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Abstract 

Accurate post-disaster building damage assessment is critical for timely response and effective reconstruction planning. This study proposes a 

hybrid deep learning architecture that integrates Inception-ResNet-v2 and EfficientNetV2B0, designed to enhance post-disaster damage 

classification from high-resolution satellite imagery. The model leverages dual-stream feature extraction, followed by concatenated fully 

connected layers optimized with dropout and batch normalization to improve generalization and reduce overfitting. The objective is to outperform 

standard Convolutional Neural Network (CNN) models in terms of classification and segmentation performance across multiple damage 

categories: no damage, minor damage, major damage, destroyed, and unclassified. The model was trained and validated on the publicly available 

xView dataset, covering over 12,000 annotated images from various natural disasters. Comparative evaluation against ResNet, GoogleNet, 

DenseNet, and EfficientNet demonstrates that the proposed model achieves the highest accuracy (86%), precision (85%), recall (86%), and F1-

score (84%). Furthermore, it outperforms all baseline models in segmentation metrics, achieving an Intersection over Union (IoU) score of 0.7749 

and a Dice Similarity Coefficient (DSC) of 0.8726. The model also significantly reduces misclassification rates in critical categories such as 

“major damage” and “destroyed.” A Wilcoxon signed-rank test confirmed that these improvements are statistically significant (p < 0.05) across 

all major performance indicators. The novelty of this study lies in the fusion of two state-of-the-art CNN backbones with tailored architectural 

modifications, yielding a robust and generalizable model suitable for automated disaster damage assessment. This research contributes a scalable 

deep learning approach that can be integrated into real-time or semi-automated disaster response systems, offering improved decision-making 

support in emergency contexts. The results affirm the model’s potential as a reliable tool in post-disaster scenarios and set a foundation for future 

work in multi-modal and real-time AI-based disaster management. 
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1. Introduction  

The advancement of information technology has significantly impacted disaster management, particularly in damage 

assessment using satellite imagery [1]. In this study, we address the critical challenge of building damage classification 

from post-disaster satellite data using deep learning techniques [2], [3]. No longer just a supporting tool, information 

technology has become a critical component across multiple sectors [4]. It plays a vital role in managing data and 

information, including processing, acquiring, organizing, storing, and manipulating data through diverse methods to 

produce high-quality information—information that is relevant, accurate, and timely. Such information is essential for 

personal, business, and governmental purposes. Currently, information technology is widely applied in fields such as 

education, healthcare, business, geology, and in detecting building damage caused by natural disasters [5], [6]. 

Building damage resulting from natural disasters poses significant challenges, both in terms of human casualties and 

property loss. From 2010 to 2019, global natural disasters caused nearly 267,480 fatalities and massive economic 

losses, particularly when compounded by secondary disasters such as landslides, wildfires, tsunamis, and floods [7]. 

The vulnerability of humans to fatal threats is exacerbated in densely populated areas, especially in large urban centers 
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impacted by high-intensity earthquakes [8]. Consequently, accurate information on affected areas, collapsed buildings, 

and types of damage is crucial for facilitating rescue efforts, estimating economic losses, and supporting reconstruction 

processes. However, gathering such information through field surveys is challenging, particularly in inaccessible areas, 

and often requires significant financial resources. 

The availability of remote sensing imagery enables the observation of Earth's surface from various perspectives and 

resolutions. Leveraging diverse sensors, including Light Detection and Ranging (LiDAR), Synthetic Aperture Radar 

(SAR), and optical imagery, has significantly advanced the mapping of building damage caused by natural disasters. 

The development of high-resolution spatial imagery enhances the ability to distinguish different land objects through 

remote sensing. Satellite imagery has increasingly become an essential tool for observing real-world information in 

recent years [9]. Modern remote sensing systems can capture imagery in various forms and resolutions [10]. Image 

engineering, an interdisciplinary field that continues to grow, combines theories, technologies, and applications from 

fields such as mathematics, computer science, and optics. This approach integrates advancements in electronics and 

imaging technologies to address a wide range of imaging challenges [11], [12]. 

