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Abstract 

This study introduces Simplified Adaptive Optimization with Modified ε-Constraint (SAGOMECON), a novel optimization method designed 

to enhance multi-objective decision-making in dynamic collaborative industrial networks. The primary objective is to overcome limitations of 

existing approaches such as the ε-Constraint and SAUGMECON methods, which lack adaptability and computational efficiency under shifting 

constraints. SAGOMECON incorporates real-time constraint updates, adaptive slack variable handling, and a penalty-integrated objective 

function to maintain feasibility and optimize trade-offs. The method was tested on a simulated partner selection problem using normalized data 

with four criteria cost, time, collaboration, and risk—across five decision alternatives. Experimental results show that SAGOMECON achieved 

100% feasibility, compared to 80% for SAUGMECON and 60% for ε-Constraint. It also reduced average computation time per iteration from 

300 ms (ε-Constraint) and 250 ms (SAUGMECON) to 110 ms. Moreover, SAGOMECON consistently produced the most stable and optimal 

Z-values, with a minimum Z-score of 0.158, compared to 0.209 (SAUGMECON) and 0.000 (ε-Constraint), the latter being infeasible. These 

findings demonstrate that SAGOMECON is not only more efficient but also more reliable in generating feasible and high-quality solutions in 

real-time, dynamic environments. The novelty of this research lies in its soft constraint modeling through adaptive slack and penalty 

mechanisms, offering a more realistic and scalable solution for decision-making in complex, multi-criteria industrial settings. 

Keywords: Multi-Objective Optimization, Dynamic Decision-Making, Ε-Constraint Method, Collaborative Industrial Networks, Adaptive Optimization, 

SAGOMECON Algorithm, Pareto-Optimal Solutions 

1. Introduction 

In recent years, the increasing complexity of global business environments has driven organizations to collaborate 

through dynamic and distributed structures. One such structure is the Collaborative Network Organization (CNO), 

which integrates autonomous entities to achieve common goals by sharing resources, knowledge, and expertise [1], 

[2]. These networks are designed to improve competitive advantage, enhance operational efficiency, and mitigate 

systemic risks [3], [4], [5]. However, decision-making typically involves optimizing multiple objectives such as 

minimizing operational costs and risks, while maximizing collaboration and efficiency. These objectives must be 

balanced against constraints such as maximum allowable costs, time limitations, and acceptable levels of risk. The 

trade-offs between these objectives and constraints are central to the multi-criteria decision-making model proposed 

in this study [6], [7], [8], [9]. 

To address such trade-offs, multi-objective optimization techniques have been widely explored. Among them, 

methods such as the ε-Constraint and its variant, Augmented ε-Constraint (AUGMECON), have shown promise in 

generating Pareto-optimal solutions by transforming secondary objectives into constraints with bounded tolerance 

levels [10], [11], [12]. Nevertheless, despite their mathematical rigor, these methods often face computational 
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inefficiencies and exhibit limited responsiveness in dynamic settings where criteria or constraints may shift rapidly 

due to changing stakeholder preferences or environmental factors [6], [9], [13]. 

Recent studies have highlighted the need for optimization methods that are not only robust but also adaptive to 

change, especially in real-time industrial applications [14]. Static decision-making models like Analytic Hierarchy 

Process (AHP) and Fuzzy AHP lack the flexibility to respond to evolving priorities, while metaheuristics such as 

Genetic Algorithms require extensive parameter tuning and may not guarantee optimality [15], [16], [17]. Moreover, 

classical AUGMECON still demands the resolution of numerous subproblems, significantly increasing the 

computational burden in high-dimensional scenarios. 

In response to these limitations, this study introduces SAGOMECON, a novel method that extends the capabilities of 

SAUGMECON by incorporating dynamic constraint adjustments, adaptive slack variables, and computational 

acceleration mechanisms such as bouncing steps. Unlike its predecessors, SAGOMECON is specifically designed to 

maintain feasibility and optimality in real-time decision-making environments by updating satisfaction thresholds and 

rebalancing conflicting objectives as system requirements evolve. 

To evaluate its effectiveness, the proposed approach is applied to a partner selection problem in collaborative 

industrial networks, simulating scenarios with varying cost, time, collaboration scores, and risk levels. The 

performance of SAGOMECON is benchmarked against both the traditional ε-Constraint and SAUGMECON 

methods using key metrics such as computation time, feasibility rate, and quality of Pareto-optimal solutions. The 

results demonstrate SAGOMECON’s superiority in delivering efficient and adaptable solutions under dynamic, 

multi-criteria conditions. In essence, this research contributes to the advancement of intelligent decision support 

systems for industrial collaboration, offering a scalable and responsive optimization framework that is well-aligned 

with the principles of agile manufacturing, smart logistics, and networked enterprise systems. 

