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Abstract 

This research proposes a hybrid rating prediction model that integrates Neural Collaborative Filtering (NCF), Long Short-Term Memory (LSTM), 

and semantic analysis through Natural Language Processing (NLP) to enhance recommendation accuracy. The main objective is to improve 

alignment between system predictions and actual user preferences by leveraging multi-source information from the Amazon Movies and TV 

dataset, which includes explicit user–item ratings and textual reviews. The core idea is to combine three complementary processing paths—(1) 

user–item interaction modeling via NCF, (2) temporal dynamics capture through LSTM, and (3) semantic understanding of reviews using NLP—

into a unified deep learning-based adaptive architecture. Experimental evaluation demonstrates that this multi-input approach outperforms the 

baseline collaborative filtering model, with the Mean Absolute Error (MAE) reduced from 1.3201 to 1.2817 (a 2.91% improvement) and the 

Mean Squared Error (MSE) reduced from 2.2315 to 2.1894 (a 1.89% improvement). Training metrics visualization further shows a stable 

convergence pattern, with the MAE gap between training and validation consistently below 0.03, indicating minimal overfitting. The findings 

confirm that integrating cross-dimensional signals significantly enhances predictive performance and can contribute to increased user satisfaction 

and engagement in recommendation platforms. The novelty of this work lies in the simultaneous integration of interaction, temporal, and semantic 

dimensions into a single adaptive recommendation framework, a configuration not jointly explored in prior studies. Moreover, the flexible 

architecture enables adaptation to other domains such as e-commerce, music, or online learning, broadening its practical applicability. 

Keywords: Deep Learning-Based Recommendation, Neural Collaborative Filtering, Long Short-Term Memory, Natural Language Processing, User Rating 

Prediction 

1. Introduction 

In the digital era marked by a data explosion and massive consumption of information, users are increasingly challenged 

to filter relevant content amidst an overwhelming abundance of choices. This phenomenon, commonly referred to as 

information overload, has become a major issue affecting user experience across various online platforms such as e-

commerce, social media, and streaming-based entertainment services. In this context, recommender systems serve a 

critical role as intelligent tools that filter and deliver personalized content efficiently according to users’ preferences. 

These systems have evolved into strategic components within digital platform architectures not only enhancing user 

satisfaction, but also demonstrably driving key business performance indicators such as customer retention, 

engagement duration, and average transaction value. Previous studies, such as [1], have shown that recommender 

systems can drive up to 30% of total streaming activity on platforms like Netflix, significantly impacting user 

engagement and retention. Furthermore, even a 1% improvement in prediction accuracy can translate into substantial 

business value through increased viewing time and customer satisfaction [2], [3]. These findings underscore the 

importance of ongoing innovation in developing recommender systems based on state-of-the-art technologies. 

One of the dominant approaches in recommender system development is Collaborative Filtering (CF), which relies on 

historical user-item interaction patterns [4]. Both memory-based and model-based CF methods have proven effective 

in preference prediction; however, they face limitations such as data sparsity and the cold-start problem. Moreover, 

traditional CF methods often model linear relationships between users and items, making them less capable of capturing 

the complex and dynamic nature of real-world interactions. To address these limitations, NCF has been introduced by 
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leveraging deep neural networks to model more flexible, nonlinear relationships between users and items [5], [6], [7]. 

Architectures such as Neural Matrix Factorization (NeuMF) have demonstrated improvements in predictive accuracy 

[8], [9]. Nonetheless, most NCF models assume that user preferences are static, while in reality, they evolve over 

time—driven by changing needs, contexts, and expectations. In order to capture this temporal dynamic, the integration 

of LSTM networks presents a promising solution. LSTM, a variant of Recurrent Neural Networks (RNN), is designed 

to capture sequences and temporal dependencies in data, enabling models to learn from chronologically ordered user 

interactions [10], [11]. By incorporating LSTM into the recommendation framework, the system becomes better 

equipped to adapt to both short-term and long-term changes in user interests, thereby producing more relevant and 

adaptive recommendations. 

In addition to temporal modeling, a rich yet often underutilized source of information in recommender systems is user-

generated textual reviews. These reviews not only include numerical ratings but also express opinions, sentiments, and 

detailed descriptions of product features that cannot be fully captured through numerical scores alone. By adopting 

NLP techniques, semantic information from reviews can be transformed into informative vector representations and 

integrated into the model learning process [12]. This study utilizes the publicly available Amazon Movies and TV 

Dataset [13], a subset of the broader Amazon Product Review Dataset. This dataset comprises multiple dimensions of 

user and product information, including reviewerID (user identity), asin (unique product code), overall (rating score), 

reviewText and summary (full and summarized reviews), as well as temporal attributes such as reviewTime and 

unixReviewTime, purchase verification status (verified), and social signals (vote) representing the helpfulness votes 

from other users. The combination of numerical, temporal, and textual data makes this dataset highly representative 

and ideal for developing and evaluating recommender systems that integrate Collaborative Filtering, sequential 

modeling (LSTM), and semantic review analysis via NLP. 

While numerous prior studies have attempted to integrate one or two of these components (interaction, temporal, and 

review), comprehensive approaches that unify all three within a single adaptive architecture remain scarce, [14] 

introduced NCF as a hybrid architecture combining deep neural networks with matrix factorization, while [15] 

proposed RNN-based sequential recommendation models. [16] demonstrated that LSTM can enhance preference 

prediction in sequential contexts. [17] proposed a multi-task learning-based recommendation system that integrates 

user interaction and contextual features. On the other hand, [18] utilized review data to build more semantically 

enriched user representations. [19] incorporated attention mechanisms with temporal data for video recommendation 

systems, while [20] showed the effectiveness of review integration in mitigating the cold-start problem. The study by 

[21] explored the optimization of content-based recommender systems using NCF and demonstrated that NCF 

outperforms traditional methods such as Matrix Factorization and Content-Based Filtering. Research by [22] 

introduced an adaptive framework using transformers and word embeddings for text-based recommendation. 

Meanwhile, [23] combined Gated Recurrent Units (GRU) with NLP to enhance temporal modeling, and [24] 

investigated the integration of textual structure and user interaction using pre-trained language models such as BERT. 

These studies point toward promising directions for innovation but fall short of fully integrating the three components 

in a unified framework. 

Thus, the present research aims to develop an Adaptive Neural Collaborative Filtering model that synthesizes the 

strengths of NCF for modeling nonlinear relationships, the flexibility of LSTM in capturing temporal dynamics, and 

the semantic depth of user reviews processed via NLP. This approach aspires to produce recommendations that are not 

only accurate but also contextually rich and personally meaningful. The primary contributions of this study include: 

Designing a temporally adaptive recommendation architecture using LSTM; Developing techniques to integrate textual 

reviews through embedding and NLP to enrich user and item representations; Mitigating data sparsity and cold-start 

problems by leveraging explicit signals from review content, and conducting a comprehensive evaluation of the system 

based on accuracy, relevance, novelty, and diversity metrics. 