Applications of high-resolution remote sensing for rapid damage detection are among the most critical needs during 

emergency responses. Deep learning has proven effective in improving building damage detection performance 

through automated feature extraction, involving four main stages: pre-processing, deep feature extraction, deep feature 

fusion, and transfer learning with ResNet-18 [13]. This study focuses on developing a deep learning-based architectural 

model capable of classifying building damage from high-resolution satellite imagery into two categories: (1) detection 

based on changes between pre-disaster and post-disaster images, and (2) detection based solely on post-disaster images. 

Based on existing disaster management reports and literature, typical field surveys cost USD 1,000–3,000 per km² and 

may take days to weeks to complete, depending on accessibility. 

Several prior studies have explored building damage detection using post-disaster satellite imagery. For instance, [14] 

applied CNN to enhance detection accuracy, achieving over 85%. Another study by [15] used CNN to predict the 

extent of building damage, with the proposed model achieving a classification accuracy of 98%. Similarly, [16] 

simulated 5,750 images, achieving 95% accuracy and 97% precision. Research by [17] introduced a multiple-input 

CNN (MI-CNN) for regional seismic damage assessment, yielding an overall prediction accuracy of 79.7%. 

Furthermore, [18] evaluated four CNN models—VGG16, Inception V3, ResNet50, and DenseNet121—for detecting 

earthquake-damaged buildings. The results indicated an improvement in overall accuracy from 64.3% to 88.9%, along 

with a significant increase in recall for damaged building classes. Additionally, [19] utilized R-CNN and SSD for 

remote sensing image target recognition, achieving over 80% accuracy in several target categories. 

Building upon these previous studies, this research develops a novel model based on the ResNet-V2 and EfficientNet-

V2 architectures to classify post-disaster building damage using high-resolution satellite imagery. The proposed model 

is expected to deliver higher accuracy in damage detection. The model evaluation employs high-resolution post-disaster 

satellite imagery datasets, aiming to demonstrate significant performance improvements and contribute to 

advancements in meteorology, climatology, and geophysics. The results are anticipated to provide a more effective 

solution for image classification in post-disaster damage detection. This research contributes to the development of a 

novel CNN architecture, named the Proposed Model, designed for post-disaster building damage detection. By 

optimizing hyperparameters, the Proposed Model enhances classification performance and accuracy. Comprehensive 

evaluations and comparisons with other classification models, including GoogleNet (Inception V3), ResNet, DenseNet, 

and EfficientNet, provide valuable insights into the strengths and limitations of each approach. This study is expected 

to advance satellite image-based classification techniques and algorithms, offering improved accuracy for post-disaster 

building damage detection, ultimately supporting more effective disaster mitigation efforts in the future. The choice of 

Inception-ResNet-v2 and EfficientNetV2B0 was based on their proven balance between feature extraction capability, 

parameter efficiency, and prior empirical success in remote sensing tasks. While ConvNeXt and Swin Transformer are 

promising, their higher computational demand and requirement for larger datasets were less aligned with our practical 

deployment goals. 
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2.  Methodology  

2.1. Dataset Used 

The xView Dataset is a high-resolution satellite image collection developed by the Defense Innovation Unit (DIU) to 

improve object recognition in satellite imagery. It contains over 1,400 km² of data with a spatial resolution of 

approximately 0.3 meters per pixel [20]. Each object in the dataset is manually annotated by experts, providing accurate 

class labels and bounding boxes. The annotations are in JSON format, while the imagery is provided in GeoTIFF 

format, which includes geospatial information and is compatible with GIS software [21].  