2. Literature Review 

Multi-Objective Optimization (MOO) has been widely adopted to support decision-making in complex environments 

where multiple conflicting objectives must be addressed simultaneously. In the context of CNOs, these objectives 

often include minimizing cost and risk, while maximizing time efficiency and collaboration quality [1], [8], [9]. Over 

the years, various optimization techniques have been proposed, yet many exhibit limitations in scalability, 

adaptability, or computational efficiency under dynamic conditions.  

Traditional methods such as the AHP and Fuzzy AHP are widely used for Multi-Criteria Decision-Making (MCDM) 

[18], [19]. These methods decompose complex decisions into hierarchical structures, allowing decision-makers to 

assign relative weights to criteria and alternatives [20], [21]. However, both AHP and its fuzzy variant are criticized 

for their static nature and reliance on subjective human judgment, making them less suitable for dynamic or real-time 

environments such as CNOs [22]. That said, AHP and Fuzzy AHP can still be valuable in decision-making contexts 

where the criteria and stakeholder preferences remain relatively stable over time, and computational efficiency is a 

priority [23]. 

Metaheuristic approaches like Genetic Algorithms (GA) and NSGA-II have also been explored to handle MOO 

problems. These algorithms generate non-dominated solutions by simulating evolutionary processes such as 

selection, crossover, and mutation [16], [17]. While effective in exploring large solution spaces, they often require 

extensive parameter tuning and lack formal guarantees of optimality. Furthermore, their computational overhead may 

hinder real-time decision-making, especially when the decision environment changes rapidly [15], [24], [25]. 

The ε-Constraint method has gained prominence for producing Pareto-optimal solutions by treating one objective as 

the primary optimization target and transforming the remaining objectives into constraints with adjustable bounds 

[11], [12]. An enhancement to this method, AUGMECON, integrates slack variables and penalty functions to 

improve solution diversity and eliminate weak Pareto points [10]. However, AUGMECON’s iterative approach 

requires solving multiple sub-problems, leading to significant computational costs and rendering it less practical in 

high-dimensional, real-time environments. 
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Recent advancements focus on DMCDM approaches that aim to handle shifting constraints, evolving stakeholder 

preferences, and operational volatility [2], [14]. These approaches often incorporate real-time feedback, adaptive 

parameter tuning, and constraint update mechanisms. However, many such methods remain heuristic or semi-formal, 

limiting their generalizability and robustness in structured industrial optimization contexts [6], [7], [9]. 

The SAUGMECON method represents a simplified version of AUGMECON [26], designed to reduce computational 

burden through streamlined ε-bound configurations. While it introduces improvements over its predecessor, 

SAUGMECON still faces significant limitations. Notably, it lacks full adaptability to real-time changes, particularly 

in adjusting constraint satisfaction levels dynamically as system conditions evolve. Furthermore, SAUGMECON 

assumes static constraint thresholds and does not offer mechanisms for partial constraint relaxation, which can hinder 

its effectiveness in dynamic, multi-objective decision-making environments where criteria or priorities change over 

time [17]. These limitations make SAUGMECON less suited for real-time applications, motivating the development 

of SAGOMECON. 

This limitation motivates the development of SAGOMECON, which integrates adaptive ε-adjustment, real-time slack 

variable control, and acceleration algorithms (e.g., bouncing steps) to address both efficiency and adaptability in 

dynamic multi-objective decision-making. By bridging the gap between classical ε-constraint optimization and 

modern adaptive frameworks, SAGOMECON aims to offer a robust and scalable solution tailored for dynamic 

collaborative network contexts. 

3. Methodology  

This section outlines the research methodology adopted to develop and evaluate the proposed SAGOMECON 

approach. It includes the description of the dataset, the conceptual research framework, and the mathematical 

formulation of the proposed adaptive optimization method. 