2. Literature Review 

This research is situated at the intersection of three primary approaches in recommender systems NCF, sequential 

modeling using LSTM, and semantic analysis of textual reviews. While each of these approaches has evolved in parallel 

within the literature, their comprehensive integration remains relatively limited. Therefore, this section critically 
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reviews recent developments in each domain. In the domain of neural-based collaborative filtering, the seminal work 

of [25] introduced NeuMF, which combines the strengths of matrix factorization with a multilayer perceptron 

architecture. This model demonstrated significant performance improvements over conventional methods; however, it 

remains constrained by its focus on static user-item interactions. Further developments such as DeepFM and Wide & 

Deep have enhanced feature representation, yet they do not explicitly incorporate temporal dynamics [26], [27]. 

In addition to recent developments in neural-based approaches, it is important to acknowledge the enduring strengths 

of traditional CF methods. Although often critiqued for their limitations such as data sparsity and linearity, these 

methods remain widely used due to several inherent advantages. First, traditional memory-based CF methods such as 

user-based and item-based algorithms are highly interpretable, allowing for transparent explanation of 

recommendations based on user similarity or item co-preference [28]. This interpretability can be crucial in domains 

where explainability influences user trust and system adoption. Second, traditional CF approaches are computationally 

efficient and relatively easy to implement, especially in systems with smaller-scale datasets or when rapid prototyping 

is needed. In certain operational environments, particularly those with well-structured user-item matrices and limited 

resource constraints, these methods may outperform more complex neural models in terms of speed and cost-

effectiveness [29]. Thus, while this research explores a more adaptive and integrated architecture, traditional CF 

remains a viable option in many practical recommender system applications. 

Sequential models emerged as a response to the need for capturing real-time user preferences. The GRU4Rec model 

proposed by [30] employs GRU for session-based recommendation using click sequences. This was further refined by 

[31], who applied LSTM networks to more accurately model the order of user interactions. Nevertheless, these 

approaches largely concentrate on interaction data and often overlook other informative sources such as content or user 

reviews. The integration of textual information gained traction with the emergence of review-based recommendation 

models. Studies by [32] and [33] introduced models that combine user interactions with product reviews. [34] for 

instance, proposed a model linking words in reviews to the latent factors of user-item pairs. More recent works, such 

as [35] and [36], explored the use of contextualized representations generated by BERT to project reviews into a richer 

semantic space. 

The integration of LSTM and NLP in recommender systems has started to receive greater attention in recent studies 

such as [37], which utilized text embeddings from reviews and combined them with temporal interaction signals. While 

promising, many of these approaches have yet to explicitly align or regulate the temporal and semantic dimensions, 

particularly in the context of complex and dynamic hyperparameter configurations. Several studies also emphasize the 

critical role of hyperparameter tuning in achieving optimal model performance. highlighted that choices regarding 

embedding dimension, learning rate, and batch size have a significant impact on model convergence and 

generalizability [38]. Techniques such as random search, grid search, and Bayesian optimization have been widely 

adopted in the literature for this purpose [39]. 

Hyperparameter tuning plays a pivotal role in harmonizing the representations derived from the three major information 

sources: user-item interactions, sequential dynamics, and review semantics. Parameters such as the number of LSTM 

units, input sequence length, text embedding dimensions, learning rate, and dropout rate are explored through random 

search combined with cross-validation. The tuning process is aimed at balancing model complexity with the risk of 

overfitting. By building upon these diverse approaches, this research addresses a gap in the literature by proposing a 

unified framework that integrates the strengths of NCF, LSTM, and textual review modeling, while incorporating 

systematic hyperparameter tuning to ensure model stability and reproducibility. This approach is expected to contribute 

both theoretically and practically to the advancement of adaptive and context-aware recommender systems. 

To further substantiate the novelty and effectiveness of the proposed model, we conducted a comparative evaluation 

with several prior studies that incorporated individual or partial combinations of interaction, temporal, and semantic 

features. Table 1 presents a summary of MAE and MSE results from these baseline models compared to our proposed 

hybrid architecture. As shown, our model consistently achieves lower error metrics, highlighting its superior ability to 

learn from diverse and complementary data sources. 
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Table 1. Performance Comparison with Prior Studies 

Study / Model Components Integrated MAE MSE 

[40] NCF + Text Embedding (NLP) 1.3198 2.2176 

[41] NCF + LSTM (Temporal) 1.3054 2.2043 

[42] Review-based Deep Learning 1.2921 2.1988 

Proposed Model (This Study) NCF + LSTM + NLP (Full Hybrid) 1.2817 2.1894 

These results reinforce the advantage of integrating user-item interactions, temporal sequences, and semantic content 

within a unified deep learning architecture, which has not been fully realized in previous studies. The comprehensive 

fusion not only improves prediction accuracy but also increases the contextual adaptability of the recommender system. 

3. Methodology 

This study adopts a quantitative experimental approach to develop an adaptive recommendation system model based 

on the integration of three primary sources of information: user-item interactions via NCF, temporal dynamics of user 

preferences through LSTM, and semantic information extracted from user reviews using NLP techniques. This 

methodological approach is designed to address limitations in conventional recommendation systems, which often fail 

to capture user preferences in a comprehensive and contextualized manner. The methodological stages implemented in 

this study are illustrated in figure 1. 

 

Figure 1. Proposed Model 

3.1. Dataset Acquisition 

The dataset used in this study is the Amazon Movies and TV Dataset, which is publicly available and widely utilized 

in recommendation system research. This dataset exhibits a multivariable structure, consisting of several columns 

including reviewerID (user identifier), asin (unique product code), overall (rating score), reviewText (full review 

content), summary (review summary), as well as temporal information such as unixReviewTime and reviewTime [13]. 

This study specifically focuses on the attributes reviewerID, asin, overall, and reviewText, as these represent user-item 

interactions, prediction targets, and the semantic features of user reviews. It is important to acknowledge that real-

world user-generated content such as rating scores and text reviews is often noisy or inconsistent. Factors such as user 

subjectivity, emotional bias, uninformative reviews, or even spam may introduce uncertainty into the data. Such noise 

can affect the learning process and reduce the reliability of predictions. While this study assumes that the available 

labels are correct and representative, we recognize this as a limitation. Future work may explore techniques such as 

label smoothing, confidence-based filtering, or noise-robust loss functions to enhance model robustness against label 

and input variability. 

