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Abstract 

The application of artificial intelligence technology in occupational safety monitoring systems within healthcare facilities has become an urgent 

necessity, particularly to support compliance with Occupational Safety and Health (OSH) standards in hospitals. This study aims to develop an 

automated detection model based on YOLOv12 to identify visual OSH elements in hospital archive rooms, such as APAR, evacuation signs, 

windows, and Personal Protective Equipment (PPE) including masks, gloves, and shoes. The initial dataset consisted of 2,866 documented 

images, which were expanded through augmentation to 6,886 images to increase data diversity and prevent overfitting. The YOLOv12 model 

was trained over 100 epochs using SGD as the optimization technique. The dataset was divided into three subsets training, validation, and testing 

in a proportional manner. Model evaluation employed metrics such as precision, recall, mAP@0.5, and mAP@0.5–0.95, supported by 

visualizations including the confusion matrix, F1-confidence curve, and precision-recall curve. One of the key advantages of YOLOv12 lies in 

its architectural efficiency and enhanced generalization capability, enabled by the integration of R-ELAN, Area Attention Mechanism, and 

FlashAttention. These components allow for broader receptive field processing with reduced computational complexity. Furthermore, the removal 

of positional encoding and adjustment of the MLP ratio make the model lighter and faster without compromising accuracy. Compared to previous 

versions (YOLOv8–YOLOv11), YOLOv12 demonstrates more stable and accurate performance in detecting complex OSH objects in indoor 

environments. The system was also implemented in a real-time user interface using Streamlit, automatically displaying personnel PPE 

completeness and room safety compliance status. In conclusion, the optimized YOLOv12 model has proven effective for real-time visual 

detection in OSH contexts. Future studies are recommended to incorporate data balancing approaches, spatial segmentation, and IoT sensor 

integration to expand the system’s coverage and resilience across diverse workplace conditions. 

Keywords: YOLOv12, Occupational Safety, Hospital Work Safety, Computer Vision, Deep Learning 

1. Introduction  

The implementation of OSH principles in hospitals is a fundamental element in ensuring the safety of medical 

personnel, including administrative staff such as medical record officers who work in archive rooms with high physical 

and ergonomic hazard potential [1], [2]. This area often presents risks due to stacked documents, scattered electrical 

cables, and the lack of protective equipment such as evacuation signs and fire extinguishers. Manual monitoring of 

these conditions tends to be subjective, non-real-time, and inefficient for data-driven decision-making. Therefore, the 

integration of digital approaches powered by Artificial Intelligence (AI) technologies is urgently needed to enhance 

occupational safety systems within hospital environments. 

Computer vision and deep learning have opened significant opportunities in image-based object detection, including 

in the context of occupational safety monitoring [3], [5]. These technologies can identify visual elements such as the 

use of PPE, disorganized cables, and safety signage, and automatically classify compliance with Occupational Health 

and Safety (OHS) standards. Several studies have implemented You Only Look Once (YOLO) models for safety 
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monitoring in construction or industrial projects [6], [7], [8], however, their application specifically in administrative 

hospital contexts such as archive rooms remains highly limited. One notable approach involves the use of the YOLO 

algorithm for real-time PPE detection [9], [10]. Other studies have developed PPE detection systems using the YOLOv5 

method, capable of identifying the presence of PPE on workers [11]. Furthermore, more recent research implemented 

YOLOv8 to assess PPE completeness in construction projects, demonstrating the effectiveness of this technology in 

ensuring compliance with safety regulations [12]. 

The main novelty of this study lies in the adoption of the YOLOv12 model, the latest version in the YOLO family, 

which offers a modular architecture, an EfficientViT backbone, and a dynamic head based on the Dynamic Path Feature 

Module (DPFM), making it highly effective in detecting small and context-sensitive objects [13]. YOLOv12 addresses 

the limitations of previous models (YOLOv5–YOLOv11) in terms of inference speed and multi-label detection 

accuracy in complex real-world environments [14], [15], [16], [17]. Additionally, its ability to export to ONNX, 

TorchScript, and CoreML formats enhances its flexibility for integration into dashboard-based monitoring systems or 

edge devices. 

Another advantage of this approach is the application of the Stochastic Gradient Descent (SGD) optimization algorithm 

during model training, which provides greater stability and generalization capability on datasets with imbalanced 

distributions or varying lighting conditions [18]. Compared to adaptive optimizers such as Adam, SGD tends to yield 

models that are more resistant to overfitting and exhibit more consistent performance [19], [20]. This is particularly 

important for ensuring effective detection of small objects such as gloves or shoes on individuals moving within archive 

rooms. 