3.1. Dataset Description 

The dataset used in this study is based on a public dataset of Amazon product reviews, obtained from Kaggle’s 

“Amazon Sales Dataset”, and adapted to simulate a partner selection scenario in a collaborative networked 

environment. The dataset includes product-level information such as discounted price, original price, rating, number 

of reviews, and review sentiment. These features were mapped to decision-making criteria relevant to the evaluation 

of partners within a CNO context. The cost (C) criterion was derived from the discounted product price, which was 

converted from Indian Rupees (INR) to Indonesian Rupiah (IDR) using a fixed exchange rate of approximately 1 

INR = 190 IDR. To approximate the time (T) dimension, the number of product ratings was used as a proxy, under 

the assumption that a higher rating count indicates greater popularity and, by extension, more frequent or responsive 

delivery capabilities. The collaboration score (K) was constructed based on the volume and sentiment of user 

reviews, serving as an indicator of engagement quality and partner responsiveness within the network. Finally, the 

risk (R) criterion was formulated as being inversely proportional to the average star rating of the product, whereby 

lower ratings were interpreted as a signal of higher operational or reputational risk if that partner were to be selected.   

To illustrate the decision-making process, table 1 presents the initial evaluation dataset, which includes five 

hypothetical decision alternatives (denoted as P1 to P5) representing potential partners in a collaborative network. 

Each alternative is assessed based on four criteria: cost (C), time (T), collaboration (K), and risk (R). While the 

sample size is limited to five alternatives, it is intentionally used for illustrative purposes to demonstrate the 

functionality and effectiveness of the proposed SAGOMECON method in addressing multi-criteria decision-making 

problems. We acknowledge that the limited number of alternatives may constrain the generalizability of the findings. 

Therefore, future studies will aim to apply the SAGOMECON method to larger and more diverse datasets to evaluate 

its scalability and robustness. 
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Table 1. Initial Evaluation Dataset (adapted from amazon reviews dataset) 

Alternative Cost (C) Time (T) Collaboration (K) Risk (R) 

P1 520 10 60 40 

P2 490 9 70 35 

P3 550 12 55 45 

P4 510 8 65 38 

P5 470 7 75 30 

Each criterion was standardized using Min-Max normalization. The formula for Min-Max normalization is as 

follows: 

Xnorm =  
X − Xmin

Xmax − Xmin
 (1) 

X represents the value of the criterion, Xmin is the minimum value of the criterion in the dataset, and Xmax is the 

maximum value. This normalization process ensures that all criteria are scaled to a [0, 1] range, making them 

comparable despite differing units and ranges [27]. To ensure that each decision criterion contributes fairly to the 

optimization process, all values were normalized using the Min-Max method. Table 2 presents the resulting 

normalized dataset, where cost, time, and risk are treated as minimization objectives, while collaboration is 

considered a maximization objective. This normalization approach ensures that no single criterion disproportionately 

influences the decision-making outcome, thereby preserving balance and comparability among alternatives. 

Table 2. Normalized Dataset 

Alternative C (↓) T (↓) K (↑) R (↓) 

P1 0.625 0.60 0.50 0.67 

P2 0.42 0.40 0.75 0.83 

P3 1.00 1.00 0.25 0.50 

P4 0.55 0.20 0.625 0.73 

P5 0.00 0.00 1.00 1.00 

The normalized decision matrix served as the primary input for evaluating the performance of the proposed 

SAGOMECON method, as well as its baseline comparisons SAUGMECON and ε-Constraint. Although adapted 

from an e-commerce dataset, the values have been selected and mapped to simulate a relevant collaborative decision 

context, ensuring both methodological control and realistic approximation. 

3.2. Research Framework 

The research adopts a simulation-based experimental design to evaluate the performance of SAGOMECON in multi-

objective decision-making under dynamic constraints. The structured flow of the study, as depicted in figure 1, 

highlights the key stages of the research, from literature review and problem identification to dataset preprocessing, 

method application, and final evaluation. This framework illustrates how each phase of the study builds on the 

previous one to ensure the robustness and relevance of the proposed method. 

The research methodology adopted in this study follows a structured and systematic progression, as depicted in the 

accompanying flowchart as in figure 1. The process begins with an extensive literature review, where various 

methods of multi-objective optimization in collaborative environments—such as ε-Constraint, AUGMECON, and 

SAUGMECON are critically examined. This review highlights a significant limitation in existing approaches: their 

inability to efficiently adapt to dynamic changes in stakeholder preferences and environmental constraints, 

particularly within CNO. In response to this gap, the study moves into the problem identification stage, emphasizing 

the complex nature of decision-making in CNOs, which often involves conflicting objectives such as minimizing cost 

and time while maximizing collaboration and minimizing risk. 
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Figure 1. Research Framework 

To address these challenges, the research introduces SAGOMECON as the core novel contribution, clearly marked in 

the flowchart. SAGOMECON innovatively incorporates slack variable integration and an adaptive ε-constraint 

mechanism, enabling the model to dynamically adjust constraints in real time and maintain feasible, efficient 

solutions. This development represents a methodological advancement over earlier models like SAUGMECON. 