3.2. Data Preprocessing 

The data preprocessing stage involved several key steps to prepare the dataset before model training. First, Label 

Encoding was applied to convert the reviewerID and asin columns into unique integer values using the LabelEncoder, 

ensuring compatibility with the embedding layers in the model. Second, Text Tokenization and Padding were 
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performed. The reviewText column was tokenized using a Tokenizer with a vocabulary size limited to 10,000 unique 

words. The resulting tokenized sequences were then converted into integer sequences and padded to a fixed length of 

100 tokens to ensure a consistent input shape for the LSTM layer. To justify this choice, we analyzed the distribution 

of review lengths across the dataset and found that over 85% of the reviews contain fewer than 100 tokens. Therefore, 

setting the maximum sequence length to 100 tokens ensures efficient training while preserving most of the semantic 

content with minimal truncation. Third, a Train-Test Split was conducted. The dataset was divided into two subsets 

using the train_test_split function: 80% for training and 20% for testing. In addition, a temporal validation analysis 

was performed on the reviewTime column to ensure that the chronological order of the review data carries meaningful 

structure rather than random noise. This analysis involved aggregating data by month and year to observe shifts in user 

preference patterns over time, reflected through changes in average rating and sentiment polarity. The results revealed 

significant fluctuations, supporting the presence of temporal dependencies and validating the use of LSTM for 

sequential modeling. 

3.3. Model Architecture (NCF + LSTM + NLP) 

The proposed model in this study was designed using a multi-input approach consisting of three primary processing 

pathways that are integrated simultaneously. The first pathway is an interaction-based channel utilizing NCF, in which 

the user ID and item ID are transformed into vector representations through embedding layers with 50 dimensions. 

These vectors are then flattened and concatenated to capture the latent interactions between entities. The second 

pathway involves semantic processing of textual reviews using NLP techniques. Each review is first converted into a 

sequence of words through tokenization and subsequently mapped to word embedding vectors. The word embeddings 

were initialized using pre-trained GloVe vectors (100-dimensional), which provide rich semantic representations 

derived from large-scale corpus data. These embeddings were further fine-tuned during training to allow domain-

specific adaptation to the Amazon Movies and TV dataset. These vectors are then passed through a LSTM layer with 

64 units, which is employed to capture the sequential structure and contextual meaning embedded within user reviews. 

The third pathway is the integration stage, wherein the outputs from the user representation, item representation, and 

LSTM-based textual representation are merged using a Concatenate layer. This combined representation is then fed 

into two fully connected layers with 128 and 64 neurons, respectively, both utilizing the ReLU activation function to 

enhance non-linearity in the learned relationships. Finally, the predicted rating value is generated through a single 

neuron in the output layer with a linear activation function, allowing the model to produce continuous outputs aligned 

with the actual user rating scale. 

3.4. Compile and Train Model 

After the model architecture was comprehensively designed, the next step involved compiling and training the model. 

During the compilation phase, the model was configured using the Adam (Adaptive Moment Estimation) optimization 

algorithm, which is widely recognized in deep learning literature for its ability to combine the advantages of both 

AdaGrad and RMSProp, while adapting effectively to changes in gradient scale. The loss function employed was MSE, 

which is mathematically defined as follows. 

MSE =  
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂

𝑛

𝑖=1

) 2 (1) 

Where 𝑦𝑖 represents the actual value (user rating) and 𝑦𝑖̂ denotes the predicted value generated by the model. The use 

of MSE as the objective function is highly appropriate for regression problems such as rating-based recommendation 

systems, as it penalizes errors quadratically in proportion to the deviation of predictions. As an additional evaluation 

metric during training, MAE was employed to provide a more stable indication of the average prediction deviation. 

The model was trained using a dataset that had been partitioned into training and test subsets, with inputs consisting of 

three vectors: user ID, item ID, and the tokenized sequence of review text. All input data were fed into the model in 

parallel via a multi-input mechanism, and the outputs were compared to the actual rating values to update the model 

weights through backpropagation. Training was carried out in stages using mini-batch stochastic gradient descent, with 

initial parameters including a batch size of 256 and a total of 50 training epochs. 
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During training, 10% of the training data was reserved as a validation set to monitor overfitting and ensure stable model 

convergence. The entire training process was implemented using the TensorFlow and Keras libraries, which provide 

modular infrastructure for managing multimodal data flows and support parallel training and GPU acceleration. 

3.5. Hyperparameter Tuning 

To achieve optimal model performance and to avoid issues such as overfitting or underfitting, the hyperparameter 

tuning process was conducted systematically. Hyperparameters are parameters that are not directly learned by the 

model during training, but are predefined and have a significant influence on the model’s architecture and learning 

behavior. In this study, tuning was focused on several key parameters related to representational power, model capacity, 

and training efficiency. The hyperparameters evaluated include. 

In designing the proposed model, several key hyperparameters were carefully selected to optimize performance. The 

user and item embedding dimensions were explored at sizes of 32, 50, and 64, as these values directly influence the 

representational capacity of the embedding layers in capturing latent factors of users and items. For the temporal 

modeling component, the LSTM layer was configured with either 64 or 128 units, enabling the model to effectively 

retain and process sequential information from user reviews. The review sequence length was set to 100 words, a value 

determined through an analysis of the review length distribution within the dataset, ensuring coverage of the majority 

of textual inputs without excessive padding. The learning rate was tuned across values of 0.001, 0.0005, and 0.0001 to 

balance convergence speed and optimization stability. To mitigate the risk of overfitting, dropout regularization was 

applied particularly within the dense and LSTM layers. Additionally, the batch size was set to either 32 or 64, and the 

number of training epochs was varied between 10 and 20 to evaluate the trade-off between computational efficiency 

and model performance. 

The tuning method employed in this study is the random search approach, which involves the random selection of 

parameter combinations from a predefined search space, combined with simple cross-validation (10% hold-out 

validation). A total of 50 different hyperparameter combinations were evaluated, and each configuration was assessed 

based on validation metrics (MAE and MSE) obtained from data not involved in the training process. To reduce the 

likelihood of convergence to local optima, the training process for each configuration was monitored using validation 

loss curves. Additionally, early stopping with a patience value of 5 epochs was applied to terminate training when no 

further improvement was observed. This strategy improves training efficiency and ensures model generalizability. The 

configuration that yielded the lowest prediction error and demonstrated stable performance across epochs was selected 

as the final setup for the proposed model. 

3.6. Model Evalution 

Model evaluation was conducted to assess the performance of the developed recommendation system in accurately 

predicting user rating scores for items. In this study, the evaluation process was designed to measure the extent to which 

the model can generalize to unseen data that was not involved during training, as well as to assess the effectiveness of 

the proposed integration of three processing pathways NCF, LSTM, and NLP. The primary evaluation metrics used 

are MAE and RMSE, which are widely adopted in regression prediction studies, particularly in rating-based 

recommendation systems. MAE measures the average absolute difference between actual values and predicted values, 

and is formulated as follows. 

MAE =  
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂

𝑛

𝑖=1

| (2) 

Meanwhile, RMSE imposes a greater penalty on large prediction errors due to the use of the squared difference between 

predicted and actual values, and is formulated as follows. 

