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Abstract 

Wrist fracture detection using medical imaging remains a challenging task due to the subtle and varied nature of fracture appearances. This study 

aims to improve the segmentation performance for wrist fracture detection by enhancing the U-Net model through adaptive training and 

customized loss functions. The main contribution of this research lies in the integration of an adaptive callback mechanism and a dual-weighted 

loss strategy that combines Dice Loss and Binary Cross-Entropy Loss. The adaptive training mechanism dynamically adjusts training parameters 

based on model performance, improving generalization and preventing overfitting. Meanwhile, the linear and non-linear exponential weighting 

in the loss function enables balanced learning and focuses attention on complex fracture regions during training.The methodology involved 

training the enhanced U-Net on a dataset of 1,344 wrist X-ray images, comprising both normal and fractured cases. Seventy percent of the images 

were allocated for training, while the remaining thirty percent were used for testing. The images were resized to 256×256 pixels, and the model 

was trained for up to 100 epochs with a batch size of 8. Experimental results demonstrated that the proposed model achieved strong performance, 

with an accuracy of 91.78%, precision of 87.78%, recall of 86.70%, and F1-score of 87.17%. These results indicate that the combination of 

adaptive training and loss weighting significantly improves the sensitivity and robustness of the segmentation process. The system was also 

validated through training and validation metrics, where lower loss and improved accuracy confirmed its ability to generalize well on unseen 

data. The approach offers promising implications for clinical applications, where rapid and accurate identification of wrist fractures can enhance 

diagnostic workflows and patient outcomes. Future research may explore the extension of this method to other fracture types and the incorporation 

of real-time diagnostic tools in clinical settings. 
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1. Introduction  

Wrist fractures represent a common type of musculoskeletal injury, particularly among the elderly population and 

individuals who experience direct trauma to the hand region [1]. Early and accurate detection of such fractures is 

essential to prevent long-term complications, including functional impairment, malunion, or the need for more invasive 

surgical interventions [2]. In clinical practice, interpreting radiographic (X-ray) images can be challenging for 

radiologists due to the visual variability of fractures, overlapping bone structures, and low contrast in the affected area 

[3]. With the advancement of artificial intelligence, deep learning methods, particularly the U-Net architecture, have 

shown great promise in medical image segmentation tasks, including X-ray analysis. U-Net is designed to perform well 

with limited data and is capable of capturing both spatial and contextual information through its symmetric encoder-

decoder structure [4]. However, the application of the standard U-Net for wrist fracture detection still presents several 

challenges, including susceptibility to noise, risk of overfitting on limited datasets, and reduced effectiveness in class-

imbalanced scenarios where fracture regions occupy significantly fewer pixels compared to non-fractured areas. 

Adopting a more adaptive training method and a loss function that represents a more complex segmentation problem 

is necessary to overcome these challenges. Adaptive callbacks, including dynamic learning rate adjustment, validation-

based early stopping, and performance monitoring during training, enable the system to automatically adjust the 

training process to the learning dynamics of the model. Consequently, the incorporation of loss functions such as Dice 
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Loss and Binary Cross-Entropy (BCE) Loss [5], with adaptive linear as well as exponential weighting, has been shown 

to improve segmentation performance by achieving a balance between pixel accuracy and target object structure [6]. 

In view of the previously mentioned background, the objective of this research is to improve the efficacy of the U-Net 

model in the identification of wrist fractures. This process is carried out by incorporating an adaptive callback training 

method and a weighted joint loss function design [7]. The method aims to enhance the precision and efficiency of the 

model while ensuring its generalization to variations in the morphology and intensity of fractures evident in medical 

images. This research contributes strategically to the development of image-based clinical decision support systems, 

particularly in the automated radiological diagnosis of limb bone fractures. 

2. Related Works  

Recent studies have explored various deep learning approaches for fracture detection and medical image segmentation. 