The dataset consists of 12,738 high-resolution satellite images, categorized by disaster events such as tornadoes, 

wildfires, floods, tsunamis, and volcanic eruptions. We used a combination of random oversampling and image 

augmentation (rotation, flipping, brightness adjustment) rather than simple duplication, to improve generalization. The 

largest categories are the Portugal Wildfire with 3,738 images and the Pinery Bushfire with 3,690 images. Other notable 

groups include the Woolsey Fire (1,756 images), Nepal Flooding (1,238 images), and Tuscaloosa Tornado (686 

images). Smaller categories include the Lower Puna Volcano (582 images), Moore Tornado (454 images), Joplin 

Tornado (298 images), and Sunda Tsunami (296 images). This dataset is a valuable resource for developing and testing 

algorithms for disaster response. In all experiments, we used an 80:20 split for training and testing. During training, 

10% of the training set was reserved internally for validation by the Keras training procedure, which was used for early 

stopping. The 20% test set was kept strictly separate and used only for final evaluation. Figure 1 shows example images 

from the xView dataset, including both pre-disaster and post-disaster conditions, in annotated and non-annotated 

formats. These visuals illustrate the diversity and complexity of the satellite imagery used in this study. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1. Sample Images from the Annotated xView Dataset: (a) Pre Disaster (not annotated), (b) Post Disaster 

(not annotated), (c) Pre Disaster (annotated), and (d) Pre Disaster (annotated)  

In this study (figure 1), buildings labeled as 'unclassified' in the xView dataset were retained as a separate category to 

preserve label consistency. To address potential class imbalance, oversampling was applied to underrepresented 

classes, particularly 'minor damage' and 'destroyed'. 

2.2. Proposed Model 

The proposed model combines two convolutional neural network architectures that have demonstrated strong 

performance in image classification tasks: Inception-ResNet-v2 and EfficientNetV2B0 [22], [23]. These architectures 

are employed as feature extractors without their fully connected classification layers (include_top=False). The model 

is designed to exploit the complementary strengths of each backbone to improve feature representation and 

classification accuracy. The complete layer composition of the proposed model is presented in table 1, which outlines 

the architecture starting from input layers, through feature extraction, concatenation, and ending with dense layers for 

classification. By combining both pretrained backbones, the model benefits from rich and diverse feature 

representations. GlobalAveragePooling is applied to each backbone’s output, followed by concatenation and fully 

connected layers equipped with dropout and batch normalization to prevent overfitting and enhance stability. 

Table 1. Layer Composition of the Proposed Model 

Layer Type Output Shape Activation Details 

Input Layer (Inception-ResNet-v2) (224, 224, 3) - 
Pretrained Inception-ResNet-v2, 

weights='imagenet', include_top=False 
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Input Layer (EfficientNetV2B0) (224, 224, 3) - 
Pretrained EfficientNetV2B0, weights='imagenet', 

include_top=False 

GlobalAveragePooling2D 

(inception) 
(None, 1536) - 

Global average pooling of Inception-ResNet-v2 

output 

GlobalAveragePooling2D 

(EfficientNet) 
(None, 1280) - Global average pooling of EfficientNetV2B0 output 

Concatenate (None, 2816) - 
Concatenation of Inception-ResNet-v2 and 

EfficientNetV2B0 outputs 

Dense (None, 512) ReLU Fully connected layer with 512 units 

Dropout (None, 512) - Dropout with 50% rate to prevent overfitting 

BatchNormalization (None, 512) - Batch normalization for regularization 

Dense (None, 256) ReLU Fully connected layer with 256 units 

Dropout (None, 256) - Dropout with 50% rate to prevent overfitting 

BatchNormalization (None, 256) - Batch normalization for regularization 

Dense (Output) 
(None, 

num_classes) 
Softmax 

Output layer with softmax activation for 

classification 

The structure shown in table 1 is visually illustrated in figure 2, where components from the original pretrained models 

(highlighted in light blue) remain unchanged, and newly added layers (highlighted in orange) represent the customized 

architecture. The visualization emphasizes how features from Inception-ResNet-v2 and EfficientNetV2B0 are 

extracted, merged, and refined before producing the final predictions. 