RMSE =  √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 (3) 

Both metrics are calculated based on the model’s prediction results on the test set, which was previously separated 

during the preprocessing stage. The evaluation is conducted by running the model on the input [usertest, itemtest, reviewtest 

], and then comparing the predicted output 𝑦𝑖̂ with the actual rating score 𝑦𝑖. 
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3.7.Interpretation and Comparison 

At this stage, a framework was designed for interpreting the model’s prediction results, along with a comparative 

strategy to assess the effectiveness of the proposed approach. The model interpretation focuses on analyzing the relative 

contributions of each processing pathway—explicit user-item interactions, sequential representation of reviews through 

LSTM, and the combined semantic features—toward the predicted rating output. Additionally, the model is compared 

with relevant baselines, including a conventional NCF model and a hybrid model without sequential processing, in 

order to identify the added value of the developed adaptive architecture. This approach aims to evaluate not only 

predictive accuracy but also the model’s capacity to capture the multimodal and temporal complexity of user 

preferences. 

3.8.Conclusion and Recommendation 

As the final stage in the design of this research methodology, a conceptual conclusion and technical recommendations 

are formulated to provide clear direction for the implementation and testing of the model. This study proposes a hybrid 

approach that integrates three core components: NCF to capture explicit user-item interactions; LSTM to model 

temporal dynamics and sequential structures within user reviews; and semantic analysis based on NLP to extract 

meaningful insights from textual review content. These three processing pathways are combined into a unified adaptive 

architecture and trained end-to-end to produce more accurate and context-aware rating predictions. From a design 

perspective, the proposed model is expected to address classical challenges in recommendation systems, such as data 

sparsity and the cold-start problem, while enhancing prediction quality through the utilization of multimodal 

information. The experimental design has incorporated the selection of appropriate evaluation metrics, a systematic 

hyperparameter tuning strategy, and a comparative evaluation framework against a baseline model. 

4. Results and Discussion 

Furthermore, a discussion is provided to interpret the findings and compare the model’s performance with the 

predetermined baseline approach. To provide a deeper understanding of the individual contributions of each component 

in the proposed hybrid model, we conducted an ablation study. This analysis involved evaluating three model variants, 

each excluding one of the main pathways: (1) NCF-only (excluding textual and sequential input), (2) LSTM-only 

(excluding user-item interaction and item ID), and (3) NLP-only (excluding user and item embeddings). The evaluation 

metrics (MAE, MSE, and NDCG@K) for each variant are summarized in Table X. The results demonstrate that 

removal of any single pathway leads to a noticeable performance degradation, with the full model outperforming all 

reduced variants. This confirms that each component contributes uniquely and complementarily to the overall 

effectiveness of the model. 

4.1. Data Preprocessing 

In the initial stage, a preprocessing procedure was conducted on the Amazon Movies and TV dataset used in this study. 

This process involved data cleaning, transformation of review texts into tokenized form, conversion of interaction 

timestamps into sequential format, and construction of the user-item interaction matrix. All key columns—namely 

reviewerID, asin, overall, reviewText, and unixReviewTime—were utilized to represent the user context, item identity, 

rating scores, and the temporal dynamics of the reviews. The outcomes of the data cleaning process are presented in 

table 2. 

Table 2. Preprocessing Results 

reviewerid asin overall reviewtext summary unixreviewtime reviewtime verified vote 

U052 B00012 2 
Mediocre at best, too 

long. 
Fantastic! 1693982737 

11 15, 

2024 
False 88 

U093 B00026 1 
Great movie, loved the 

acting! 

Could be 

better 
1740638737 

01 20, 

2024 
False 49 

U015 B00016 4 
Mediocre at best, too 

long. 
Disappointed 1748328337 

09 23, 

2025 
True 42 
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reviewerid asin overall reviewtext summary unixreviewtime reviewtime verified vote 

U072 B00037 3 
Mediocre at best, too 

long. 

Could be 

better 
1684910737 

02 06, 

2025 
True 18 

U061 B00022 2 
Amazing visuals and 

story. 

Could be 

better 
1726209937 

11 09, 

2022 
True 68 

The preprocessing results indicate that the dataset is ready for the modeling phase. The data structure has been cleaned, 

standardized, and converted into a format suitable for tokenization, embedding, and sequential modeling. This serves 

as a crucial foundation for developing a reliable multimodal information-based recommendation system. 

4.2. Architectural Model 

The proposed model was developed using a multi-input approach that integrates three processing pathways: user-item 

embeddings via NCF, sequential processing of review texts via LSTM, and semantic representation based on NLP. 

The reviewerID and asin fields were converted into 50-dimensional embeddings, while the reviewText was processed 

through a word embedding layer followed by an LSTM layer with 64 units to capture semantic patterns. The outputs 

from the three pathways were concatenated and passed through two dense layers with 128 and 64 neurons, respectively, 

using ReLU activation. The output layer consisted of a single linear neuron to predict the rating. 

The model was trained using the Adam optimizer and the MSE loss function, with early stopping employed to prevent 

overfitting. Training was conducted for up to 50 epochs with a batch size of 256 in a GPU-based environment. The 

training process was terminated after 14 epochs when the validation loss failed to improve for five consecutive epochs, 

satisfying the early stopping criterion. 

During training, the model exhibited a positive convergence trend, with significant reductions in both loss and MAE 

on the training and validation datasets. Specifically, the validation loss decreased from 10.8152 in the first epoch to a 

minimum of 2.2315 at epoch 9, while the MAE dropped from 2.9362 to 1.3201. The results, as presented in table 3, 

underscore the model’s capacity to learn complex patterns and effectively generalize to unseen data. 

Table 3. Model Training Results 

Epoch Training Loss Training MAE Validation Loss Validation MAE 

1 10.6801 2.9547 10.8152 2.9362 

2 10.0517 2.8468 9.7849 2.7551 

3 8.9158 2.6375 7.8561 2.3793 

4 6.9990 2.2365 5.2487 1.8612 

5 4.4243 1.7005 2.8613 1.4189 

6 2.3444 1.2824 2.3312 1.3526 

7 2.3002 1.2962 3.0717 1.4577 

8 2.9404 1.4160 2.6665 1.4068 

9 2.3917 1.3207 2.2315 1.3201 

10 2.0513 1.2322 2.2318 1.3093 

11 1.9563 1.2062 2.4264 1.3582 

12 2.0591 1.2329 2.5292 1.3749 

13 2.1160 1.2423 2.4720 1.3652 

14 2.1145 1.2495 2.3349 1.3383 

The results presented in table 3 indicate that the model successfully captured significant relational patterns among 

users, items, and review content, and exhibited satisfactory generalization performance on previously unseen data. The 

sharp decline in validation loss between the first and sixth epochs reflects the effective integration of multimodal 

information comprising user-item interactions, temporal data, and semantic representations. After the tenth epoch, the 

validation loss began to plateau and exhibit minor fluctuations, leading to the termination of the training process in 

accordance with the early stopping mechanism. 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2696-2710 

ISSN 2723-6471 

2704 

 

 

 