This study not only detects individual OHS elements, but also computes a room compliance score based on 

combinations of visual elements such as fire extinguishers, windows, evacuation signs, and scattered cables, as well as 

PPE completeness per individual including masks, gloves, and shoes. The output is a classification of safety compliance 

into three categories: Compliant, Partially Compliant, and Non-Compliant, which is directly visualized through 

bounding boxes. This model is designed not only to enhance workplace safety in hospital environments, but also to 

support digital transformation in data-driven OHS risk management. By incorporating state-of-the-art technology and 

appropriate optimization techniques, this research contributes to bridging a critical gap in both academic literature and 

healthcare operational practices. 

2.  Research Methodology 

This study focuses on the development of an automatic detection system to assess compliance levels with hospital OHS 

standards by leveraging a computer vision approach based on the YOLOv12 model. The system is designed to identify 

visual elements that represent safety risks within medical record filing rooms and to evaluate the completeness of PPE 

worn by staff. The system development workflow is illustrated in figure 1. 

 

Figure 1. Flow of Model Development 
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2.1. Identification of OSH Compliance in Medical Record Filing Rooms 

The initial stage of this study began by identifying OSH elements that are relevant and specific to the environmental 

conditions of medical record filing rooms in hospitals. These rooms are typically narrow, filled with stacks of 

documents, and characterized by poorly organized equipment and cables, all of which pose potential workplace 

hazards. Therefore, several key components observed in this study include the presence of fire extinguishers (APAR), 

evacuation signs indicating safety routes, and windows or ventilation systems as indicators of adequate air circulation. 

In addition, scattered cables on the floor were identified as tripping hazards, while the use of PPE such as masks, 

gloves, and shoes by individuals working in the room served as critical indicators of compliance with OSH protocols. 

The results of this identification process served as the foundation for determining the object labels used in the OSH 

compliance classification system developed in this study. 

2.2. Dataset Collection and Preprocessing 

The initial dataset in this study consisted of 2,866 images documented from archive rooms in various healthcare 

facilities. The dataset comes from a hospital archive room, selected based on its diverse layout, lighting, and camera 

angles. Additional annotated images from Roboflow were added to capture challenging cases such as occlusion and 

blurring, resulting in a robust dataset for realistic hospital safety detection.  To ensure the quality and consistency of 

the data before training the model, all images underwent a preprocessing stage. The first step was auto-orientation, a 

process to correct the direction of the images so that they have the proper horizontal or vertical alignment based on 

their original capture orientation. Next, a resize operation was performed, adjusting all images to a uniform dimension 

of 640 × 640 pixels to match the input layer requirements of the YOLOv12 model. This preprocessing step is crucial 

to ensure that every image maintains consistent size and orientation, thereby improving the efficiency and stability of 

the overall object detection model training process [21], [22]. 

2.3. Data Augmentation 

To address the limitations in dataset size, this study applied data augmentation as a strategy to increase image diversity 

and reduce the risk of overfitting in the model. Augmentation was performed automatically on each image in the 

dataset, generating three additional variations from each original image [23], [24]. The applied transformation includes 

both horizontal and vertical flip, which allows the model to recognize objects in different orientations. Furthermore, a 

crop of 0-10% is applied to simulate a partial image or partially captured object. Other geometric transformations 

include rotation up to ±15° and shear up to ±5°, which are useful for varying the viewpoint of the object. In addition, 

the image also undergoes adjustments to brightness, saturation, hue, and exposure in the range of ±15-25% to mimic 

different lighting conditions. To add visual variety, blur of up to 1.5 pixels and noise addition of up to 0.1% pixels are 

applied. All these augmentations aim to make the developed YOLOv12 model more robust in recognizing objects 

under various real-world conditions. 

2.4. Split Dataset 

The augmentation process results in a final dataset consisting of the original image set along with the results of rotation, 

shear, exposure change, and noise-based transformations. Furthermore, this dataset is divided into three main parts to 

optimally support the model training and evaluation process. The dataset is allocated into a train set for model learning, 

a validation set to monitor performance during training and prevent overfitting, and a test set as independent data used 

to evaluate the final performance of the model. This division is done randomly and proportionally, with a composition 

of 88% for training, 8% for validation, and 5% for testing, while maintaining a balanced distribution of labels in each 

subset. This approach aims for the resulting model to have good generalization ability to new data that has never been 

seen before. 

2.5. Model Training 

The training process of the YOLOv12 model is a critical stage in the development of the OSH compliance detection 

system, as it determines the model's ability to accurately recognize workplace safety elements. YOLOv12 offers 

significant improvements over its predecessors (YOLOv10 to YOLOv11) by integrating EfficientViT as the backbone, 

enabling more efficient and lightweight feature extraction, and DPFM at the head to enhance spatial processing and 
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multi-scale detection accuracy [25]. Compared to YOLOv10 and YOLOv11, this model shows a more focused area of 

attention (heatmap) and sharper object perception, as shown in figure 2. 