Classification-based methods using Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), and 

Gated Recurrent Units (GRUs) have shown notable performance in predicting wrist fractures, achieving accuracy levels 

between 83% and 90% [8]. While effective in classification, these methods lack spatial localization, making them less 

suitable for precise segmentation tasks required in fracture boundary identification. To improve localization, 

convolutional neural networks (CNNs), particularly ensemble models such as VGG19, ResNet152, MobileNet, and 

DenseNet, have been employed for fracture classification, yielding high precision and recall scores [9]. However, these 

models typically rely on coarse-level predictions and do not fully exploit pixel-level segmentation essential for clinical 

decision support. 

Segmentation-based approaches using U-Net and its variants have gained popularity due to their ability to learn fine-

grained spatial features. For instance, studies on osteoporotic fractures [10], pulmonary embolism [11], and brain or 

liver tumors [12], [13] utilized encoder-decoder networks combined with Dice Loss or Jaccard Loss to improve 

performance. These works emphasize the importance of using loss functions tailored for medical imaging. Nonetheless, 

they often overlook the challenges of class imbalance and sensitivity to noise, especially in small lesion areas such as 

wrist fractures. More advanced models like Residual U-Net and HAD-Net have been proposed to overcome limitations 

in basic U-Net architecture, yielding improved Dice coefficients across various organs [14], [15]. Similarly, research 

on hybrid loss functions combining Dice, BCE, and Jaccard losses has demonstrated superior results in applications 

like ovarian and abdominal organ segmentation [16], [17]. However, most of these models do not incorporate dynamic 

training strategies, such as adaptive callbacks or epoch-based loss weighting, which can further enhance generalization 

and convergence. 

Several works have also explored segmentation using generalized or domain-specific loss functions in tasks involving 

CT or MRI images [18], [19], [20]. While these studies offer valuable insights into loss function design, they primarily 

focus on large or clearly defined anatomical structures, leaving a gap in the effective segmentation of subtle fractures 

in radiographic wrist images. In summary, although previous research has demonstrated the effectiveness of CNN-

based and loss-optimized segmentation models across various medical domains, limited work has addressed the unique 

challenges of wrist fracture segmentation using adaptive training mechanisms and temporally weighted hybrid loss 

functions. This study aims to bridge that gap by enhancing the U-Net architecture with adaptive callbacks and a 

combined linear–exponential loss strategy, tailored to the class imbalance and morphological variability present in 

wrist X-ray images. 

3. Materials and Methodology 

The primary phase of this research included the acquisition of wrist fracture image through the implementation of 

preprocessing data, the subsequent labelling of data about the fracture area, and the segmentation of data using U-Net 

model. In the segmentation process, a comparison was made using a combination of the Dice and BCE loss methods, 

as implemented in U-Net model. Concerning the training process, the callback for the training feature was used in 

combining linear weighting and non-linear exponential weighting to achieve improved segmentation results. The 

outcomes of the weighting combination were represented by a new method, namely the adaptive weighted combined 

loss function. 
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3.1. Wrist Fracture 

A wrist fracture is an injury to the wrist caused by a variety of traumatic events, including driving accidents, direct 

impact to the wrist with a blunt object, pinching, or active events such as sporting accidents and elderly activities related 

to osteoporosis. The following symptoms are indicative of a wrist fracture, namely inflammation, pain, swelling, and 

difficulty moving the fractured wrist area [22]. 

3.2. Wrist Fracture Dataset 

The dataset used in this study consisted of X-ray images of fractured and non-fractured wrists, which were collected 

from various sources, including both public and private hospitals, such as RSUD Kota Dumai and Permata Hati 

Hospital in Duri City, as well as publicly available datasets obtained from the website 

https://www.kaggle.com/search?q=wrist+fracture  using the keyword “wrist fracture”. The dataset comprised a total of 

1,344 X-ray images, including 924 images of fractured wrists and 424 images of normal wrists, each with varying pixel 

resolutions.  