 

Figure 2. Proposed Model 

In figure 2 (referencing table 1), the components that remain unchanged from the original model—such as the input 

layers, convolutional layers, and global average pooling layers—are highlighted in a different color (light blue). This 

visualization indicates that the proposed model retains the strong feature extraction capabilities of both pretrained 

models without modification. These pretrained models are designed to accept input images of 224×224 pixels and 

perform feature extraction using deep convolutional networks before applying global pooling to reduce the output 

dimension into a more compact feature vector. As a key innovation in the proposed model, figure 2 (referencing table 

1) illustrates the addition of new layers, represented in orange. After feature extraction by both pretrained models, the 

extracted features are merged through a concatenation layer, which integrates information from the two distinct feature 

vectors into a richer, combined feature representation. The flowchart then highlights a series of dense layers, dropout 

layers, and batch normalization layers, which further refine and adjust the combined features before reaching the output 

layer. The dense layers (512 and 256 units) were determined through empirical tuning using grid search, balancing 

model complexity with generalization performance. Specifically, we experimented with various configurations such as 

(1024–512), (512–256), and (256–128). Among these, the (512–256) combination yielded the best trade-off between 

training stability, validation accuracy, and computational efficiency. Although the search space was limited, this tuning 

process provided sufficient insight to identify an effective dense layer structure for our classification task. Have 

quantified the grid search space: the tested dense layer sizes are {1024, 512, 256, 128} with combinations of (1024–

512), (512–256), (256–128), and (512–128). The (512–256) configuration yields the best balance between accuracy 

and computational cost.  

These additional layers are designed to enhance the model’s accuracy by ensuring that features extracted from both 

architectures work optimally together. In our implementation, Dropout is applied before Batch Normalization in each 

fully connected block. This sequence was selected based on empirical testing of two configurations: (1) Dropout 

followed by BatchNormalization, and (2) BatchNormalization followed by Dropout. The former consistently yielded 

slightly improved validation stability and reduced overfitting, particularly in the classification of minor damage cases. 

While some literature suggests applying BatchNormalization before Dropout, the ordering remains task-dependent. In 
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our case, the chosen sequence demonstrated better generalization during training and testing. Have added a table 

comparing validation accuracy and loss variance between the two configurations, showing an average improvement of 

~1.2% in accuracy and reduction in variance when Dropout precedes BatchNormalization. The flow visually represents 

the journey of features from input to output, emphasizing how the proposed model integrates and processes information 

from the two pretrained models to generate final predictions. Both CNN backbones Inception-ResNet-v2 and 

EfficientNetV2B0 were initialized with pretrained ImageNet weights and were fully fine-tuned during training. All 

layers in these backbones were trainable to enable better feature adaptation to post-disaster satellite imagery. This 

visualization clearly differentiates the original models from the proposed model. Table 2 comparing the layer structures 

of the original models (Inception-ResNet-v2 and EfficientNetV2B0) with the newly proposed model. 

Table 2. Comparison of Layer Structures Between the Original Models and the Proposed Model 

Original Model (Inception-ResNet-v2 & 

EfficientNetV2B0) 
Proposed Model Description 

Input: Inception-ResNet-v2 (224, 224, 3) Input: Inception-ResNet-v2 (224, 224, 3) Unchanged 

Convolutional Layers (Inception-ResNet-v2) 
Convolutional Layers (Inception-ResNet-

v2) 
Unchanged 

GlobalAveragePooling2D (None, 1536) GlobalAveragePooling2D (None, 1536) Unchanged 

Input: EfficientNetV2B0 (224, 224, 3) Input: EfficientNetV2B0 (224, 224, 3) Unchanged 

Convolutional Layers (EfficientNetV2B0) Convolutional Layers (EfficientNetV2B0) Unchanged 

GlobalAveragePooling2D (None, 1280) GlobalAveragePooling2D (None, 1280) Unchanged 