 

Figure 2. Heatmap Comparison Between YOLOv10, YOLOv11, and YOLOv12 

This is achieved through the application of the Area Attention Mechanism that expands the receptive field efficiently, 

as well as the Residual Efficient Layer Aggregation Network (R-ELAN) that overcomes optimization bottlenecks in 

large-scale architectures. In addition, the Optimized Attention Architecture equipped with FlashAttention, block depth 

reduction, and the use of 7×7 separable convolution enables more accurate spatial detection with lighter parameters. 

With support for various visual tasks (detection, classification, segmentation, pose), and deployment flexibility from 

edge to cloud, YOLOv12 is ideal for real-time detection needs in complex and dynamic OHS compliance contexts. 

This advantage allows the model to accurately detect small objects such as gloves and wires under workspace 

conditions with varying lighting and image capture angles, a common challenge in hospital environments. The model 

was trained using a standard input resolution of 640×640 pixels with a batch size configuration of 8 and 100 training 

epochs, using GPU and disk-based cache for memory and time efficiency. During the training process, real-time 

monitoring of the model's performance using mAP@0.5 metrics on the validation set is performed, to ensure the 

direction of convergence and model stability. The novelty of this approach lies not only in the use of the modern and 

efficient YOLOv12 architecture, but also in its application in the specific context of hospital administrative OHS 

compliance detection, which has rarely been the object of Computer Vision research before. This training is an 

important foundation for producing a real-time detection system that is robust, accurate, and ready for use in healthcare 

environments. 

To optimize the YOLOv12 model during training, the total loss function ℒ𝑡𝑜𝑡𝑎𝑙 is minimized as the weighted sum of 

three key components: 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑏𝑜𝑥 .  ℒ𝑏𝑜𝑥 +  𝜆𝑐𝑙𝑠.  ℒ𝑐𝑙𝑠 + 𝜆𝑑𝑓𝑙 .  ℒ𝑑𝑓𝑙 (1) 

 ℒ𝑏𝑜𝑥 = Bounding Box Regression Loss (CIoU loss);  ℒ𝑐𝑙𝑠 = Classification Loss (Binary Cross Entropy);  ℒ𝑑𝑓𝑙 = 

Distribution Focal Loss (DFL) for precise localization; 𝜆𝑏𝑜𝑥 ,  𝜆𝑐𝑙𝑠 , 𝜆𝑑𝑓𝑙 = weight coefficients (default values defined 

in YOLOv12). The model parameters are updated using the SGD optimizer with momentum and weight decay. The 

update rule at iteration 𝑡 is given by: 

𝑣𝑡 = 𝜇 . 𝑣𝑡−1 + 𝜂 . ∇ℒ𝑡𝑜𝑡𝑎𝑙(𝑤𝑡) + 𝜆. 𝑤𝑡 (2) 

𝑤𝑡+1 =  𝑤𝑡 −  𝑣𝑡 (3) 

𝑤𝑡  = model weights at iteration t; 𝜂 = learning rate; 𝜇 = momentum factor; 𝜆 = weight decay coefficient; ∇ℒ𝑡𝑜𝑡𝑎𝑙(𝑤𝑡) 

= gradient of the total loss; 𝑣𝑡 = velocity (accumulated gradient with momentum). 

In this training phase, the YOLOv12 model was optimized using the SGD algorithm, known for its stability and 

generalization capability, particularly in datasets with high variance and limited class balance. The total loss function 

ℒ𝑡𝑜𝑡𝑎𝑙 combines bounding box regression, classification accuracy, and focal loss to guide the model towards accurate 
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multi-object detection. The SGD update rule incorporates momentum and weight decay, which help accelerate 

convergence and reduce overfitting by smoothing out oscillations and penalizing large weight values. This 

configuration, combined with cosine learning rate scheduling and early warm-up, enables the model to achieve robust 

training performance across diverse indoor scenes. 

2.6. Model Optimization 

Model optimization in this study was carried out using SGD which proved to be more stable in producing models 

capable of generalizing to real data [26]. The selection of SGD was not merely due to its mathematical simplicity but 

also because of its ability to maintain consistent convergence, especially in datasets with high spatial variation and 

fluctuating lighting conditions, such as archive room images. With proper learning rate settings and the application of 

regularization techniques such as weight decay, SGD helps mitigate the risk of overfitting, particularly for small objects 

like gloves and shoes, which are often partially visible or captured under suboptimal lighting. Additionally, the training 

process utilized disk-based caching and periodic monitoring of mAP, enabling dynamic performance adjustments 

throughout the training phase. The combination of YOLOv12's efficient architecture and the robust optimization 

capability of SGD provides advantages not only in detection accuracy but also in resource efficiency, making this 

model ideal for real-time implementation in OSH monitoring systems within complex and dynamic hospital 

environments. 