The subsequent stage involves dataset preprocessing, where raw data sourced from Amazon product listings is 

transformed into structured criteria (cost, time, risk, and collaboration) and normalized using min-max scaling to 

ensure comparability. This data serves as input for the simulation and optimization phase, where three methods 

SAGOMECON, SAUGMECON, and traditional ε-Constraint are applied in parallel. While the comparison methods 

follow more static constraint strategies, SAGOMECON employs dynamic updates, augmented objective functions, 

and a bouncing step mechanism to accelerate convergence to Pareto-optimal solutions. 

Finally, the study conducts a comprehensive evaluation and comparison, examining each model’s performance in 

terms of solution feasibility, computational efficiency, and Pareto frontier quality. The findings consistently 

demonstrate SAGOMECON’s superiority in producing adaptive and computationally efficient solutions under 

dynamic conditions. The methodology concludes with insights and future recommendations, reinforcing the value of 

SAGOMECON as a novel and practical tool for multi-objective decision-making in real-world collaborative network 

settings. 

3.3. Proposed Method: SAGOMECON 

3.3.1. SAGOMECON as an Extension of SAUGMECON 

The SAGOMECON algorithm is developed as an evolutionary extension of the SAUGMECON framework. While 

SAUGMECON improved the computational efficiency of the traditional AUGMECON method by simplifying ε-

bound handling and reducing dominance checks, it remained limited in adaptability. Specifically, SAUGMECON 

assumes static constraint thresholds and lacks mechanisms for partial constraint relaxation, rendering it less effective 

in dynamic, multi-criteria environments. To enhance adaptability in dynamic multi-objective optimization, 

SAGOMECON introduces two key mechanisms. The first is adaptive slack variable modeling, which enables partial 

relaxation of constraint boundaries to better accommodate shifting priorities. This mechanism operates by iteratively 

adjusting the slack variable based on the current level of constraint satisfaction, allowing the model to preserve 

feasibility even when strict adherence to constraints is not possible. The second mechanism is penalty-integrated 

objective augmentation, which incorporates dynamically adjusted penalties into the objective function to manage 

deviations from constraint satisfaction. Rather than invalidating solutions that slightly violate constraints, this 
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mechanism guides the optimization process toward feasible and optimal outcomes by proportionally penalizing 

violations, thereby maintaining a balance between solution quality and constraint compliance. 

To assess the impact of the penalty parameters on the results, we performed a sensitivity analysis where the penalty 

coefficient (λ) was varied across several values. The analysis showed that increasing the penalty coefficient led to 

stricter enforcement of constraints, resulting in fewer solutions violating the constraints but potentially increasing the 

computational time due to more rigid constraint handling. Conversely, lowering the penalty coefficient allowed for 

more flexibility, which led to faster convergence but occasionally resulted in solutions that violated the constraints. 

These findings indicate that the penalty parameter plays a critical role in balancing the trade-off between feasibility 

and computational efficiency. Figure 5 presents the results of the sensitivity analysis, showing the relationship 

between the penalty coefficient and the feasibility rate, as well as the computational time and solution quality. These 

mechanisms work together to ensure that SAGOMECON can adaptively adjust constraints and maintain solution 

feasibility in real-time, addressing both the dynamic nature of decision-making and the need for computational 

efficiency. 

3.3.2. Augmented Objective Function of SAGOMECON 

The core of SAGOMECON lies in its reformulated objective function, designed not only to minimize cost but also to 

manage trade-offs across time, collaboration, and risk constraints. The mathematical model introduces a penalty-

based adjustment that reflects deviations from soft constraint boundaries using slack variables. The Augmented 

Objective Function is represented by the following equation: 

f(x) = w1 ⋅ C(x) + w2 ⋅ T(x) + w3 ⋅ R(x) − w4 ⋅ K(x) + λ ⋅ ∑ s𝑖

n

𝑖=1

 (2) 

C(x), T(x), and R(x)represent the cost, time, and risk objectives, respectively, while K(x) is the collaboration 

objective. w1, w2, w3, and w4 are the weights assigned to each objective, and s𝑖 are the slack variables associated 

with the constraints. The term λ is the penalty coefficient that adjusts the impact of the slack variables on the 

objective function, ensuring that constraint violations are penalized appropriately. 

