresponds 

to one city on a specific day, capturing key parameters such as demand, stock availability, market price, and a 

qualitative market condition label, which was later encoded for modeling purposes. The complete dataset is used to 
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simulate a dynamic decision-making environment for the DRL agents. The structure of the dataset can be seen in the 

description in table 2. 

Table 2. Dataset Structure and Characteristics 

Column DataType Description 

Day Integer Shows the index of the day (time step) used as the time axis. 

City Object The name of the city where food demand and stock are recorded. 

Demand Integer The amount of food demand in the city on a given day. 

Stock Integer The amount of food stock available in the city at the same time. 

Price Integer The market price of food per unit (e.g. per kilogram) in the city. 

Market Conditions Object Categorical labels describing the market situation: Tall, Normal, Low 

As described in table 2, the dataset served as the foundational input for the simulation environment in which the DRL 

models operated. These models were trained to learn optimal food distribution decisions by prioritizing cities for 

logistical delivery based on daily variations in demand, stock availability, price, and market conditions. To ensure the 

dataset could be effectively processed by DRL algorithms, a systematic and careful preprocessing pipeline was 

implemented. The first step involved data completeness verification, which confirmed the absence of missing values 

across all entries. As a result, no imputation or data filling procedures were required. 

Next, categorical variables were encoded to allow interpretation by numerical models. Specifically, the Market 

Conditions column, originally consisting of string labels such as “Tall,” “Normal,” and “Low,” was transformed into 

numeric representations using label encoding (2, 1, and 0, respectively). Similarly, the City column was encoded into 

integer values to facilitate its use either as a component of the state vector or as the discrete action space for the DRL 

agent. The structure of each state vector used in the DRL environment comprised four core features: demand, stock, 

price, and the encoded market condition. The action at each time step was represented by the encoded city index 

selected by the agent. To preserve the original economic context of the data, no normalization or standardization was 

applied to numerical values such as demand, stock, or price. This decision was made to maintain the realism and 

interpretability of real world magnitudes, which are crucial for modeling logistics decisions in economic contexts. 

Importantly, no data manipulation or artificial feature engineering was performed, in order to preserve the integrity and 

reliability of the experimental results. As part of initial data validation, exploratory visualizations were conducted, 

including boxplots of price variations across cities and distribution plots of demand and stock levels. These analyses 

confirmed the absence of significant outliers or anomalies. The strength of this dataset lies in its ability to capture the 

dynamic behavior of food markets in Indonesia. It supports realistic simulations of logistical challenges and enables 

the development of DRL models that extend beyond proof of concept toward practical implementation in policy driven 

food distribution planning. 

3.3. Deep Reinforcement Learning Models Implementation 

To evaluate the effectiveness of reinforcement learning–based approaches in the context of food distribution 

optimization, this study implemented and compared four widely recognized DRL algorithms. The selection of models 

was based on three main criteria: (1) prevalence and acceptance in the academic literature, (2) architectural flexibility, 

and (3) proven capability in handling complex, sequential decision-making problems in dynamic environments. The 

four models selected for evaluation include DQN, Dueling DQN, PPO (evaluated model), and A2C (evaluated model). 

Each of these models was configured and trained under identical experimental conditions using the same simulation 

environment and input data to ensure fair and consistent comparison. An overview of their fundamental characteristics 

and differences is summarized in table 3 below. 
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Table 3. Comparative Overview of DRL Models 

Aspects DQN  Dueling DQN PPO (Evaluated model) A2C (Evaluated model) 

Algorithm 

Type 
Value based 

Value based (Enhanced 

Q function) 

Policy based (Clipped 

Surrogate Objective) 

Actor Critic (Policy + 

Value) 

Network 

Structure 
Single Q network 

Two streams: Value & 

Advantage 

Two heads: policy and 

value 

Two networks: actor and 

critic 

Training 

Approach 

Off policy (uses replay 

buffer) 
Off policy 

On policy (directly from 

recent interactions) 
On policy 

Training 

Stability 

Vulnerable to Q value 

fluctuations 
More stable than DQN 

Very stable (limited by 

clipping ratio) 

Stable, but sensitive to 

delayed rewards 

Update 

Function 

Updates based on max 

Q value of next state 

Same as DQN, but with 

separation of value & 

advantage 

Policy gradient with 

update restrictions 

Advantage based policy 

gradient 

Handling 

Reward 

Variance 

Tends to be high Lower than DQN 
Low, thanks to clipping 

regularization 

Medium – relies on 

advantage estimation 

Sample 

Efficiency 

Relatively low (needs 

lots of replays) 