2.7. Model Testing and Evaluation 

The testing and evaluation phase was conducted after the training process was completed, aiming to assess the 

capability of YOLOv12 in accurately and reliably detecting OSH elements within real-world test data. The trained 

model was tested using a dataset of 321 images that represented diverse conditions in lighting, camera angles, and 

object variations within the filing room. In addition to this, functional testing was performed through a Streamlit-based 

GUI interface to ensure the system could operate interactively and in real-time. The implementation was carried out 

directly within the hospital archive environment to observe the model’s effectiveness in detecting dynamic real-world 

objects. Evaluation was conducted using quantitative metrics such as mean Average Precision (mAP@0.5 and 

mAP@0.5–0.95), the Confusion Matrix [27], [28], and the ROC Curve to provide a comprehensive overview of the 

model’s performance in detecting and classifying compliance with OSH standards K3 [29], [33]. 

3.  Results and Discussion  

3.1. Dataset Preprocessing and Augmentation Results 

Preprocessing and data augmentation were performed to improve the quality and diversity of the dataset to be used in 

training the YOLOv12 model. The initial dataset consists of 2,866 images obtained from visual documentation of the 

hospital's medical record filing room, with a wide variety of lighting conditions, camera positions, and object 

compositions. All initial images underwent size normalization (resize to 640×640 pixels) and orientation correction to 

be consistent with the model input format. Next, a data augmentation process including rotation, flipping, shear, 

brightness-hue adjustment, as well as blur and noise addition was carried out to create visual variations that reflect real 

field conditions. This resulted in a total of 6,886 images, consisting of the original and augmented images. The 

following figure 3 shows the results of preprocessing and augmentation. 
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Figure 3. Dataset Preprocessing and Augmentation Results 

This increased amount of data aims to enrich the distribution of visual features and reduce the risk of overfitting during 

training. Visually, the augmentation makes a significant difference to the position, angle, and color intensity of objects, 

while maintaining the main characteristics of OSH elements such as fire extinguishers, personal protective equipment, 

and evacuation signage. Analysis of the augmentation results showed that the process successfully increased the 

diversity of the data without reducing the clarity of the objects, thus supporting the training of a more robust and 

generalized model for real archive space situations. While a comprehensive augmentation pipeline was applied to 

enhance the training dataset including flips, crops, color adjustments, and noise injection this study did not include an 

ablation experiment to quantify the relative impact of each technique. As a result, it remains unclear which specific 

transformations contributed most significantly to performance gains. Future research should consider systematically 

evaluating individual and combined augmentation effects to refine preprocessing strategies for safety-critical visual 

tasks. 

3.2.Model Performance at Training Stage 

After the augmentation process and dataset sharing, the next step is to train the YOLOv12 model using the prepared 

training dataset. This training aims to optimize the model's ability to accurately recognize and classify safety-related 

objects. During the training, the loss value and the main evaluation metrics are monitored to ensure the convergence 

of the model is stable. The results of model training for 100 epochs can be seen in table 1. 

Table 1. Model Performance 

Box Class DFL Precision Recall mAP@0.5 mAP@0.5–0.95 

1,441 3,065 1,572 0.629 0.526 0.513 0.275 

In the initial training phase, the YOLOv12 model exhibited an unstable convergence trend and had not yet reached 

optimal performance. The train box loss remained relatively high at 1.44, followed by a train class loss of 3.06, and a 

distribution focal loss (dfl_loss) of 1.57, indicating that the model was still struggling to accurately recognize and 

classify objects. This was also reflected in the mAP@0.5 score of 0.513 and mAP@0.5–0.95 of 0.275, suggesting low 

detection accuracy and suboptimal performance in multi-scale object detection. The precision and recall values were 

only 0.629 and 0.526, respectively, indicating a high probability of both false positives and false negatives. Overall, at 

this stage, the model had not yet efficiently captured the key features of OSH-related objects. These results served as 

the basis for initiating further optimization to improve the model’s overall detection and classification performance. 

3.3.Model Optimization 

The model optimization process is performed using an adaptively configured SGD algorithm through adjusting the 

learning rate on three groups of parameters (pg0, pg1, and pg2). The model was optimized using SGD with an initial 

learning rate of 0.01, employing a cosine decay scheduler with a warmup phase of 3 epochs to ensure stable 

convergence during early training. The weight decay was set to 0.0005, and momentum was configured at 0.937. These 

settings were applied across parameter groups pg0 (biases), pg1 (batch normalization), and pg2 (weights), allowing 

finer control over different aspects of the model. This configuration was chosen based on empirical trials and best 
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practices for YOLO training, providing a balance between regularization and convergence speed. The results of model 

training that has been optimized for 100 epochs can be seen in table 2. 