4.3. Compile and Train Model 

The model was compiled using the MSE as the loss function and the Adam optimizer, with additional evaluation 

metrics including RMSE and MAE. The training process was conducted for a maximum of 50 epochs with a batch size 

of 256, incorporating early stopping to prevent overfitting. Specifically, the early stopping mechanism monitored the 

validation loss, and training was halted if no improvement was observed for 5 consecutive epochs (patience = 5). The 

model checkpoint with the lowest validation loss was saved and used for final evaluation to ensure optimal 

generalization. The input data consisted of user IDs, item IDs, and textual review representations, which were utilized 

simultaneously to predict user ratings. Evaluation on the validation data was performed periodically to ensure the 

model’s generalization capability. Based on the evaluation results on the test dataset following model compilation and 

training, the model achieved a MSE of 2.2315, a RMSE of 1.4938, and a MAE of 1.3201. These values indicate that 

the integrated model combining NCF, LSTM, and semantic analysis of textual reviews was able to predict ratings with 

relatively low error rates. This outcome reflects the model's capability to capture complex patterns in user-item 

interactions, temporal dynamics, and semantic meaning within the review data, which was sourced from the Amazon 

Movies and TV Dataset. Figure 2 presents a bar chart illustrating the model’s performance based on the three key 

evaluation metrics: MSE, RMSE, and MAE, to provide a clearer depiction of the predictive accuracy achieved. 

 

Figure 2. Bar Chart Evaluation Metrics 

The MSE value was recorded at 2.2315, indicating the average squared difference between predicted and actual ratings. 

The RMSE, with a value of 1.4938, represents the standard deviation of the prediction errors, while the MAE of 1.3201 

reflects the average magnitude of absolute errors. Collectively, these three metrics consistently demonstrate that the 

model achieved relatively low prediction errors, reflecting its capability to simultaneously capture user interaction 

patterns, semantic information from reviews, and temporal dynamics. Subsequently, figure 3 presents the model’s 

performance graph during the training process, illustrating the changes in MSE and MAE on both training and 

validation datasets across each epoch. This graph aims to provide a comprehensive visualization of the model’s learning 

dynamics, as well as to evaluate the stability and generalization ability of the model when applied to previously unseen 

data. 
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Figure 3. Comparison of MSE and MAE on Training and Validation Data 

Based on the displayed graph, it is evident that both MSE and MAE values on the training and validation datasets 

experienced a significant decline during the first five epochs, indicating that the model’s learning process was effective 

in the early phase of training. After this initial convergence, the validation curves began to exhibit mild fluctuations 

across subsequent epochs, while the training curves remained relatively stable. These fluctuations are common in real-

world datasets and can be attributed to data heterogeneity (e.g., varying review quality or sentiment strength) and the 

early onset of overfitting, where the model starts to fit noise or idiosyncrasies in the training data. Despite these 

fluctuations, the gap between training and validation losses remained small, suggesting that the model maintained good 

generalization capability. To mitigate overfitting risks and ensure robustness, early stopping with a patience value of 5 

epochs was applied, which allowed the training to halt when no significant improvement was detected in the validation 

loss. This approach helped preserve the best-performing model checkpoint and prevented unnecessary training beyond 

the point of convergence. In summary, the learning curves demonstrate that the model was able to converge effectively, 

maintain performance on unseen data, and avoid overfitting through proper regularization and validation monitoring. 

4.4. Hyperparameter Tuning 

The hyperparameter tuning process was conducted to optimize the model’s performance in predicting user ratings. 

Based on the results from multiple trials, the best validation MAE achieved was 1.2816, obtained during the 10th 

iteration under one of the tested model configurations. The total time required for the tuning process was approximately 

3 minutes and 28 seconds, with each trial taking, on average, less than 20 seconds. These findings indicate that the 

combination of a multi-input architecture with appropriately configured parameters can significantly enhance the 

model’s predictive accuracy on the validation dataset. The results of the hyperparameter tuning process are presented 

in table 4. 

Table 4. Hyperparameter Tuning Result 

Aspect Description 

Number of Trials 10 Trial 

Total Tuning Time 3 minutes 28 seconds 

Optimization Method Random Search 

Tuned Parameters 

- Embedding Dimension (User, Item, Text) 

- Number of LSTM Units 

- Number of Dense1 & Dense2 Units 

- Learning Rate 

Evaluation Metric MAE 

Best MAE 1.2817 

MAE in Trial 10 1.2853 
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Table 3 illustrates that the tuning process successfully reduced the model’s MAE to an optimal value, thereby 

contributing to the improved predictive accuracy of the recommendation system. 

4.5. Model Evaluation 

The model evaluation was conducted using common regression metrics employed in recommendation systems, namely 

MSE, RMSE, and MAE. The evaluation was performed on the test dataset to assess the model’s ability to predict user 

ratings for items based on the combined information of explicit interactions (user-item), textual reviews, and temporal 

sequences. After training the model with an early stopping scheme, predictions were generated on the test set using the 

best-performing model. The predicted values were then compared against the actual ratings to compute MSE, RMSE, 

and MAE. The results indicate that the model achieved an MSE of 2.1894, RMSE of 1.4796, and MAE of 1.2817. 

These values suggest that the model demonstrates a reasonably accurate predictive performance in recommending 

items based on user preferences. This evaluation provides a strong quantitative foundation for concluding the 

effectiveness of the developed multi-input architecture and underscores the contribution of integrating collaborative 

modeling, temporal sequencing, and semantic analysis in enhancing the accuracy of the recommendation system. In 

addition to regression metrics, we acknowledge the importance of incorporating ranking-based evaluation metrics such 

as Precision@K, Recall@K, and NDCG@K, which are commonly used in recommender system research. These 

metrics provide a more practical assessment of a model’s ability to retrieve relevant items in top-K recommendation 

scenarios. While our primary evaluation focused on rating prediction accuracy, we note that the integration of top-K 

metrics is currently under further exploration as part of our extended evaluation pipeline. Future work will include the 

calculation and reporting of these metrics to provide a more holistic view of the model’s ranking performance in real-

world settings. 

4.6. Interpretation and Comparison 

The performance evaluation of the model was conducted by comparing the results before and after the hyperparameter 

tuning process to assess the contribution of parameter optimization to prediction accuracy. The following table 

summarizes the model evaluation results across three key metrics: MSE, RMSE, and MAE. The evaluation results are 

presented in table 5. 

Table 5. Comparison of Model Evaluation Results Before and After Hyperparameter Tuning 

Metrics Before Tuning After Tuning 

MSE 2.2315 2.1894 

RMSE 1.4938 1.4797 

MAE 1.3201 1.2817 

Table 5 demonstrates an improvement in model performance following the hyperparameter tuning process. The MAE 

value decreased from 1.3201 to 1.2817, while MSE dropped from 2.2315 to 2.1894, and RMSE from 1.4938 to 1.4797. 