To facilitate the training and evaluation process, the dataset was divided into two subsets: 644 images were allocated 

for training, and 276 images were used for testing. All training images consisted of wrist X-rays that had not previously 

been used in any learning or model development phase, ensuring the validity of the evaluation process. However, the 

dataset lacked uniform metadata such as patient age, sex, or acquisition conditions. Additionally, ethical clearance was 

not explicitly required since publicly available datasets were used, and any patient data sourced from private hospitals 

were anonymized prior to use in accordance with applicable research ethics standards, as illustrated in figure 1 showing 

an example of a wrist fracture X-ray image. 

 
Figure 1. Wrist Fracture 

3.3. Data Preprocessing 

Data preprocessing started with the collection of wrist fracture image, followed by cropping, then contrast stretching. 

Resizing to adjust the size of image or annotations that showed the fracture area was also performed, followed by 

augmentation and normalization. Augmentation is a method in image processing or machine learning to artificially 

expand the amount of training data by modifying existing image [23]. This method was used to improve the 

heterogeneity of the dataset, facilitate learning of diverse variations of the model, and mitigate the risk of overfitting 

during the training process. Subsequently, the image showing wrist fracture were labelled or annotated during the 

process. These annotations were necessary to be created by medical experts, including radiological and orthopedic 

specialists, as illustrated in figure 2 showing the preprocessing stages of wrist fracture. 

 

 

 
(a) (b) (c) (d)   (e)     (f) (g) 

(a) Original image,  (b) Cropping, (c)  Contrast Stretching, (d) Resizing, (e) Normalizaztion, (f) Augmentation Flip H, (g) Augmentation Flip V 

Figure 2. Preprocessing Stages of Wrist Fracture 

https://www.kaggle.com/search?q=wrist+fracture
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3.4. Dice Loss 

Dice Loss is a metric commonly used in segmentation tasks to evaluate the similarity between the predicted 

segmentation and the actual ground truth in an image [24]. It is particularly prevalent in the medical image 

segmentation domain [25], being derived from the Dice Coefficient, which measures the overlap between two datasets. 

This loss function evaluates the agreement between model predictions and ground truth labels [26], and is defined as 

follows [27]. 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =  1 −
2 x TP

2 x TP+FP+FN
  (1) 

TP (True Positives) = Number of pixels correctly predicted as positive; FP (False Positives) = Number of pixels 

incorrectly predicted as positive [28]; FN (False Negatives) = Number of positive pixels missed by the prediction. The 

application of Dice Loss was major to improve the performance of the model for segmentation, particularly in the 

domains of medical image processing and other tasks characterized by substantial class imbalance. 

3.5. BCE Loss 

BCE is commonly applied in different binary classification tasks, including object detection and image segmentation 

in deep learning [29]. The equation for BCE Loss during the analysis was presented as follows [30]. 

BCE Loss1 =   −
1

𝑁
∑ yi . log(pi)  +  (1 − yi) . log(1 − pi)

𝑁

𝑖−1

 (2) 

yi = Ground truth label for the i-th pixel (0 or 1); pi = Predicted probability for the i-th pixel (ranging from 0 to 1); N 

= Total number of pixels. BCE Loss provides a quantitative measure of the discrepancy between the model’s predicted 

probabilities and the actual binary labels [31]. It is particularly useful for differentiating between two distinct classes 

in binary classification scenarios 

3.6. Adaptive Weighted Combined Loss Function 

Adaptive Weighted Combined (AWC) Loss is a method that integrates Dice and BCE losses using dynamically 

adjusted weighting functions throughout the training process. While previous studies applied either fixed weights or a 

single adaptive strategy—such as linear or exponential weighting—this study explicitly combines both linear and 

nonlinear exponential weighting within a single loss formulation. The linear component provides a steady transition 

over training epochs, while the exponential component enables more responsive adaptation as training progresses. This 

dual-weighting mechanism is designed to leverage the strengths of both gradual and sharp adjustments in loss 

contribution, thereby enhancing the model’s ability to cope with complex variations in data distribution. The proposed 

method aims to improve segmentation performance, particularly in medical images with challenging intensity and 

texture characteristics [32]. The formulation for linear weighting during the training process is defined as follows: 