More efficient than 

DQN 

High (learns directly from 

interaction samples) 

High (but can be sensitive 

to complex environments) 

Implementa

tion 

Complexity 

Medium 
Mid to high (due to 

separate architecture) 

High (needs policy control 

and stabilization) 

Medium (needs actor critic 

synchronization) 

Suitable for 

Action 
Discrete Discrete Discrete & Continuous Discrete & Continuous 

Advantages Simple and fast to train 
Reduces noise in Q 

value estimation 

Very stable, good 

generalization, suitable for 

real applications 

Balance between efficiency 

& stability; reduces training 

variance 

Disadvanta

ges 

Less stable, slow 

convergence in 

complex environments 

Still limited to discrete 

actions 

Needs careful parameter 

tuning, more complicated 

Prone to overfitting rewards 

and advantage values 

As shown in table 3, the four selected models DQN, Dueling DQN, PPO, and A2C were compared based on their core 

architectural and algorithmic characteristics. Each model was designed and trained within an identical simulation 

environment, ensuring a consistent state action reward structure and using the same input dataset and reward function. 

This standardized setup was implemented to enable a fair and objective performance comparison across all models, 

eliminating any confounding factors related to data imbalance or training inconsistencies. As such, the observed 

differences in model performance can be attributed solely to the inherent strengths and limitations of the respective 

DRL algorithms, rather than external variables. The architectural configurations of the four models—namely DQN and 

Dueling DQN as baseline models, along with PPO and A2C as the proposed approaches—are illustrated and described 

in the following sections. 

As shown in figure 1(a), the DQN is a value based reinforcement learning model that uses a neural network to 

approximate the Q values Q(s,a) for each possible action in a given state. The agent selects the action with the highest 

predicted value and learns from its interactions with the environment over time. While DQN is conceptually simple 

and effective in discrete action spaces, it often suffers from instability and slow convergence due to overestimation of 

Q values. Figure 1(b) presents the Dueling DQN architecture, which separates the Q value estimation into two streams: 

one estimating the state value V(s), and the other estimating the advantage of each action A(s,a). 
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(b) Dueling DQN 
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(c) PPO Evaluated Model 
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Action
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(d) A2C Evaluated model 

Figure 1. The architectural configurations of the four models 

These two components are later combined to compute the final Q value. This structure allows the agent to better 

evaluate the importance of states independently from specific actions, resulting in more stable and efficient learning. 

However, it still operates within discrete action spaces and retains some limitations of the original DQN 

Q (s,a)= V (s)+A (s,a) (1) 

Figure 1(c) illustrates the PPO model, a policy gradient method that utilizes separate actor and critic networks. The 

actor proposes actions, while the critic evaluates their expected returns. PPO updates policies using a clipped objective 

function, which prevents overly large updates and improves training stability. The algorithm is known for its robustness 

and sample efficiency, particularly in environments with dynamic and non stationary conditions like food logistics. 

However, it requires careful hyperparameter tuning to maintain optimal performance. The A2C model, depicted in 

figure 1(d), implements a synchronous actor critic framework. The actor network learns a policy to select actions, while 

the critic estimates the value of states and computes the advantage to guide policy updates. This approach balances 

learning efficiency and stability by reducing the variance in gradient estimates. Although A2C performs well in 

environments with sequential decision making, it may be sensitive to delayed rewards or noisy feedback signals, 

requiring thoughtful design in real world applications. 

3.4.  Research Design 

This study was designed to evaluate and compare the performance of four DRL algorithms in the context of optimizing 

food distribution based on real world data. The main focus lies in developing a simulation environment using actual 

records from Indonesia’s Central Bureau of Statistics (BPS) and assessing how effectively each model generates 

distribution policies under realistic logistical constraints. The research combines a quantitative, experiment based 

computational approach with dynamic decision making scenarios, following common practices in reinforcement 

learning studies. Each model is tested within the same simulation setup to ensure consistent conditions for fair 

comparison. The overall structure of the research design is illustrated in figure 2. 
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Figure 2. Research Design 

Figure 2 illustrates the overall research design. The process begins with the analysis and preprocessing of daily food 

distribution data, which includes key variables such as demand, stock levels, market price, and market condition across 

various Indonesian cities. This real world dataset is used to construct a custom simulation environment based on the 

MDP framework. Within this environment, DRL agents interact with the system to learn optimal distribution policies. 