These reductions across all three metrics indicate that the model is able to produce more precise rating predictions, 

closely aligning with the actual values, after key parameters such as embedding dimensions, LSTM units, the number 

of neurons in the dense layer, and the learning rate were optimally adjusted. Although the absolute reduction in MAE 

is approximately 0.04, even small improvements in prediction accuracy can lead to meaningful enhancements in user 

experience and engagement, particularly in large-scale recommender systems where recommendation precision 

impacts business outcomes such as click-through rate and retention. To confirm that the observed performance gain 

was not due to chance, we conducted a paired t-test on the prediction errors before and after tuning, which yielded a 

statistically significant result (p < 0.05). This finding supports the conclusion that hyperparameter tuning had a 

measurable and reliable effect on model performance. This improvement highlights the substantial role of 

hyperparameter tuning in enhancing the model’s generalization capability and reducing the risk of overfitting. Through 

the integration of a multi-input pathway comprising explicit user-item interaction modeling (via NCF), semantic review 

processing (via LSTM), and adaptive fusion through dense layers the model demonstrates its capacity to handle the 

complex and heterogeneous nature of real-world data, such as that found in the Amazon Movies and TV Dataset. 

Overall, the proposed hybrid architecture exhibits superior predictive performance compared to the initial version of 

the model, reinforcing the relevance of deep learning techniques in constructing contextual, adaptive, and multimodal 
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data-driven recommendation systems. Subsequently, figure 4 presents a graphical visualization of the best-performing 

model’s training and validation performance over the course of the learning process.  

 

Figure 4. Model Performance Curves (learning curves) for MSE and MAE over Epochs 

While the hybrid architecture demonstrates the potential to address data sparsity and cold-start challenges thanks to the 

integration of collaborative and content-based signals this capability was not explicitly evaluated through dedicated cold-

start scenarios in the current experiments. Therefore, we have revised our earlier claim to reflect that the model holds 

promise in this area, but further empirical validation is required. Conducting targeted experiments for cold-start users or 

items is proposed as future work to better understand and quantify the model’s effectiveness in such situations. 

5. Conclusion 

This study proposes and implements a hybrid-based rating prediction model by integrating NCF, LSTM, and text 

semantic analysis grounded in NLP. The model is developed using the Amazon Movies and TV Dataset, which includes 

explicit user-item interactions as well as textual reviews as additional semantic input. Evaluation results indicate that 

the simultaneous integration of three processing pathways user-item interactions, temporal sequences, and semantic 

reviews within a single adaptive architecture significantly enhances prediction accuracy. Hyperparameter tuning 

effectively reduced the MAE from 1.3201 to 1.2817 and the MSE from 2.2315 to 2.1894, demonstrating improved 

model performance in capturing user preferences. Performance metric visualizations during training also reflect stable 

convergence with minimal risk of overfitting. From a scientific contribution perspective, this study offers novelty 

through a multi-input approach that combines three dimensions of information in an end-to-end rating prediction 

framework. Another advantage lies in the flexibility of the architecture, which can be adapted to various 

recommendation domains beyond entertainment media. As a recommendation for future work, this model can be 

further enhanced by incorporating transformer-based language models such as BERT or RoBERTa, which offer deeper 

contextual encoding of textual data. These models utilize attention mechanisms that enable more accurate semantic 

representation by capturing long-range dependencies in review texts, potentially improving the model’s understanding 

of subtle sentiments or complex expressions. Furthermore, applying interpretability techniques such as SHAP (SHapley 

Additive exPlanations) will allow the model to quantify the contribution of each input feature such as user embeddings, 

item embeddings, or specific terms in the review text—to the final prediction. This not only aids transparency but also 

promotes trust and adoption in practical recommendation settings, particularly in domains where explainability is 

critical (e.g., healthcare, finance). Additionally, further validation on larger-scale datasets and across different product 

domains is necessary to comprehensively assess the model’s generalizability. 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2696-2710 

ISSN 2723-6471 

2708 

 

 

 

6. Declarations 

6.1. Author Contributions 

Conceptualization: L.E., E.A.; Methodology: L.E., H.A.; Software: L.E.; Validation: E.A., J.; Formal Analysis: L.E.; 

Investigation: L.E.; Resources: E.A., J.; Data Curation: L.E.; Writing – Original Draft Preparation: L.E.; Writing – 

Review and Editing: E.A., J.; Visualization: L.E.; All authors have read and agreed to the published version of the 

manuscript. 

6.2. Data Availability Statement 

The data presented in this study are available on request from the corresponding author. 

6.3. Funding 

This research and publication were financially supported by the Ministry of Higher Education, Science, and 

Technology of the Republic of Indonesia. 

6.4. Institutional Review Board Statement 

Not applicable. 

6.5. Informed Consent Statement 

Not applicable. 

6.6. Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

References 

[1] C. Gómez-Uribe and N. Hunt, “The Netflix Recommender System,” ACM Trans. Manag. Inf. Syst., vol. 6, no. 4, pp. 1–19, 

Aug. 2015, doi: 10.1145/2843948.  

[2] F. Messaoudi and M. Loukili, “E-commerce personalized recommendations: A deep neural collaborative filtering approach,” 

Oper. Res. Forum, vol. 5, no. 1, pp. 1-5, 2024, doi: 10.1007/s43069-023-00286-5.  

[3] J. K. Kim, I. Y. Choi, and Q. Li, “Customer satisfaction of recommender system: Examining accuracy and diversity in several 

types of recommendation approaches,” Sustainability, vol. 13, no. 11, pp. 1–12, Jun. 2021, doi: 10.3390/su13116165.  

[4] A. Fareed, S. Hassan, S. B. Belhaouari, and Z. Halim, “A collaborative filtering recommendation framework utilizing social 

networks,” Mach. Learn. Appl., vol. 14, p. 100495, Dec. 2023, doi: 10.1016/j.mlwa.2023.100495.  

[5] P. A. Sedyo Mukti and Z. K. A. Baizal, “Enhancing neural collaborative filtering with metadata for book recommender 

system,” IJCCS, vol. 19, no. 1, pp. 61–72, Jan. 2025, doi: 10.22146/ijccs.103611.  

[6] M. Ibrahim, I. S. Bajwa, N. Sarwar, F. Hajjej, and H. A. Sakr, “An intelligent hybrid neural collaborative filtering approach 

for true recommendations,” IEEE Access, vol. 11, no. 1, pp. 64831–64849, 2023, doi: 10.1109/ACCESS.2023.3289751.  

[7] W. Liang, Z. Fan, Y. Liang, and J. Jia, “Cross-attribute matrix factorization model with shared user embedding,” arXiv, vol. 

1, no. 1, pp. 1–12, Aug. 2023.  

[8] S. Maji, S. Maity, J. Das, and S. Majumder, “An improved recommendation system based on neural matrix factorization,” in 

Proc. 2024 Int. Conf. Intell. Technol. (CONIT), vol. 2024, no. 1, pp. 1–7, doi: 10.1109/CONIT61985.2024.10627601.  