α(t) =  αstart + (αend −  αstart) ⋅  (1 − e − λ ⋅ t) 
β(t)  =  βstart +  (βend −  βstart)  ⋅ e − λ ⋅ (T − t) 

(3) 

The progression of the training allowed the weight to be adjusted by the functions α(t) and β(t). Moreover, the notations 

used during the process of the analysis were stated as follows. t = epoch or current iteration; T = The total number of 

epochs or training iterations; αstart, αend, βstart and βend = parameters that determined the initial and final values of 

the adaptive weights. The equation for exponential non-linear weighting used in this analysis was presented as follows. 

𝛼(𝑡)  =  𝛼𝑠𝑡𝑎𝑟𝑡 + (𝛼𝑒𝑛𝑑 −  𝛼𝑠𝑡𝑎𝑟𝑡)  ⋅  (1 − 𝑒 − 𝜆 ⋅ 𝑡) 

𝛽(𝑡)  =  𝛽𝑠𝑡𝑎𝑟𝑡 +  (𝛽𝑒𝑛𝑑 −  𝛽𝑠𝑡𝑎𝑟𝑡)  ⋅ 𝑒 − 𝜆 ⋅ (𝑇 − 𝑡 
(4) 

αstart  = The initial value of the parameter α; αend  = The final value of the parameter α; t = The current time or 

iteration typically measured in units ranging from 0 to T; T = Total Number of Epochs; λ = The exponential scaling 

factor which was a critical element to control the rate of change and applied to the degree of non-linearity in this case; 

e = The base of the natural logarithm. The combination of linear and non-linear exponential weighting led to the 

following equation: 

𝛼(𝑡)  =  𝑊1 ∙ (𝛼𝑠𝑡𝑎𝑟𝑡 + (𝛼𝑒𝑛𝑑 − 𝛼𝑠𝑡𝑎𝑟𝑡) ⋅
𝑡

𝑇
) + 𝑊2 ∙ (𝛼𝑠𝑡𝑎𝑟𝑡 + (𝛼𝑒𝑛𝑑 − 𝛼𝑠𝑡𝑎𝑟𝑡) ⋅ (1 − 𝑒^(−𝜆𝑡))) (5) 
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  𝛽(𝑡)  =  𝑊1 ∙  ( 𝛽𝑠𝑡𝑎𝑟𝑡 +  (𝛽𝑒𝑛𝑑 −  𝛽𝑠𝑡𝑎𝑟𝑡)  ⋅  
𝑇 −  𝑡

𝑇
 )  +  𝑊2 ∙  ( 𝛽𝑠𝑡𝑎𝑟𝑡 + ( 𝛽𝑒𝑛𝑑 −  𝛽𝑠𝑡𝑎𝑟𝑡) ⋅  𝑒^(− 𝜆 (𝑇 − 𝑡))) 

When W1 > W2, linear weighting was more dominant; When W2 > W1, the exponential non-linear weighting was 

more dominant; When W1 = W2, it was evident that both variables showed equivalent levels of contribution. Linear 

weighting: α(t) ∝  
𝑡

𝑇
 = Consistently increasing over time; β(t) ∝ 

𝑇− 𝑡

𝑇
 = Reduced consistently over time Exponential non-

linear weighting: α(t) ∝ (1−e^(-λt))) = The initial rise was gradual but subsequently accelerated; β(t) ∝ e^ (- λ (T-t))) 

= There was an instantaneous fall and later slowed down. 

The parameters αstart, αend, βstart, βend , and λ were selected based on prior studies and empirical testing. The values 

aim to ensure smooth transitions in the loss weighting during training. A brief sensitivity analysis was conducted by 

varying λ and observing the effect on model convergence and segmentation accuracy. Results showed that moderate 

values (e.g., λ=5) yielded stable and improved performance. The combination of linear and exponential weighting 

allows the model to adapt dynamically during training, improving segmentation results over static approaches. 