𝑚𝑖𝑛 𝑍′ = ∑ 𝐶𝑖

𝑛

{𝑖=1}

. 𝑥𝑖 +  λ𝑇 . s𝑇 +  λ𝑅 . s𝑅 −  λ𝐾 . s𝐾 (3) 

This formulation maintains the original cost minimization term, ∑ 𝐶𝑖
𝑛
{𝑖=1} . 𝑥𝑖, as the primary goal, consistent with 

SAUGMECON. However, the novelty of SAGOMECON lies in the introduction of normalized penalty terms that 

incorporate slack variables s𝑇, s𝑅, s𝐾 each representing the deviation from ideal constraint thresholds for time, risk, 

and collaboration, respectively. 

Each slack variable is multiplied by a corresponding penalty coefficient (e.g., λ𝑇 for time), allowing the model to 

balance the severity of constraint violations with the overall objective value. Notably, the collaboration term carries a 

negative penalty, as higher collaboration scores are desirable, making − λ𝐾 . s𝐾 an incentive rather than a deterrent. 

The incorporation of these slack variables constitutes the main innovation of SAGOMECON over SAUGMECON. 

Unlike the latter, which treats constraints as rigid bounds, SAGOMECON models them as soft constraints—allowing 

slight violations under controlled penalties. This penalty-integrated formulation enhances flexibility and ensures the 

feasibility of solutions even under conflicting objective scenarios, thereby enabling real-time applicability in dynamic 

environments such as CNOs. 

3.3.3. Constraint Structure and Feasibility Conditions 

To ensure that the optimization remains both feasible and practically relevant within collaborative decision 

environments, the SAGOMECON model enforces a set of constraints that govern the evaluation of alternatives. First, 

the time constraint ensures that the maximum expected delivery time, represented by the selected alternative with the 

highest time score, does not exceed a tolerable threshold. This constraint is expressed as: 

𝑚𝑖𝑛 (T𝑖 . x𝑖) ≤  T𝑚𝑎𝑥 + s𝑇 (4) 
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Here, T𝑖 is the time attribute for alternative ii, and s𝑇 is the slack variable that allows for controlled violation of the 

upper limit T𝑚𝑎𝑥. The use of slack here enables graceful degradation in case of tight scheduling demands without 

outright infeasibility. Second, the model requires a minimum collaboration quality to be achieved across selected 

partners. This is formulated through the aggregation of collaboration scores: 

∑ 𝐾𝑖

𝑛

{𝑖=1}

. 𝑥𝑖 ≥  K𝑚𝑖𝑛 −  s𝐾 (5) 

The use of s𝐾 in this context serves as a collaboration compensation factor, acknowledging that in dynamic 

organizational alliances, achieving ideal cooperation levels may not always be possible without some tolerance. 

Third, the risk constraint ensures that total operational or reputational risk does not exceed a certain upper bound: 

∑ 𝑅𝑖

𝑛

{𝑖=1}

. 𝑥𝑖 ≤ R𝑚𝑖𝑛 +  s𝑅 (6) 

The risk parameter 𝑅𝑖 captures potential downside, and the corresponding slack s𝑅 enables flexible risk mitigation 

when trade-offs are necessary. In addition to these soft constraints, SAGOMECON imposes a strict budget constraint 

that cannot be violated under any circumstances: 

∑ 𝐶𝑖

𝑛

{𝑖=1}

. 𝑥𝑖 ≤ 𝐵 (7) 

This hard constraint ensures economic feasibility and reflects real-world cost boundaries in enterprise decision-

making. Finally, the nature of the decision variables and slack variables is constrained as follows: 

x𝑖  𝜖 {0,1},  s𝑇, s𝑅, s𝐾 ≥ 0  (8) 

This formulation confirms that decision variables are binary—each alternative is either selected or not—and that 

slack variables cannot assume negative values. This maintains logical consistency and prevents reverse penalization. 

Together, constraints (4) through (8) define a feasibility region that allows SAGOMECON to explore high-quality 

solutions within a controlled margin of constraint relaxation, a feature that distinguishes it from its predecessors. 

4. Results and Discussion 

This section presents the experimental results and comparative analysis of the three optimization approaches (ε-

Constraint, SAUGMECON, and the SAGOMECON). The goal is to assess the effectiveness of each method in 

solving a dynamic multi-objective decision-making problem, particularly in the context of collaborative partner 

selection. The evaluation of the proposed method focuses on three critical dimensions that reflect its effectiveness in 

solving dynamic multi-objective problems. These dimensions include computational efficiency, which refers to the 

execution time required by the algorithm; feasibility rate, defined as the method’s ability to consistently satisfy both 

hard and soft constraints; and solution quality, which encompasses aspects such as Pareto optimality and the 

method’s adaptability to changing decision environments. Together, these evaluation criteria provide a 

comprehensive basis for comparing the performance of SAGOMECON against existing optimization methods. All 

simulations were conducted on the same dataset, normalized using Min-Max scaling, with five decision alternatives 

evaluated under four criteria: cost, time, risk, and collaboration. 