The environment is structured following the standard state action reward paradigm, designed to replicate actual inter 

regional food logistics dynamics. Four DRL algorithms are implemented: DQN, Dueling DQN, PPO, and A2C. Each 

model is trained under identical conditions for 100 episodes using the same training parameters, including learning 

rate, discount factor, and neural network architecture. 

To ensure a fair comparison, no data manipulation or differential hyperparameter tuning was applied between models. 

All models received the same input data and operated within the same simulation setup. Model performance was 

evaluated using four predefined quantitative metrics: cumulative reward, average reward, success rate, and sample 

efficiency each reflecting key aspects of model effectiveness, such as decision accuracy, training stability, and learning 

efficiency. The evaluation results are presented through various visualizations, including reward per episode plots, 

reward distribution boxplots, and comparative performance tables. The experimental design is replicable and modular, 

allowing future enhancements and adaptation for more complex settings, such as multi agent DRL or multi center stock 

distribution systems. This framework not only facilitates comparative algorithmic benchmarking but also contributes 

toward practical, data driven policy design for national food logistics supporting more adaptive and resilient 

distribution strategies. 

4. Results and Discussion 

This chapter presents the results obtained through a series of systematically designed experimental stages, as outlined 

in the previous sections. The process began with the preprocessing of raw data sourced from Indonesia’s BPS, followed 

by the construction of a custom environment based on the MDP framework. This environment was specifically 

designed to replicate the real world dynamics of food distribution across multiple cities. Once the environment was 

established, four DRL models DQN, Dueling DQN, PPO, and A2C were trained using uniformly defined 

hyperparameters to ensure consistency and comparability. Each model was evaluated based on its ability to generate 

efficient, stable, and adaptive distribution policies in response to varying food demand and stock conditions. 

The results are presented in both quantitative forms (performance plots and comparison tables) and qualitative analysis 

to assess the strengths and limitations of each approach. The discussion further explores the real world implications of 

the experimental findings, particularly in the context of food distribution challenges in Indonesia. It also assesses the 

extent to which these DRL models can serve as AI driven decision support tools for public logistics policy. By 

combining technical evaluation with contextual insights, this chapter aims not only to address performance questions 
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regarding DRL algorithms, but also to reflect on their practical potential for integration into national food logistics 

systems. 

4.1. Preprocessing Results and Data Preparation 

The first stage of the experiment involved preprocessing the daily food distribution data collected from various cities 

in Indonesia, sourced from the BPS. The dataset consists of 1,140 rows and 6 primary columns, which capture daily 

records of the following variables: Day, City, Demand, Stock, Price, and Market Condition. To prepare the dataset for 

use in machine learning scenarios, label encoding was applied to categorical variables. The Market Condition column, 

originally represented as text categories (Low, Normal, High), was converted into numerical values (0, 1, 2) to make 

it compatible with DRL algorithms. Similarly, the City column was encoded as integers to support integration into the 

environment as part of the action space or state vector. A visualization of food price distribution by city is provided in 

figure 3, illustrating the variation in price dynamics across different regions an important factor that influences DRL 

decision making in this domain. 

 

Figure 3. Food Price Distribution by City 

Figure 3 displays the exploratory analysis of food price distribution across different cities in Indonesia. The chart 

reveals noticeable regional disparities in food prices, which may be attributed to geographic, logistical, and economic 

factors. For instance, cities such as Padang, Pekanbaru, and Manokwari exhibit consistently higher average prices, 

potentially due to limited supply chain access or higher transportation costs. In contrast, Yogyakarta, Semarang, and 

Wamena demonstrate significantly lower price ranges, indicating more stable or surplus market conditions. These 

regional price variations highlight one of the key challenges in food distribution policy: the need for context aware 

decision making. In the DRL framework used in this study, such price differences become crucial features for agents 

to consider when selecting optimal distribution strategies. Incorporating price dynamics allows the models to develop 

more realistic and effective policies that balance supply and demand while minimizing logistical inefficiencies. This 

figure also confirms the validity of using price as an input feature in the reinforcement learning environment, supporting 

its role in influencing the reward function and, ultimately, policy performance. 