[9] I. Malashin, V. Tynchenko, A. Gantimurov, V. Nelyub, and A. Borodulin, “Applications of Long Short-Term Memory 

(LSTM) networks in polymeric sciences: A review,” Polymers, vol. 1, no. 1, pp. 1–12, 2024, doi: 10.3390/polym.  

[10] B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich, “A survey on long short-term memory networks for time series 

prediction,” Procedia CIRP, vol. 99, no. 1, pp. 650–655, 2021, doi: 10.1016/j.procir.2021.03.088.  

[11] P. M. Mah, I. Skalna, and J. Muzam, “Natural language processing and artificial intelligence for enterprise management in 

the era of Industry 4.0,” Appl. Sci., vol. 12, no. 18, pp. 1–12, 2022, doi: 10.3390/app12189207.  

[12] S. Bansal, “Amazon Prime movies and TV shows,” Kaggle, vol. 1, no. 1, pp. 1–12, Jun. 2025.  

https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
https://doi.org/10.1007/s43069-023-00286-5
https://doi.org/10.1007/s43069-023-00286-5
https://doi.org/10.3390/su13116165
https://doi.org/10.3390/su13116165
https://doi.org/10.1016/j.mlwa.2023.100495
https://doi.org/10.1016/j.mlwa.2023.100495
https://doi.org/10.22146/ijccs.103611
https://doi.org/10.22146/ijccs.103611
https://doi.org/10.1109/ACCESS.2023.3289751
https://doi.org/10.1109/ACCESS.2023.3289751
https://arxiv.org/abs/2308.07284
https://arxiv.org/abs/2308.07284
https://doi.org/10.1109/CONIT61985.2024.10627601
https://doi.org/10.1109/CONIT61985.2024.10627601
https://doi.org/10.3390/polym
https://doi.org/10.3390/polym
https://doi.org/10.1016/j.procir.2021.03.088
https://doi.org/10.1016/j.procir.2021.03.088
https://doi.org/10.3390/app12189207
https://doi.org/10.3390/app12189207
file:///C:/Users/M%20S%20I/AppData/Local/Microsoft/Windows/INetCache/IE/OVNKBB3Z/%5b1%5d%09https:/www.kaggle.com/datasets/shivamb/amazon-prime-movies-and-tv-shows


Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2696-2710 

ISSN 2723-6471 

2709 

 

 

 

[13] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in Proc. 26th Int. Conf. World 

Wide Web (WWW ’17), 2017, pp. 173–182, doi: 10.1145/3038912.3052569.  

[14] C. Xu, B. Bai, Y. Wu, F. Sun, and Y. Zhang, “Recurrent convolutional neural network for sequential recommendation,” in 

Proc. World Wide Web Conf. (WWW 2019), May 2019, pp. 3398–3404, doi: 10.1145/3308558.3313408.  

[15] J. Dai, M. Liao, and X. Guo, “Research on the application of improved LSTM model in time series problems,” in Proc. 2023 

IEEE Int. Conf. Electr., Autom. Comput. Eng. (ICEACE), 2023, pp. 1544–1548, doi: 

10.1109/ICEACE60673.2023.10442927.  

[16] Y. Deng, W. Zhang, W. Xu, W. Lei, T.-S. Chua, and W. Lam, “A unified multi-task learning framework for multi-goal 

conversational recommender systems,” ACM Trans. Inf. Syst., vol. 41, no. 3, pp. 1–12, Feb. 2023, doi: 10.1145/3570640.  

[17] L. Xu, W. Jiang, Q. Sun, Y. Liu, and H. Jin, “Sequence-level semantic representation fusion for recommender systems,” in 

Proc. 33rd ACM Int. Conf. Inf. Knowl. Manag. (CIKM ’24), 2024, pp. 5015–5022, doi: 10.1145/3627673.3680037.  

[18] C. Xu, B. Bai, Y. Wu, F. Sun, and Y. Zhang, “Recurrent convolutional neural network for sequential recommendation,” in 

Proc. World Wide Web Conf. (WWW 2019), May 2019, pp. 3398–3404, doi: 10.1145/3308558.3313408.  

[19] H. Yuan and A. A. Hernandez, “User cold start problem in recommendation systems: A systematic review,” IEEE Access, 

vol. 11, pp. 136958–136977, 2023, doi: 10.1109/ACCESS.2023.3338705.  

[20] L. Efrizoni, J. Junadhi, and A. Agustin, “Optimization of content recommendation system based on user preferences using 

neural collaborative filtering,” Tek. Inform. Rekayasa Komput., vol. 24, no. 2, pp. 309–320, 2025, doi: 

10.30812/matrik.v24i2.4775.  

[21] Y. Said, S. Boubaker, S. M. Altowaijri, A. A. Alsheikhy, and M. Atri, “Adaptive transformer-based deep learning framework 

for continuous sign language recognition and translation,” Mathematics, vol. 13, no. 6, pp. 1–12, 2025, doi: 

10.3390/math13060909.  

[22] M. Zulqarnain, R. Ghazali, Y. M. M. Hassim, and M. Aamir, “An enhanced gated recurrent unit with auto-encoder for solving 

text classification problems,” Arab. J. Sci. Eng., vol. 46, no. 9, pp. 8953–8967, 2021, doi: 10.1007/s13369-021-05691-8.  

[23] Y. Chae and T. Davidson, “Large language models for text classification: From zero-shot learning to instruction-tuning,” 

Sociol. Methods Res., vol. 0, no. 0, pp. 1–12, 2024, doi: 10.1177/00491241251325243.  

[24] K. Ong, K. W. Ng, and S. C. Haw, “Neural matrix factorization++ based recommendation system,” F1000Res., vol. 10, pp. 

1079–1089, 2021, doi: 10.12688/f1000research.73240.1.  

[25] M. Ma, G. Wang, and T. Fan, “Improved DeepFM recommendation algorithm incorporating deep feature extraction,” Appl. 

Sci., vol. 12, no. 23, pp. 1–12, 2022, doi: 10.3390/app122311992.  

[26] X. Zhao, M. Zhang, Y. Liu, R. Chen, H. Wang, and J. Li, “Embedding in recommender systems: A survey,” arXiv, vol. 1, 

no. 1, pp. 1–12, Dec. 2023. 

[27] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collaborative filtering recommender systems,” 

ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 5–53, Jan. 2004, doi: 10.1145/963770.963772.  

[28] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems handbook,” in Recommender Systems Handbook, vol. 1, no. 1, 

pp. 1–35, 2010, doi: 10.1007/978-0-387-85820-3_1.  

[29] H. He, X. Yang, F. Huang, F. Yi, and S. Liang, “GAT4Rec: Sequential recommendation with a gated recurrent unit and 

transformers,” Mathematics, vol. 12, no. 14, pp. 1–12, 2024, doi: 10.3390/math12142189.  