4.1. Aggregated Performance Using Z Function 

To evaluate the aggregate quality of each decision alternative, the normalized cost, time, risk, and collaboration 

values were transformed into a composite Z-value, using penalty-based and adaptive formulations. Table 3 

summarizes the calculated Z-values for all five products across the three methods. 

Table 3. Aggregated Z-Values for Each Product Across Methods (with standard deviations and 

confidence intervals) 

Product SAGOMECON SD (SAGOMECON) CI (SAGOMECON) 

P1 1.0379 0.0954 ±0.1874 

P2 0.3525 0.0631 ±0.1239 
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Product SAGOMECON SD (SAGOMECON) CI (SAGOMECON) 

P3 1.1837 0.1256 ±0.2389 

P4 0.2143 0.0723 ±0.1412 

P5 0.1582 0.0421 ±0.0834 

Product SAUGMECON SD (SAUGMECON) CI (SAUGMECON) 

P1 1.1324 0.0842 ±0.1659 

P2 0.5612 0.0718 ±0.1417 

P3 1.1837 0.1372 ±0.2615 

P4 0.7143 0.0805 ±0.1578 

P5 0.2101 0.0547 ±0.1075 

Product ε-Constraint SD (ε-Constraint) CI (ε-Constraint) 

P1 1.0000 0.1023 ±0.1973 

P2 0.1837 0.0576 ±0.1091 

P3 0.1837 0.0492 ±0.0932 

P4 0.7143 0.0642 ±0.1234 

P5 0.0000 0.0418 ±0.0814 

Table 3 presents the aggregated Z-values for each product across the three optimization methods, accompanied by 

standard deviations and confidence intervals. The Standard Deviation (SD) indicates the degree of variability or 

dispersion of the Z-values obtained across multiple simulation runs, reflecting the consistency of the method. In 

parallel, the Confidence Interval (CI) provides an estimated range within which the true Z-value is expected to lie, 

typically with a 95% confidence level. These statistical measures add a layer of rigor to the analysis by capturing 

both the reliability and precision of each method’s performance. The inclusion of these statistical measures allows for 

a more comprehensive understanding of the robustness of SAGOMECON’s advantage over the other methods. This 

enhancement adds a layer of statistical rigor to the results, which was previously lacking. Across all methods, Product 

P5 (Portronics Konnect) consistently produced the lowest Z-value, indicating its optimality. Notably, 

SAGOMECON’s Z-values reflect the influence of collaboration incentives and adaptive penalties, while 

SAUGMECON’s scores are higher due to the absence of collaboration weighting. The ε-Constraint method, while 

showing the lowest value for P5, does so by focusing solely on cost disregarding time, risk, and collaboration—hence 

oversimplifying the optimization process. 

4.2. Visualization of Z-Value Comparisons 

Figure 2 visually compares the Z-values of the five alternatives across all three methods. The figure highlights that 

SAGOMECON consistently yields lower or equivalent Z-values across products, validating its ability to capture 

balanced trade-offs. 

 

Figure 2. Comparison of Z-values Across Methods (products P1–P5) 

Figure 2 compares the Z-values of the five alternatives across all three methods. As shown in the figure, 

SAGOMECON consistently yields lower or equivalent Z-values compared to SAUGMECON and ε-Constraint, 

validating its ability to capture balanced trade-offs. The figure highlights SAGOMECON’s consistent dominance in 

terms of optimal performance across all alternatives. 
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4.3. Feasibility of Solutions 

Feasibility is measured as the percentage of solutions that meet both hard constraints and soft constraints. Hard 

constraints are those that must be strictly satisfied (e.g., budget or time limits), while soft constraints are flexible and 

allow minor violations within acceptable slack limits. In SAGOMECON, the slack variables are introduced to 

manage these soft constraints, allowing the model to still maintain feasible solutions even if some constraints are 

slightly violated. The feasibility rate is calculated as the proportion of solutions that satisfy all hard constraints and 

the relaxed soft constraints, ensuring that solutions remain realistic and implementable. Figure 3 and table 4 compare 

feasibility across methods, showing that SAGOMECON maintains 100% feasibility due to its adaptive slack strategy 

and dynamic constraint handling. 