3.7. U-Net Model 

Figure 3 shows the U-Net architecture, which is a deep neural network architecture that has been specifically designed 

for image segmentation tasks, especially in medical image processing [33]. U-Net architecture consisted of an encoder-

decoder structure that included skip connections [34]. Additionally, the implementation of this architecture in a deep 

learning framework for image segmentation included the use of convolutional layers, batch normalization, and 

activation functions (e.g. ReLU) [35]. U-Net network had been developed from CNN for medical image segmentation 

[36]. The model was composed of a contracting (encoder) on the left and an expansion path (decoder) on the right side, 

as these two were interconnected via a bridge. The encoder functioned as a feature extractor, learning an abstract 

representation of the input image through a series of encoder blocks. Moreover, the decoder generated a semantic 

segmentation mask, using the abstract representation as the input. 

 
Figure 3. U-Net Architecture 

 

U-Net model architecture comprised input layer, encoding path, bottleneck, decoding phase, output layer and a model.  

3.7.1 Performance Development of U-Net 

The development of the U-Net was an integral component of the training process, specifically the callback training 

feature. This feature was designed to improve the performance of U-Net segmentation by using an adaptive weighted 

combined loss function, which was applied to the Dice and BCE loss. Additionally, the use of adaptive weighting 

served to influence the degree of segmentation accuracy achieved by U-Net. 

3.7.2 U-Net Training Performance 

The training of the U-Net model typically employed the Cross-Entropy Loss function. The callback training feature 

was an integral component of U-Net segmentation, serving to regulate and optimize the training process. Callbacks 

were utilized in frameworks such as TensorFlow/Keras to enhance the efficiency of the training procedure. In this 

study, the adaptive weighted combined loss function method was implemented to improve the performance of the U-

Net model during training. A total of 70% of the dataset was allocated for training, while the remaining 30% was 
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reserved for testing. Following preprocessing and analysis, the image size of the dataset was standardized to 256 × 256 

pixels. The U-Net model was further developed by incorporating linear and non-linear exponential weighting methods, 

applied through callbacks during training. These callbacks were not part of the core U-Net architecture; rather, they 

operated externally and were only active throughout the training phase. The layer structure of the U-Net model 

remained unaffected by the callbacks. However, their implementation was observed to have a significant impact on the 

training outcomes. The development of the U-Net training performance is presented in table 1. 

Table 1. Development of the U-Net Callback for Training model 

Architecture Stages 
Image Size 

(H x W x C) 
Component Description 

Input Layer 256 × 256 × 1 Input Grayscale X-ray image of wrist fracture 

Encoder Block 1 256 × 256 × 64 2× Conv2D (3×3) + ReLU + MaxPool 
Initial feature extraction 

 

Encoder Block 2 128 × 128 × 128 2× Conv2D (3×3) + ReLU + MaxPool Early intermediate level features 

Encoder Block 3 64 × 64 × 256 2× Conv2D (3×3) + ReLU + MaxPool Advanced intermediate level features 

Encoder Block 4 32 × 32 × 512 2× Conv2D (3×3) + ReLU + MaxPool Advanced feature extraction 

Bottleneck 16 × 16 × 1024 2× Conv2D (3×3) + ReLU Deepest layer, highly abstract features 

Decoder Block 1 32 × 32 × 512 UpSampling + Concat + 2× Conv2D Concatenation with Encoder Block 4 

Decoder Block 2 64 × 64 × 256 UpSampling + Concat + 2× Conv2D Concatenation with Encoder Block 3 

Decoder Block 3 128 × 128 × 128 UpSampling + Concat + 2× Conv2D Concatenation with Encoder Block 2 

Decoder Block 4 256 × 256 × 64 UpSampling + Concat + 2× Conv2D Concatenation with Encoder Block 1 

Output Layer 256 × 256 × 1 Conv2D (1×1) + Sigmoid 
Binary segmentation mask output (0 : no fracture, 

1 :  fracture) 

Loss Function Cross-Entropy Loss Dice Loss + BCE Loss Adaptive loss combinations are used 