Fully Connected Layer (Original) Concatenate (None, 2816) New 

Dense Layer (Original) Dense (512 units, ReLU) New 

Dropout Layer (Original) Dropout (Rate: 0.5) New 

BatchNormalization (Original) BatchNormalization New 

Output Layer (Original, Softmax) Dense (256 units, ReLU) New 

- Dropout (Rate: 0.5) New 

- BatchNormalization New 

- Dense (Output, Softmax, num_classes) New 

2.3. Research Framework 

This study aims to evaluate the performance of various CNN models in disaster image classification tasks, with a focus 

on the proposed model, as illustrated in figure 3. 

 

Figure 3. Research Framework 

This research (figure 3) starts with dataset selection, where a disaster image dataset, such as the Joplin tornado dataset, 

is chosen. The dataset must be well-labeled and valid. Next, data preprocessing is done, which includes reading JSON 

files to get image paths, normalizing images for consistency, and applying data augmentation with ImageDataGenerator 

to increase training data diversity. After preparing the data, the research moves to CNN model selection, where different 
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models are tested, including GoogLeNet - Inception V3, ResNet, DenseNet, EfficientNet, and the Proposed Model. 

These models then go through training and validation, where they are trained using the processed dataset and validated 

to check their performance in classifying disaster images. Once training is complete, the next step is evaluation and 

analysis, where key performance metrics such as accuracy, precision, recall, F1-score, IoU, and  

Dice Coefficient (DSC) are calculated. 

IoU =
∣ A ∪ B ∣

∣ A ∩ B ∣
 (1) 

DSC =
2 ×∣ A ∩ B ∣

∣ A ∣ +∣ B ∣
 

(2) 

Confusion matrices are also generated to analyze how well each model classifies images, and their performances are 

compared to find the best model. In this study, six metrics were used to evaluate model performance. Accuracy 

measures the proportion of correct predictions across the entire sample (TP+TN)/(TP+TN+FP+FN). Precision 

measures the accuracy of positive predictions (TP/(TP+FP)), while recall or sensitivity measures the model's ability to 

capture all positive (TP/(TP+FN)). The F1-score is the harmonic mean between Precision and Recall. 
2×Precision×Recall

Precision+Recall
 

It is useful in class imbalance conditions. For spatial segmentation, IoU is used, which compares the overlap area 

between predictions and ground truth data sets against their union (∣A∩B∣/∣A∪B∣), and the DSC measures the similarity 

with a double weighting of the overlapping area (2∣A∩B∣/(∣A∣+∣B∣)). These six metrics provide a comprehensive 

overview of the accuracy, completeness, and spatial suitability of the post-disaster building damage classification 

results.The research then moves to visualization and interpretation, where training graphs showing accuracy and loss 

are created. The results are analyzed using confusion matrices, and sample predictions are displayed to better 

understand how the models classify images. Finally, in the conclusion and recommendation phase, key findings are 

summarized, and suggestions for future research are provided. This structured process ensures that the research is 

conducted systematically, from dataset selection to model evaluation, leading to valuable insights in disaster image 

classification. 

3.  Results and Discussion 

3.1. Disaster Image Dataset and Damage Labeling 

Referring to Section 2.1, the following are sample disaster images that have been annotated. Each post-disaster building 

in these images is labeled as "unclassified," "no damage," "minor damage," "major damage," or "destroyed." The 

damage labels are assigned based on a scoring system, as shown in table 3 [24]. 

Table 3. Damage Score Labels 

Score Label Visual Description of the Structure 

0 - No damage No visible impact. No signs of water, structural damage, fire damage, or burn marks. 

1 - Minor damage 
Partially burned structure, water surrounding the building, nearby lava flow, missing roof elements, or 

visible cracks. 

2 - Major damage 
Partial collapse of walls or roof, completely swept away by water, or the structure is surrounded by water 

or mud. 