Table 2. YOLOv12 Model Performance that has been Optimized 

Epoch Box Loss Class Loss DFL Loss mAP@0.5 mAP@0.5–0.95 Precision (P) Recall (R) 

97 0.7969 0.4319 1,120 0.821 0.556 0.799 0.855 

98 0.7859 0.4267 1,114 0.832 0.569 0.811 0.851 

99 0.7767 0.4227 1,107 0.837 0.573 0.813 0.853 

100 0.7754 0.4171 1,103 0.836 0.570 0.813 0.853 

The training process of the optimized YOLOv12 model shows a stable convergence trend over 100 epochs, with a 

consistent decrease in the loss values of the three main components: box_loss, cls_loss, and distribution focal loss 

(dfl_loss). At the end of training, the box_loss value was recorded at 0.7754, cls_loss at 0.4171, and dfl_loss at 1.103, 

indicating that the model was able to learn spatial representation and object classification effectively. The evaluation 

metrics also show gradual improvement, with the score of mAP@0.5 reaching 0.813 and mAP@0.5-0.95 amounting 

to 0.570 at the 100th epoch. The Precision and Recall values of the model are in the range of 0.853 and 0.836 

respectively, reflecting a balanced detection capability between avoiding false negatives and false positives. The 

stability of GPU memory usage, which stays in the range of 2.87-2.93 GB, also shows the computational efficiency 

during training. Based on this analysis, it can be concluded that the model successfully achieved optimal training 

performance with strong generalization ability to the validation data, while demonstrating the superiority of YOLOv12 

in handling multi-object detection in the image-based occupational safety domain. The results of the training can be 

seen in table 3. 

Table 3. Final Evaluation Result of YOLOv12 Model after Optimization 

Class Images Instances Precision (P) Recall (R) mAP@0.5 mAP@0.5–0.95 

All 535 774 0.852 0.846 0.854 0.591 

APAR 155 155 0.978 0.987 0.988 0.742 

Jendela 67 76 0.639 0.684 0.626 0.413 

Kabel Tidak Rapi 74 4 0.795 0.977 0.945 0.776 

Masker 49 50 0.877 0.860 0.942 0.475 

Rambu Evakuasi 38 93 0.877 0.914 0.942 0.755 

Sarung Tangan 38 72 0.911 0.845 0.761 0.395 

Sepatu 132 270 0.861 0.777 0.842 0.562 

Based on the final evaluation results, the optimized YOLOv12 model demonstrated strong performance, achieving an 

mAP@0.5 score of 0.854 and an mAP@0.5–0.95 score of 0.591, indicating high accuracy in detecting objects of 

varying sizes and positions. The detection of Masker (face mask), Rambu Evakuasi (evacuation sign), and APAR (fire 

extinguisher) yielded very high precision and recall values nearly perfect in some cases with precision (P) reaching 

0.988 and Recall (R) reaching 0.947 for Masker (face mask). However, detection performance for smaller or less 

frequent objects such as Sarung Tangan (gloves) and Kabel Tidak Rapi (scattered cables) remained below average, 

with respective mAP@0.5 scores of 0.645 and 0.795, and relatively low mAP@0.5–0.95 values (0.395 and 0.474). 

These limitations are likely due to the small number of instances in the dataset and the visual similarity of the objects 

to the room’s background. Overall, the model demonstrated robustness against visual and lighting variations in the 

archive room and exhibited strong generalization capabilities for dominant OSH-related objects. The training and 

validation visualization results are presented in figure 4. 
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Figure 4. Loss Curves and Model Evaluation Metrics During the Training Process 

Figure 4 shows that all loss values such as box_loss, cls_loss, and dfl_loss decreased consistently from the beginning 

to the end of training, indicating a stable model convergence process. The box_loss value decreased from around 1.6 

to below 0.8, and cls_loss from 3.0 to around 0.4. On the other hand, performance metrics such as precision, recall, 

mAP@0.5, and mAP@0.5-0.95 experienced a positive upward trend. mAP@0.5 stabilized in the range of 0.81-0.85 at 

the end of the epoch, while mAP@0.5-0.95 reached a maximum value of about 0.59. This pattern indicates that the 

model optimization succeeded in improving the detection accuracy without overfitting, characterized by the pattern of 

the validation curve being aligned with the training curve. This finding reinforces that the use of YOLOv12 in 

combination with SGD optimization techniques can produce reliable and efficient object detection performance. 

To determine the effectiveness of the optimization process carried out on the YOLOv12 model, a comparison of model 

performance before and after optimization is carried out based on a number of key evaluation metrics. The model 

performance comparison table can be seen in table 4. 

Tabel 4. Comparison of YOLOv12 Model Performance Before and After Optimization 

Optimization Box Class DFL Precision Recall mAP@0.5 mAP@0.5–0.95 

Before 1.441 3.065 1,572 0.629 0.526 0.513 0.275 

After 0.775 0.417 1,103 0.853 0.836 0.813 0.57 

The comparison results show significant improvements in all metrics after optimization. The box loss value decreased 

from 1.441 to 0.775, while the class loss dropped dramatically from 3.065 to 0.417, signaling an increase in efficiency 

in the model training process. This is in line with the increase in precision from 0.629 to 0.853 and recall from 0.526 

to 0.836. The most striking improvement is seen in the object detection accuracy, i.e. mAP@0.5 which rose from 0.513 

to 0.813 and mAP@0.5-0.95 from 0.275 to 0.570. These findings indicate that the optimization strategy applied 

successfully improved the overall performance of the model and made it more reliable for use in work safety element 

detection in hospital environments. 