4.2. Reinforcement Learning Model Training Results 

The training phase involved four DRL models DQN, Dueling DQN, PPO, and A2C. Each model was trained for 500 

episodes under identical simulation environments and hyperparameter settings to ensure fair comparison. Throughout 

the training process, each agent aimed to maximize cumulative reward by minimizing the mismatch between food 

demand and available stock, while also reducing the impact of high market prices. The reward function was designed 

to penalize inefficiencies in allocation and pricing, thereby guiding the agent toward more balanced and cost-effective 

distribution strategies. The following figure presents the reward per episode visualization for all four models, 

illustrating their learning trajectories and performance convergence over time. 

Figure 4 illustrates the training performance of four Deep Reinforcement Learning (DRL) models: (a) DQN, (b) 

Dueling DQN, (c) PPO, and (d) A2C, over the course of 500 training episodes. The y-axis represents the total reward 

achieved in each episode, while the x-axis denotes the episode index. Each subplot includes three key visual 

components: the raw episode rewards (jagged blue line), the moving average over episodes (orange line), and the 
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overall average reward (red dashed line), providing a comprehensive view of learning dynamics and convergence 

trends. Among the models, A2C (figure 4(d)) emerged as the best-performing model, achieving the highest best reward 

of –1.61. This superior performance indicates that the advantage-based actor–critic architecture effectively captured 

the underlying reward structure and adapted well to the complexities of the environment. 

  
(a) DQN (b) Dueling DQN  

  
(c) PPO Evaluated model (d) A2C Evaluated model 

Figure 4. Total Reward per Episode for All Models 

The reward trajectory of A2C, although exhibiting minor fluctuations, demonstrates sustained improvement and 

stability across episodes—suggesting a robust learning process with better long-term convergence compared to the 

other models. In contrast, Dueling DQN (figure 4(b)) also demonstrated strong performance, attaining a high best 

reward of –2.41 and displaying a relatively smooth moving average, indicating good learning consistency. However, 

its performance remained slightly below A2C in terms of stability and peak reward. The PPO model (figure 4(c)) 

showed moderate stability with visible fluctuations around the mean reward. While PPO maintained a balanced 

learning dynamic due to its clipped policy update mechanism, it achieved a best reward of –3.20, which is less optimal 

than A2C and Dueling DQN. Conversely, DQN (figure 4(a)) exhibited the highest variance in reward progression, with 

frequent performance drops and a less stable learning curve. The moving average was more erratic compared to the 

other models, and its best reward was also –3.20, indicating difficulty in effectively learning the optimal policy within 

the training window. Overall, the training results clearly suggest that policy gradient methods, particularly A2C, 

outperform value-based methods such as DQN and Dueling DQN in this food distribution environment. The actor–

critic approach used in A2C appears more capable of handling dynamic and high-variance decision-making scenarios, 

such as those found in real-world logistics systems. Figure 5 further supports this conclusion by presenting the 

distribution of total rewards across all 500 episodes for each model. It highlights how A2C achieved a tighter and more 

favorable reward distribution, reinforcing its position as the most effective and stable DRL model in this comparative 

study. 
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(a) DQN (b) Dueling DQN  

  
(c) PPO Evaluated model (d) A2C Evaluated model 

Figure 5. Histogram of Average Reward Distribution for All Models 

Each histogram provides insight into the frequency and spread of rewards, as well as the central tendency represented 

by the red dashed line (mean reward). The Dueling DQN model (figure 5(b)) achieved a relatively better average 

reward of −256.35, with a noticeable concentration of episodes achieving rewards near zero. This suggests more 

frequent successful policy outcomes compared to the other models, and reflects the model’s improved value 

decomposition and learning stability. The A2C model (figure 5(d)) recorded the highest average reward at −254.65, 

confirming its strong policy performance and efficient learning under stochastic reward signals. The histogram reveals 

a tighter clustering of high performing episodes, indicating more consistent convergence behavior. In contrast, DQN 

(figure 5(a)) had the lowest average reward of −265.49, with a wider spread of lower reward episodes. This highlights 

the model’s instability and higher variance, likely due to its susceptibility to Q value overestimation and lack of 

architectural enhancements. The PPO model (figure 5(c)) produced an average reward of −258.50, slightly 

outperforming DQN but underperforming relative to A2C and Dueling DQN. Its histogram shows a bimodal 

distribution, indicating varying levels of policy effectiveness throughout training. Overall, these distributions support 

the conclusion that actor critic and value enhanced models (A2C and Dueling DQN) consistently deliver better and 

more stable policy outcomes compared to the baseline DQN, especially in the context of complex, real world food 

distribution environments. 