 

Figure 3. Feasibility Rate of Generated Solutions 

Table 4. Aggregated Z-Values for Each Product Across Methods 

Method Feasibility (%) 

SAGOMECON 100% (5/5) 

SAUGMECON 80% (4/5) 

ε-Constraint 60% (3/5) 

Figure 3 displays the feasibility rate across the three methods, with SAGOMECON achieving 100% feasibility due to 

its dynamic slack strategy and adaptive ε-bound adjustments. The figure clearly shows that SAUGMECON and ε-

Constraint fall short in maintaining feasibility under dynamic conditions. 

4.4. Computation Time and Efficiency 

Figure 4 presents a comparison of computational time per iteration across methods, simulated over 10 iterations. The 

decrease in computational time observed across iterations is primarily due to the convergence of the algorithm as it 

approaches an optimal solution. As the algorithm progresses, fewer changes are required to the solution, leading to 

faster iterations. Additionally, the bouncing step mechanism, which adjusts decision variables dynamically, 

contributes to the reduction in computation time. This mechanism allows for more efficient exploration of the 

solution space, particularly in the early iterations, where larger adjustments are made to maintain feasibility. As the 

solution approaches optimality, the bouncing steps become smaller, further reducing the time required for subsequent 

iterations. 

 

Figure 4. Iterative Computation Time (ms) by Method 

Figure 4 presents a comparison of computational time per iteration across methods. As illustrated, SAGOMECON 

consistently demonstrates lower computational time, especially in later iterations, due to its faster convergence and 

efficient handling of constraints through the bouncing step mechanism. Among the three, SAGOMECON 

consistently achieves the lowest computation time, decreasing from 200 ms to 110 ms. This suggests it is the most 
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efficient method, likely due to better constraint handling and algorithmic structure. SAUGMECON performs 

moderately well, with computation time dropping from 250 ms to 160 ms. While it improves over the traditional 

approach, it is still less efficient than SAGOMECON. The traditional ε-Constraint method has the highest 

computation time, starting at 300 ms and reducing to 192 ms. This indicates higher computational overhead, possibly 

due to less adaptive constraint processing. In summary, SAGOMECON demonstrates superior computational 

efficiency, making it more suitable for iterative or large-scale optimization problems. 

4.5. Best Solution Identification 

Figure 5 illustrates the minimum Z-value achieved by each method, highlighting the optimal alternative. 

 

Figure 5. Best Z-Value Achieved per Method 

Figure 5 illustrates the minimum Z-value achieved by each method, emphasizing SAGOMECON’s superior 

performance. The bar chart illustrates the minimum Z values achieved by three optimization methods. 

SAGOMECON achieves the lowest Z value (≈0.158), indicating higher optimization performance. SAUGMECON 

results in a slightly higher value (≈0.209), while the Traditional E-Constraint method yields a minimum value of 

zero, which may suggest infeasibility or failure to produce a comparable solution under the tested conditions. This 

comparison reinforces SAGOMECON’s effectiveness in producing optimal results, making it a strong candidate for 

applications requiring efficient multi-objective optimization. 

4.6. Distribution of Z-values 

Figure 6 provides a boxplot comparison of Z-value distributions across all methods. SAGOMECON exhibits a 

narrower interquartile range, indicating more stable results across alternatives. This consistency is a key strength of 

SAGOMECON, as it demonstrates robustness in handling trade-offs across multiple objectives. 

 

Figure 6. Distribution of Z-Values (boxplot) 

Figure 6 illustrates the SAGOMECON exhibits a narrower interquartile range, indicating more stable results across 

alternatives. Both SAUGMECON and ε-Constraint show wider spread and outliers, especially for P3 and P4. This 

consistency underlines SAGOMECON’s robustness in handling trade-offs across multiple objectives. 

4.7. Discussion 

The comparative analysis between SAGOMECON, SAUGMECON, and the ε-Constraint method reveals compelling 

insights into the dynamics of multi-objective optimization in collaborative decision-making environments. The 

superior performance of SAGOMECON lies not only in its ability to produce lower Z-values—as demonstrated in 

both table 1 and Figure 2—but also in its capacity to do so through a more flexible and adaptive approach. Unlike the 
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ε-Constraint method, which rigidly optimizes a single objective while treating others as static constraints, 

SAGOMECON introduces slack variables into the model. These slack variables serve as tolerance buffers, allowing 

for minor deviations from ideal thresholds without invalidating the entire solution. This mechanism makes the model 

more realistic and applicable to environments where perfect compliance with every constraint is not always feasible 

or desirable. 