3.4.Model Evaluation 

To evaluate the prediction accuracy of the model for each OSH object class, an analysis using the confusion matrix 

was conducted. This visualization provides a comprehensive understanding of the distribution of correct classifications 

and misclassifications across classes. The results of the confusion matrix evaluation are presented in figure 7. 
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Figure 5. Confusion Matrix and Normalized Visualization 

Figure 7 presents the confusion matrix in two formats: absolute values and normalized form. Based on the absolute 

matrix, the Shoes and Gloves classes achieved the highest number of correct predictions, with 230 and 123 instances 

respectively. However, a significant misclassification occurred in the Gloves class, where 29 instances were incorrectly 

predicted as Shoes. The normalized matrix further reveals near-perfect prediction accuracy for Unorganized Cable and 

Evacuation Sign classes (100%), and very high accuracy for APAR at 99% and Face Mask at 90%. In contrast, the 

prediction performance for Window and Gloves remains suboptimal, with correct prediction proportions of only 82% 

and 72%, respectively. These findings indicate that both data distribution and visual similarity between object classes 

significantly affect classification accuracy. Therefore, strengthening the dataset for underrepresented classes may be a 

strategic step to enhance overall model performance in future developments. An analysis of the post-augmentation 

dataset revealed significant class imbalance. For instance, Scattered Cable was represented by only 26 instances, 

whereas Shoes had 1,552 instances, and Gloves reached 989. Other classes like Windows (472) and Evacuation Signs 

(205) also had relatively fewer samples.  

This distribution disparity likely affected model performance on minority classes, as evidenced by lower mAP and 

recall scores in Cable, Window, and Glove categories. The confusion matrix and class-specific curves support this 

observation, indicating underperformance in these classes. This highlights a limitation of uniform augmentation 

techniques, which may not correct imbalanced label distributions without targeted sampling. The confusion between 

Gloves and Shoes likely stems from similar visual features such as color, shape, or low-resolution edges. To address 

this, strategies like feature disentanglement can help the model distinguish class-specific traits. Additionally, leveraging 

spatial context such as relative position to the human body through pose estimation or attention-based modules could 

improve classification accuracy in future developments. The misclassification between Gloves and Shoes may stem 

from annotation inconsistencies and visual ambiguity, such as occlusion and similar appearance. Future labeling should 

include inter-annotator agreement or semi-automated tools with human validation to enhance label accuracy. 

To determine the relationship between model confidence and combined prediction accuracy through the F1-score 

metric, an F1 curve against confidence was analyzed. This curve is very important to determine the optimal threshold 

to maximize the balance between precision and recall in each class. The results of the F1-Confidence Curve evaluation 

can be seen in figure 6. 
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Figure 6. F1-Confidence Curve for Each Class 

Figure 6 shows that the model achieved the highest overall F1-score of 0.84 at a confidence threshold of 0.476, 

indicating the optimal balance point between precision and recall. The APAR and Evacuation Sign classes 

demonstrated highly consistent performance, with F1-scores approaching 1 across most confidence ranges. In contrast, 

the Window and Gloves classes exhibited more fluctuating performance, with a noticeable decline at thresholds above 

0.6. This pattern suggests that certain object classes are more sensitive to confidence threshold changes, particularly 

those with limited data or high visual similarity to other classes. 

To provide a more comprehensive picture of the stability and effectiveness of the model in detecting various objects, 

an evaluation was conducted using three main types of curves: Precision-Confidence, Precision-Recall, and Recall-

Confidence. They help identify trade-offs between metrics and determine the optimal confidence threshold for each 

class. The visualization results of the evaluation can be seen in figure 7. 

 

Figure 7. Precision, Recall, and Confidence Evaluation Curves of the Model 

Figure 9 shows that the model achieved a precision of up to 1.00 at a confidence threshold of 0.95, indicating that 

nearly all predictions made at that threshold were correct. The Precision-Recall Curve reveals that the APAR class 

exhibited the highest performance with a precision of 0.988, followed by Unorganized Cable and Evacuation Sign, 

both showing stable curves that dominate the upper area of the graph. In contrast, the Window and Gloves classes again 

occupied the lower positions with lower precision values of 0.626 and 0.761, respectively. The Recall-Confidence 

Curve illustrates that the highest overall recall of 0.92 was achieved at a confidence threshold of 0.00, indicating that 

lowering the threshold increases the model’s sensitivity to detection but may compromise precision. This analysis 

suggests that adaptively adjusting the confidence threshold per class is highly recommended to achieve an optimal 

balance between precision and sensitivity in real-world applications. The selection of 0.476 as the operating threshold 

was based on the peak of the F1-confidence curve (figure 6) and further supported by Precision-Recall and Confidence 

plots (figure 7), which reflect class-specific threshold sensitivity. These evaluations offer a practical alternative to 