4.3. Comparative Discussion of Model Performance 

This subsection aims to interpret and comprehensively compare the performance of the four implemented DRL models: 

Double DQN, Dueling DQN, PPO, and A2C. The comparison is grounded in both quantitative evaluation metrics and 

visual analysis, using indicators such as cumulative reward, average reward, success rate, and sample efficiency. 

Additionally, the reward distribution patterns and convergence trends observed during training are analyzed to assess 

the stability and learning efficiency of each model. By contrasting the strengths and limitations of each approach in the 

context of real world food distribution, this section provides a reasoned basis for identifying the most suitable model 

for integration into intelligent decision making systems. The evaluation extends beyond numerical performance, 

considering practical dimensions such as training stability, implementation complexity, and the potential for 

generalization to other logistics scenarios. The summarized performance results of each model are presented in table 

4, serving as a comparative benchmark for their effectiveness under identical simulation settings. 
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Table 4. Comparative Evaluation of Reinforcement Learning Models 

Model Reinforcement 

Learning 

Cumulative 

Reward 

Average 

Reward 

Success 

Rate 

Sample 

Efficiency 
Best Reward 

Double DQN 132746.7300 265.4900 0.7440 0.0312 3.2000 

Dueling DQN 128175.0900 256.3500 0.7760 0.0625 2.4100 

PPO – Evaluated model 129251.4600 258.5000 0.7800 1.0000 3.2000 

A2C – Evaluated model 127324.5300 254.6500 0.7700 1.0000 1.6100 

The comparative evaluation of the four DRL models Double DQN, Dueling DQN, PPO, and A2C reveals distinct 

performance patterns based on several key metrics. Among them, the A2C (Advantage Actor Critic) model demonstrates 

the most favorable overall results, achieving the lowest cumulative reward (−127,324.53) and average reward (−254.65), 

as well as the highest best reward (−1.61). These indicators suggest that A2C is the most effective model in learning 

stable and high quality distribution policies, with strong convergence and robustness under real world supply demand 

dynamics. 

Dueling DQN follows closely, benefiting from its improved architecture that separates value and advantage estimations. 

It achieved a better cumulative reward (−128,175.09) and average reward (−256.35) than PPO and Double DQN, along 

with a notable best reward of −2.41. PPO (Proximal Policy Optimization) recorded the highest success rate (0.7800) and 

perfect sample efficiency (1.0000), indicating its ability to make efficient updates from fewer interactions. However, its 

best reward remained lower at −3.20, suggesting that while PPO learns quickly, it may not consistently achieve the 

highest possible outcomes in individual episodes. 

Double DQN, despite being an improvement over the original DQN, lagged behind in most metrics. It had the lowest 

sample efficiency (0.0312) and the poorest cumulative reward (−132,746.73), reflecting difficulties in maintaining 

learning stability and optimizing policy performance. Overall, this comparative analysis confirms that actor critic 

models, particularly A2C, are more suited for complex and dynamic decision making environments like food distribution 

logistics. A2C’s balance between learning efficiency, reward stability, and implementation feasibility positions it as the 

most promising model for future integration into data driven, intelligent policy support systems for national food 

logistics.. 

5. Conclusion 

This study proposes a data driven solution for optimizing food distribution using four DRL algorithms: Double DQN, 

Dueling DQN, PPO, and A2C. By modeling food logistics as a Markov Decision Process and training agents on real 

Indonesian market data, the research offers a novel and adaptive approach to policy formulation. Among the models, 

A2C achieved the best overall performance, with the highest cumulative reward, stability, and reward efficiency. 

Dueling DQN and PPO also showed promising results, while Double DQN underperformed in complex scenarios. The 

findings highlight that actor critic models, particularly A2C, are well suited for real time, dynamic food distribution 

challenges. As a practical solution, the study recommends adopting A2C as a core decision support model for national 

food logistics. It enables intelligent, adaptive allocation strategies that reduce supply demand mismatch and improve 

policy responsiveness. This work contributes to both AI research and public logistics by demonstrating how DRL can 

support sustainable, real world distribution systems. Future extensions may explore multi agent coordination and 

broader data integration for enhanced policy impact. 
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