Loss weight (Epoch) - α(t), β(t) 
Weights adaptive with linear & exponential, 

changing with epochs 

Callback Training - Custom Callback Function 
Set loss weighting & monitoring during training 

(e.g. EarlyStopping) 

4. Results and Discussion 

The section showed the experimental analysis concerning the development of an adaptive loss function, namely the 

adaptive weighted combined loss function on X-ray image of different wrist fracture shapes. The implementation of 

the adaptive weighted combined loss function was used in the training process of U-Net model, specifically in the 

callback for training, which automatically updated the α and β values at the conclusion of each epoch. Furthermore, 

the callback for training function at the commencement of the process focused on BCE loss to accelerate per-pixel 

convergence and gradually increased the focus on the Dice loss to improve global segmentation quality. 

4.1. Adaptive Loss Function Testing 

The testing process included, comparing several U-net model variations, consisting of standard U-net, combination of 

U-net with dice and BCE loss, as well as U-net with a combined Dice and BCE loss using training callbacks. 

Additionally, U-net was compared with the same loss function improved by linear and non-linear exponential 

weighting and callbacks. 

4.2. Testing Results Adaptive Weighted Combined Loss Function 

The results demonstrated the development of the adaptive loss function method using the following parameters: input 

size of 256 × 256 pixels, maximum epochs of 100, batch size of 8, alpha start of 0.5, alpha end of 1.0, beta start of 0.5, 

beta end of 1.0, and a lambda parameter of 0.1. Figure 5 illustrates the training and testing phases by comparing various 

loss function methods with the proposed Adaptive Weighted Combined Loss, which integrates Dice Loss and BCE 

Loss in the U-Net model, as illustrated in figure 5 showing the implementation run using Python 3.11.1 for Windows. 
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Figure 5. Run the App Using Python 3.11.1 For Windows 

The execution process in the application, which used Python 3.11.1 for Windows, produced output in the form of 

training and validation loss graphs, confusion matrix, and metric table evaluation results, which comprised accuracy, 

recall, as well as F1_score. The following discussion focused on the results of the training and validation loss graphs, 

which were shown from several combinations of adaptive loss functions, as illustrated in figure 6 showing the Loss 

Per Epoch Graph (a, b, c, d). 

 

(a) U-Net Standart graph 

 

(b)  U-Net with Dice and BCE loss combination graph 

 

(c) U-Net with a Dice and BCE loss with Adaptive -

Callbacks combination graph 

 

(d)  U-Net with Dice dan BCE loss, adaptive linear 

weighted and adaptive exponential non-linear weighting 

algorithm graph. 

Figure 6. Loss Per Epoch Graph (a,b,c,d) 

4.2.1. The Following Image Showed the Results of the Visualization of Wrist Fracture Segmentation 

Wrist fracture segmentation using a U-Net-based model, enhanced with adaptive training callbacks, and the Adaptive 

Weighted Combined Loss function, produced a segmentation visualization accompanied by bounding contours 

showing the fractured areas. This visualization method was shown to facilitate more accurate detection of fracture 

location, contributing to a more efficient diagnostic process for medical personnel. The results of the visualization 

sample data were shown in table 2. 
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Table 2. Wrist Fracture Segmentation Visualization Results 

Original image 

of a wrist facture 

Labeling Ground truth Binary 

Predictions 

Overlay 

Prediction 

ROI in the 

fracture area 

      

      

      

      

      

The following table presents a comprehensive sequence of image segmentation stages for detecting wrist fractures 

using a medical image-based predictive modelling approach. Each column in the table signifies a pivotal element in 

the system workflow, ranging from the acquisition of inputs to the visual evaluation of the model's output. The initial 

column presents the Original Image of a Wrist Fracture, which functions as the fundamental input data employed in 

the fracture detection system. This image provides a visual representation of the condition of the patient's wrist bone 

prior to any processing. 