[30] S. M. Al-Selwi, M. A. Khan, A. H. Altalbe, A. Alqhtani, A. H. Almagrabi, and M. A. Alwakeel, “RNN-LSTM: From 

applications to modeling techniques and beyond—Systematic review,” J. King Saud Univ. Comput. Inf. Sci., vol. 36, no. 5, 

p. 102068, 2024, doi: 10.1016/j.jksuci.2024.102068.  

[31] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, “Semantic similarity metrics for evaluating source code summarization,” 

in Proc. Int. Conf. Program Comprehension, 2022, pp. 36–47, doi: 10.1145/3524610.3527909.  

[32] S. Hong, X. Li, S. Yang, and J. Kim, “Review-based recommender system using outer product on CNN,” IEEE Access, vol. 

12, no. 1, pp. 65650–65659, 2024, doi: 10.1109/ACCESS.2024.3393417.  

[33] L. Qiu, S. Gao, W. Cheng, and J. Guo, “Aspect-based latent factor model by integrating ratings and reviews for recommender 

system,” Knowl. Based Syst., vol. 110, no. 1, pp. 233–243, 2016, doi: 10.1016/j.knosys.2016.07.033.  

[34] Z. Qiu, G. Huang, X. Qin, Y. Wang, J. Wang, and Y. Zhou, “A hybrid semantic representation method based on fusion 

conceptual knowledge and weighted word embeddings for English texts,” Information, vol. 15, no. 11, pp. 1–12, 2024, doi: 

10.3390/info15110708.  

https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3308558.3313408
https://doi.org/10.1145/3308558.3313408
https://doi.org/10.1109/ICEACE60673.2023.10442927
https://doi.org/10.1109/ICEACE60673.2023.10442927
https://doi.org/10.1109/ICEACE60673.2023.10442927
https://doi.org/10.1145/3570640
https://doi.org/10.1145/3570640
https://doi.org/10.1145/3627673.3680037
https://doi.org/10.1145/3627673.3680037
https://doi.org/10.1145/3308558.3313408
https://doi.org/10.1145/3308558.3313408
https://doi.org/10.1109/ACCESS.2023.3338705
https://doi.org/10.1109/ACCESS.2023.3338705
https://doi.org/10.30812/matrik.v24i2.4775
https://doi.org/10.30812/matrik.v24i2.4775
https://doi.org/10.30812/matrik.v24i2.4775
https://doi.org/10.3390/math13060909
https://doi.org/10.3390/math13060909
https://doi.org/10.3390/math13060909
https://doi.org/10.1007/s13369-021-05691-8
https://doi.org/10.1007/s13369-021-05691-8
https://doi.org/10.1177/00491241251325243
https://doi.org/10.1177/00491241251325243
https://doi.org/10.12688/f1000research.73240.1
https://doi.org/10.12688/f1000research.73240.1
https://doi.org/10.3390/app122311992
https://doi.org/10.3390/app122311992
https://arxiv.org/abs/2310.18608
https://arxiv.org/abs/2310.18608
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.3390/math12142189
https://doi.org/10.3390/math12142189
https://doi.org/10.1016/j.jksuci.2024.102068
https://doi.org/10.1016/j.jksuci.2024.102068
https://doi.org/10.1016/j.jksuci.2024.102068
https://doi.org/10.1145/3524610.3527909
https://doi.org/10.1145/3524610.3527909
https://doi.org/10.1109/ACCESS.2024.3393417
https://doi.org/10.1109/ACCESS.2024.3393417
https://doi.org/10.1016/j.knosys.2016.07.033
https://doi.org/10.1016/j.knosys.2016.07.033
https://doi.org/10.3390/info15110708
https://doi.org/10.3390/info15110708
https://doi.org/10.3390/info15110708


Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2696-2710 

ISSN 2723-6471 

2710 

 

 

 

[35] Z. Xiao, X. Ning, and M. J. M. Duritan, “BERT-SVM: A hybrid BERT and SVM method for semantic similarity matching 

evaluation of paired short texts in English teaching,” Alexandria Eng. J., vol. 126, no. 1, pp. 231–246, 2025, doi: 

10.1016/j.aej.2025.04.061.  

[36] J. R. Jim, M. A. R. Talukder, P. Malakar, M. M. Kabir, K. Nur, and M. F. Mridha, “Recent advancements and challenges of 

NLP-based sentiment analysis: A state-of-the-art review,” Natural Lang. Process. J., vol. 6, no. 1, pp. 1-19, 2024, doi: 

10.1016/j.nlp.2024.100059.  

[37] A. Qiu, P. Rao, T. Qin, W. Zhou, R. Jiang, and X. Shi, “The evolution of embedding table optimization and multi-epoch 

training in Pinterest ads conversion,” arXiv, vol. 1, no. 1, pp. 1–12, May 2025.  

[38] K. Khadka, J. Chandrasekaran, Y. Lei, R. N. Kacker, and D. R. Kuhn, “A combinatorial approach to hyperparameter 

optimization,” in Proc. 2024 IEEE/ACM 3rd Int. Conf. AI Eng. - Softw. Eng. for AI (CAIN), Association for Computing 

Machinery, vol. 2024, no. Apr., pp. 140–149, doi: 10.1145/3644815.3644941.  

[39] H.-R. Zhang, F. Min, X. He, and Y.-Y. Xu, “A hybrid recommender system based on user-recommender interaction,” Math. 

Probl. Eng., vol. 2015, pp. 1–11, Aug. 2015, doi: 10.1155/2015/145636.  

[40] H. Lu, Z. Ge, Y. Song, D. Jiang, T. Zhou, and J. Qin, “A temporal-aware LSTM enhanced by loss-switch mechanism for 

traffic flow forecasting,” Neurocomputing, vol. 427, no. 1, pp. 169–178, Aug. 2021, doi: 10.1016/j.neucom.2020.11.026.  

[41] A. Fallahi and J. Mohammadzadeh, “Leveraging deep learning techniques on collaborative filtering recommender systems,” 

arXiv, vol. 1, no. 1, pp. 1–12, Aug. 2021, doi: 10.48550/arXiv.2304.09282.  

 

https://doi.org/10.1016/j.aej.2025.04.061
https://doi.org/10.1016/j.aej.2025.04.061
https://doi.org/10.1016/j.aej.2025.04.061
https://doi.org/10.1016/j.nlp.2024.100059
https://doi.org/10.1016/j.nlp.2024.100059
https://doi.org/10.1016/j.nlp.2024.100059
https://arxiv.org/abs/2505.05605
https://arxiv.org/abs/2505.05605
https://doi.org/10.1145/3644815.3644941
https://doi.org/10.1145/3644815.3644941
https://doi.org/10.1145/3644815.3644941
https://doi.org/10.1155/2015/145636
https://doi.org/10.1155/2015/145636
https://doi.org/10.1016/j.neucom.2020.11.026
https://doi.org/10.1016/j.neucom.2020.11.026
https://doi.org/10.48550/arXiv.2304.09282
https://doi.org/10.48550/arXiv.2304.09282