ROC-AUC, which is less commonly used in multi-object detection contexts due to class imbalance and localization 
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factors. In contrast to high-performing classes such as Face Mask and Evacuation Sign, several classes with low sample 

frequency or high visual ambiguity such as Gloves, Window, and Scattered Cable exhibited fluctuating precision-recall 

and confidence curves. These classes showed less stable F1-scores across confidence thresholds, suggesting that the 

model struggled to consistently differentiate these objects from background elements. For instance, Gloves displayed 

an optimal F1-score at a lower confidence threshold (~0.45), beyond which recall dropped sharply, indicating a trade-

off between sensitivity and false positives. This highlights the importance of adaptive threshold tuning per class and 

suggests the potential value of incorporating class-weighted or focal loss functions to stabilize detection for 

underrepresented or ambiguous objects. 

To ensure detection accuracy in practical scenarios, visual testing was conducted using various images with different 

angles, lighting conditions, and object contexts. The results of the object detection visualization are presented in figure 

8. 

 

Figure 8. Object Visual Detection Result 

Figure 8 illustrates that the model successfully detected objects such as Masker (face mask), Sarung Tangan (gloves), 

Sepatu (shoes), Jendela (window), and Rambu Evakuasi (evacuation sign) with high accuracy and precise bounding 

box placement. Objects like Sepatu (shoes) and Masker (face mask) were detected very well across various poses and 

orientations. As a form of visual validation and real-world simulation, the detection system was implemented through 

a Streamlit interface to identify occupational safety elements and the completeness of PPE in real-time. Figure 9 below 

shows the results of model testing in an actual archive room. 

 

Figure 9. Implementation of Object Detection and Personnel PPE on the Streamlit Interface 
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Figure 9 demonstrates that all components were successfully detected with sufficient confidence, as visualized through 

bounding boxes and accompanied by an evaluation report. Based on the predefined compliance scoring rules, the 

system concluded that the room falls under the Compliant (Patuh) category, and the personnel were identified as 

wearing complete PPE. To evaluate the systems feasibility in a real-world context, we conducted a preliminary 

deployment of the Streamlit-based interface in an operational hospital archive room. The system was installed on a 

local machine connected to a camera feed and evaluated in real-time under typical environmental conditions. 

Observations revealed that the YOLOv12 model maintained consistent detection accuracy even under moderate 

lighting fluctuations and partial object occlusions, such as documents or equipment blocking parts of PPE. 

Additionally, the interface was found to be responsive and interpretable by non-technical staff. Informal feedback from 

archive personnel suggested that the color-coded bounding boxes and compliance classification display were helpful 

for quick assessments. However, challenges such as glare from reflective surfaces and the presence of non-standard 

PPE items were noted. These insights affirm the model’s practical potential, while also highlighting areas for 

enhancement in future development.  

The Streamlit-based GUI was tested during real-time deployment in a hospital archive setting using a webcam feed at 

720p resolution. The system achieved an average inference frame rate of 20–22 FPS on an NVIDIA RTX 3060, with 

an observed latency of approximately 50–70 milliseconds from frame capture to detection rendering. The interface 

remained responsive under continuous input, and detection updates were rendered with minimal delay. Although 

formal usability testing was not conducted, initial feedback from archive room personnel suggested that the layout, 

compliance status display, and visual indicators were easy to interpret and aligned with their workflow needs. These 

findings indicate that the system has promising potential for operational use, with future iterations planned for broader 

user testing and deployment on lower-spec hardware. 

To assess the advantages of the proposed model over previous YOLO versions, a performance evaluation was 

conducted using a consistent dataset. This evaluation included key metrics such as precision, recall, mAP@0.5, and 

mAP@0.5:0.95. The comparative performance results are presented in table 5. 

Table 5. Comparison of YOLO Model Performance with the Same Dataset 

Model Precision Recall mAP@0.5 mAP@0.5:0.95 

YOLOv8 0.76 0.65 0.715 0.418 

YOLOv9 0.78 0.68 0.741 0.452 

YOLOv10 0.79 0.72 0.768 0,487 

YOLOv11 0.81 0.75 0.791 0.519 

Research Model 0.853 0.836 0.813 0.570 

Table 5 shows that the research model using YOLOv12 produces the best performance across all evaluation metrics, 

with a precision of 0.853, recall of 0.836, mAP@0.5 of 0.813, and mAP@0.5:0.95 reaching 0.57. Compared to the 

previous version, the performance improvement appears consistent in each iteration of YOLO, but a significant spike 

occurs in YOLOv12 thanks to the integration of the Area Attention architecture, R-ELAN, and optimization using 

SGD. This proves that the latest developments not only accelerate detection but also substantially improve the accuracy 

of object detection. This performance strengthens the validity of the YOLOv12 model as a superior approach for real-

time applications in the context of occupational safety. YOLOv12 outperforms YOLOv11 with a higher mAP@0.5–

0.95 score (0.570 vs. 0.519), indicating improved detection accuracy, especially for small or complex objects. The 

0.051 gain highlights better spatial precision, likely due to architectural enhancements like FlashAttention and R-ELAN 

that improve multi-scale feature representation in cluttered indoor scenes. While the numerical improvements in 

mAP@0.5 and mAP@0.5–0.95 appear moderate (e.g., an increase of 0.051 over YOLOv11), these gains translate into 

more reliable detection of small, partially occluded, or low-contrast safety elements such as gloves and scattered cables. 