The Labeling column illustrates the manually annotated regions created by medical experts or radiologists. At this 

stage, specific fracture areas are marked as references for model training and validation. The Ground Truth column 

contains binary mask images derived from the labeling process. These masks serve as the reference standard for 

evaluating the accuracy of the model's predictions, as they represent the actual location of the fracture. In the Binary 

Predictions column, the output of the model is shown as a binary segmentation image generated after training. The 

white regions in this image indicate the areas predicted by the model as potential fracture zones. 

The Overlay Prediction column provides a visualization of the predicted segmentation results, which are superimposed 

onto the original image. The overlay's objective is to facilitate a more intuitive and informative comparison by 

illustrating the alignment between the predicted fracture areas and the anatomical structures. By presenting the entire 
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workflow in a structured and visual manner, this table offers a comprehensive overview of the segmentation system's 

performance and supports a detailed evaluation of the model's accuracy and effectiveness in detecting wrist fractures. 

The Region of Interest (ROI) in the Fracture Area column highlights the overlap between the predicted binary 

segmentation and the ground truth mask. This representation enables precise localization of the fracture, offering a 

clearer assessment of the model’s segmentation accuracy and its clinical applicability in wrist fracture detection. 

4.3. Evaluation of Wrist Fracture Segmentation 

The testing stage was the result of the detection of a wrist fracture by means of X-ray imaging. The 402 wrist X-ray 

image constituting the test set represented 30% of the total 1,340 X-ray, and the fracture image object data was labelled 

with a size of 256 X 256 pixels. Relating to the process, the test data had not been subject to training, and the testing 

process used the adaptive weighted combined loss function method in U-Net model. The evaluation of the test was 

based on a range of metrics, including accuracy, precision, recall, and F1-score. The results of applying the metric 

evaluation to the formula were shown in the confusion matrix as follows, as illustrated in figure 7 showing the confusion 

matrix (a, b, c, and d). 

 
a). U-Net Standard 

 
b). U-Net + Dice + BCE Loss 

 
c). U-Net + Dice + BCE Loss + Callbacks for training 

 
d). U-Net + Dice + BCE Loss +AWCLF + Callbacks for training 

Figure 7. Confusion matrix (a,b,c and d)  

The evaluation results using the confusion matrix revealed variations in performance across four U-Net model 

configurations for wrist fracture detection in medical images. The Standard U-Net model with Cross-Entropy Loss 

achieved 325 true positives (TP), 78 false negatives (FN), 135 false positives (FP), and 372 true negatives (TN). This 

performance indicates limited fracture detection capability, with a relatively high number of misclassifications in both 

FN and FP, suggesting the need for improvements in both sensitivity and specificity. 

Furthermore, the U-Net with a combination of Dice Loss and BCE Loss produced 300 TP, 72 FN, 94 FP, and 534 TN. 

The integration of these two loss functions yielded enhanced performance, as evidenced by a notable reduction in FN 

and FP, reflecting improved sensitivity and overall predictive capability compared to the baseline model. The U-Net 

configuration combining Dice Loss, BCE Loss, and training callbacks achieved 448 TP, 88 FN, 140 FP, and 324 TN. 

The addition of callbacks, such as early stopping and learning rate scheduling, contributed to more stable training. This 

configuration demonstrated balanced performance, with a slight increase in TP, while FN values remained comparable 

to the previous model, indicating improved adaptability during the training process. 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2623-2635 

ISSN 2723-6471 

2632 

 

 

 

The final configuration, namely the U-Net with Dice Loss, BCE Loss, weighted combination (linear and non-linear 

exponential), and training callbacks, delivered the best performance with 281 TP, 43 FN, 39 FP, and 637 TN. This 

approach achieved the highest TP and TN values, along with a significant reduction in FN to only 60 cases, indicating 

highly accurate fracture detection. Moreover, the FP rate was the lowest among all configurations, demonstrating 

optimal specificity. The comparison results of U-Net improvement using adaptive callbacks and weighted loss 

combination for detecting wrist fracture was shown in table 3. 