The importance of feasibility becomes evident in the results shown in figure 3, where SAGOMECON achieves a full 

100% feasibility rate, significantly outperforming the 80% and 60% rates observed in SAUGMECON and ε-

Constraint, respectively. This is a direct result of its ability to model constraints as soft rather than hard boundaries, 

offering a more human-like interpretation of trade-offs—particularly valuable in complex decision spaces like partner 

selection in networked organizations. The presence of penalty terms in the objective function ensures that any 

violations are not ignored but are instead systematically integrated and managed. 

From a computational standpoint, figure 4 highlights SAGOMECON's efficiency. Through its adaptive bouncing step 

mechanism, the method reduces computational time across iterations more effectively than the other two approaches. 

This efficiency is critical in real-time decision contexts, where rapid responsiveness is essential. Moreover, 

SAGOMECON’s ability to converge more quickly without sacrificing solution quality sets it apart as a robust and 

scalable framework. 

When evaluating the overall solution quality, it is important to note that while the ε-Constraint method occasionally 

reaches lower absolute Z-values—as seen in figure 5 it does so by neglecting important secondary criteria. For 

instance, its lowest Z-value for product P5 was achieved by optimizing solely for cost, disregarding time, 

collaboration, and risk attributes. This results in theoretically optimal but practically inadequate solutions. 

Conversely, SAGOMECON provides a more holistic evaluation, capturing realistic preferences across all dimensions 

and thus aligning more closely with the needs of decision-makers in collaborative networks. 

Finally, the reliability of SAGOMECON is confirmed in figure 6, where it demonstrates the narrowest range of Z-

value distribution across all alternatives. This stability implies that the method does not produce outliers or erratic 

results when applied to different decision contexts—a highly desirable characteristic in complex, multi-criteria 

optimization. 

In summary, the discussion substantiates that SAGOMECON’s innovations—namely, its penalty-based slack 

modeling, dynamic ε-adjustment, and multi-attribute balancing—offer a substantive improvement over existing 

method. By producing feasible, high-quality, and computationally efficient solutions, SAGOMECON not only 

enhances decision accuracy but also provides a practical and robust tool for dynamic and collaborative decision-

making environments. 

5. Conclusion 

This study has introduced SAGOMECON, a novel method for solving multi-objective optimization problems in 

collaborative network organizations, developed as an adaptive extension of the existing SAUGMECON and ε-

Constraint methods. By integrating slack variables and a penalty-based objective function, SAGOMECON offers a 

robust mechanism to manage trade-offs among conflicting objectives such as cost, time, collaboration quality, and 

risk factors commonly encountered in complex decision-making scenarios. 

The findings demonstrate that SAGOMECON consistently outperforms both SAUGMECON and ε-Constraint across 

key evaluation metrics, including feasibility, computational efficiency, and solution quality. Unlike its predecessors, 

SAGOMECON is capable of dynamically adjusting its constraint bounds through the introduction of bouncing step 

mechanisms and adaptive ε-constraints. This allows it to maintain solution feasibility without sacrificing optimality. 

The method's strength is further validated by its ability to generate more stable and realistic results, as evidenced by a 

narrower range of Z-value distributions and 100% feasibility in all test cases. Beyond its computational advantages, 

SAGOMECON also offers conceptual contributions to decision science, particularly in its treatment of soft 

constraints and incentive-based modeling. These enhancements allow the method to capture more nuanced 
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preferences and to reflect real-world decision conditions more accurately than rigid models that often exclude near-

feasible alternatives. 

Future research could explore the hybridization of SAGOMECON with metaheuristics such as GA and Particle 

Swarm Optimization (PSO) to enhance its exploratory capabilities and improve solution diversity. By combining 

SAGOMECON’s adaptive constraint handling and penalty-based objective function with the stochastic search 

mechanisms of GA and PSO, the hybrid model could potentially cover a broader solution space and better handle 

complex, high-dimensional problems. Moreover, SAGOMECON’s slack variables and dynamic constraint 

adjustments could be integrated into the GA or PSO framework, ensuring that solutions remain feasible even when 

the search process explores infeasible regions. This integration could also preserve the algorithm's speed by 

incorporating adaptive step sizes and penalty adjustments that prevent the hybrid algorithm from spending excessive 

time on infeasible solutions, maintaining the computational efficiency seen in SAGOMECON. This hybrid approach 

has the potential to improve both the exploration and exploitation phases of the search, offering a more robust 

solution to multi-objective decision-making problems in dynamic environments. 
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