Such detection robustness is critical in hospital archive rooms, where visual clutter and lighting inconsistency are 

common. Furthermore, these gains were achieved without a significant increase in inference time, supporting the 

practical deployment of YOLOv12 in real-time monitoring systems. The relatively low detection accuracy for Window 

and Gloves is likely due to their underrepresentation in the dataset and visual similarity to the background. More 

effective solutions include class-specific augmentation (e.g., brightness shift, occlusion simulation) and synthetic 
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image generation to increase data diversity. Additionally, transfer learning using pre-trained YOLOv12 weights fine-

tuned on a healthcare-specific dataset can further improve performance on challenging classes. These methods will be 

considered in future developments to address class imbalance in a visually meaningful way. It is important to note that 

the reported performance metrics such as mAP@0.5 and mAP@0.5–0.95 are based on a single evaluation run and do 

not include standard deviation or confidence intervals. As such, the robustness of the model’s performance under 

varying initialization or dataset splits remains to be fully validated. 

While mAP@0.5 serves as a common detection metric, it may overestimate performance by accepting relatively loose 

bounding boxes. To address this, we also report mAP@0.5–0.95, which aggregates performance across stricter IoU 

thresholds (0.5 to 0.95). This provides a better proxy for localization quality. However, our study did not include a 

direct analysis of IoU score distributions across predictions, which would provide further insight into the tightness and 

spatial accuracy of bounding boxes. Future work may incorporate IoU histograms and per-class IoU statistics to 

evaluate and refine boundary localization performance more comprehensively. 

To support real-time application claims, we measured the average inference time per image and frames per second 

(FPS) using an NVIDIA RTX 3060 GPU. The YOLOv12 model achieved an average inference time of approximately 

45 ms per frame, or 22–25 FPS, which is sufficient for real-time detection in moderately dynamic environments such 

as hospital archive rooms. While testing on edge devices was not conducted in this study, published benchmarks from 

Ultralytics report that YOLOv12 can achieve around 6–8 FPS on Jetson Nano and 10–12 FPS on mid-range mobile 

CPUs with INT8 optimization. These results suggest that the model could be deployed in lightweight embedded 

systems with acceptable latency, though further validation is required. Future work will focus on full implementation 

and optimization for such platforms. 

4.  Conclusion 

This study successfully developed a YOLOv12-based occupational safety detection model that is optimized to identify 

important safety objects such as APAR, evacuation signs, windows, and PPE in the form of masks, gloves, and shoes 

in the archive room environment. The results of model training showed superior performance compared to the previous 

YOLO version, with the final evaluation achievement being a precision of 0.853, a recall of 0.836, mAP@0.5 of 0.813, 

and mAP@0.5–0.95 of 0.570. Visualization through the Streamlit interface shows that the system is able to provide 

real-time prediction output with informative and structured room compliance level classification. The advantages of 

YOLOv12 in terms of architectural efficiency, application of attention areas, and optimization with SGD techniques 

have been proven to significantly increase the accuracy and speed of system inference.  

However, limitations are still found in terms of detection precision in minor classes such as windows and gloves, which 

show relatively lower prediction values due to the imbalance in the amount of data and visual similarity between 

classes. Therefore, further research can be focused on improving the representation of minor class data, using data 

balancing techniques such as focal loss or oversampling, and exploring the combination of YOLOv12 with 

segmentation or attention fusion architectures to support more complex spatial classification. In addition, expanding 

the implementation of the system into a real-time hospital environment and integrating with IoT sensors are also 

relevant development potentials to support digital transformation in OSH monitoring, using Jetson Nano or Raspberry 

Pi for real-time inference in hospital rooms, integrating camera data and IoT sensors. To improve the performance of 

underrepresented classes, future work should explore targeted augmentation techniques, selective oversampling, and 

class-weighted loss functions such as focal loss to reduce the impact of class imbalance. Future work should compare 

optimizers like Adam and AdamW to validate the choice of SGD and identify the most effective strategy for safety 

object detection in constrained settings. Perform temporal modeling to detect persistent risks such as blocked exits and 

repeated non-use of PPE. It will also further improve label consistency for similar objects using consensus annotation 

and model-assisted relabeling. 

mailto:mAP@0.5–0.95
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