Table 3. U-Net Segmentation Improvement Comparison Results 

Method 
Dice 

Coefficient 

Intersection 

over Union 

(IoU) 

Accuracy Precision Recall F1_Score 

U-Net Standard - Cross Entropy 0.753 0.604 0.6966 0.7076 0.8063 0.7536 

U-Net with Dice + BCE Loss combination 0.790 0.653 0.7619 0.7619 0.8063 0.7904 

U-Net with a combination of Dice + BCE 

Loss + Callbacks for training 
0.797 0.663 0.7724 0.7622 0.8363 0.7972 

U-Net with Dice combination + BCE Loss + 

Weighted Combination (Linear and Non-

linear exponential) + Callbacks for training 

0.871 0.772 0.9178 0.8778 0.8670 0.8717 

The research showed the efficacy of the linear and non-linear exponential weighting methods in Dice and BCE Loss 

in addressing the imbalance between the number of pixels representing the background and the object of interest in 

wrist fracture. This was achieved by adjusting the weights for each class, ensuring the model focused more intently on 

the minority class with high accuracy. 

4.4. Confidence Interval Testing 

Interval testing is a statistical technique used to estimate the range within which a true value of a parameter lies, based 

on sample observations. In the context of wrist fracture detection, it allows for the assessment of variability in 

segmentation results, such as the area and perimeter of the fracture, derived from automated image analysis. This 

approach helps quantify uncertainty, as illustrated in figure 8 showing the boxplot comparison of Standard U-Net and 

Weighted U-Net across performance metrics, enhances the reliability of the findings, and supports consistent 

comparison across different segmentation models or clinical cases. Employing confidence intervals ensures that 

conclusions drawn from the model are statistically valid and clinically interpretable. 

 

Figure 8. Boxplot Comparison of Standard U-Net and Weighted U-Net Across Performance Metrics 
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Figure 8 illustrates the boxplots for four key evaluation metrics: accuracy, precision, recall, and F1-score, comparing 

the standard U-Net model and the proposed weighted U-Net model. Each boxplot represents the distribution of 30 

simulated values per metric, based on their respective means and standard deviations. 

The weighted U-Net consistently outperforms the standard model across all metrics, as indicated by higher medians 

and tighter interquartile ranges. This suggests not only improved performance but also lower variability, highlighting 

the model's robustness. The statistical significance of these differences is supported by independent t-tests, with p-

values below 0.05, confirming that the improvements are not due to random chance. This visual analysis reinforces the 

efficacy of the adaptive weighting strategy in enhancing segmentation performance for wrist fracture detection. 

5. Conclusion 

In conclusion, the enhancement of the U-Net model’s capability for segmenting fractures in wrist X-ray images was 

achieved through the implementation of an adaptive training callback method combined with the development of 

adaptive loss functions. These functions incorporated both Dice and BCE loss with linear and non-linear exponential 

weighting strategies. The dataset consisted of 1,344 wrist X-ray images, both normal and fractured, with 70 percent 

(644 images) allocated for training and the remaining 30 percent (276 images) used for testing. The parameters applied 

during experimentation included an input size of 256 by 256 pixels, a maximum of 100 epochs, a batch size of 8, an 

initial alpha value of 0.5 (alpha_start), a final alpha value of 1.0 (alpha_end), a beta_start value of 0.5, a beta_end value 

of 1.0, and a lambda parameter set to 0.1. The model achieved an accuracy of 0.9178, a precision of 0.8778, a recall of 

0.8670, and an F1-score of 0.8717. Throughout the training process, the loss value served as an essential metric 

indicating how well the model predicted outcomes, with lower loss values being more favorable. The validation 

accuracy ('val_accuracy') represented the model’s performance on unseen data, while the validation loss ('val_loss') 

indicated its prediction error during validation. A lower value in validation loss signified better generalization. To 

enhance the precision of the U-Net model in segmenting wrist bone fractures from X-ray images, several technical 

strategies were employed, including data quality enhancement, callback adjustments, adaptive loss function design, 

training optimization, and comprehensive validation procedures. 
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