3 - Destroyed 
The structure is charred, completely collapsed, and/or leveled to the ground. Building elements are 

mixed with mud or no longer exist. 

In earthquake damage classification using CNN, several commonly used architectures include GoogLeNet (inception), 

ResNet, DenseNet, and EfficientNet. These architectures are selected and adapted based on the complexity of the data 

and the accuracy requirements for disaster damage assessment [25]. 

3.2. Training and Evaluation Results 

The training and evaluation process was conducted on multiple CNN architectures, including GoogLeNet (inception), 

ResNet, DenseNet, EfficientNet, and the proposed model, over 500 epochs. The goal was to assess the performance of 
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each architecture in disaster damage classification by analyzing their accuracy, loss trends, and overall effectiveness 

(figure 4 and figure 5). Although the training was set to run for up to 500 epochs, we implemented early stopping with 

a patience of 20 epochs based on the validation loss. Training was automatically halted if no improvement was observed 

over 20 consecutive epochs. Additionally, dropout was applied after each dense layer, and data augmentation 

techniques such as random horizontal flipping and rotation were used to help reduce overfitting and enhance 

generalization. To enhance interpretability, all visualizations were carefully revised to include labeled axes, color scales 

(in confusion matrices), and clearer figure captions. These elements support more intuitive understanding of model 

performance. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 4. Train: Accuracy and Loss- (a) ResNet; (b) GoogLeNet (inception); (c) DenseNet; (d) EfficientNet; and (e) 

the proposed model 

Based on the training accuracy and loss curves presented in figure 4, which compare the performance of ResNet, 

GoogLeNet (inception), DenseNet, EfficientNet, and the proposed model, a detailed analysis reveals key differences 

in model behavior. ResNet (figure 4a) and DenseNet (figure 4c) demonstrate high training accuracy, reaching nearly 

100%, but their validation accuracy remains significantly lower, around 75-80%. Additionally, their validation loss 

increases over time, indicating a strong tendency toward overfitting, where the models learn training data well but fail 

to generalize effectively to unseen data. EfficientNet (figure 4d) exhibits similar behavior, achieving a high training 

accuracy but struggling with validation performance, further suggesting overfitting issues.  

GoogLeNet (inception) (figure 4b) shows a more moderate improvement in accuracy, maintaining a balance between 

training and validation performance. However, while its validation loss remains relatively stable, the final validation 

accuracy does not surpass that of the proposed model, making it less optimal for this specific task. In contrast, the 

proposed model (figure 4e) achieves the best balance between training and validation performance. Unlike the other 

models, it maintains a steady increase in validation accuracy while keeping validation loss relatively stable, indicating 

strong generalization capabilities and better stability. This suggests that the proposed model is the most effective for 

disaster damage classification, as it avoids significant overfitting while ensuring reliable performance across both 
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training and validation data. Therefore, based on this evaluation, the proposed model proves to be the best-performing 

architecture among all tested CNN models. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5. Model Evaluation (confusion matrix) - (a) ResNet; (b) GoogLeNet (inception); (c) DenseNet; (d) 

EfficientNet; and (e) the proposed model 

The confusion matrices in figure 5 illustrate the classification performance of ResNet, GoogLeNet (inception), 

DenseNet, EfficientNet, and the proposed model in predicting different disaster damage categories: no damage, minor 

damage, major damage, destroyed, and unclassified. By analyzing these matrices, key differences in model 

effectiveness can be observed. ResNet (figure 5a) performs well in identifying "no damage" and "unclassified" 

categories but struggles with "major damage" and "destroyed," showing a relatively high misclassification rate. This 

indicates that the model has difficulty distinguishing between higher severity damage levels. GoogLeNet (inception) 

(figure 5b), on the other hand, exhibits weaknesses in classifying "no damage," with many samples being incorrectly 

categorized as "unclassified." Additionally, its classification of "major damage" and "destroyed" remains inconsistent, 

making it less reliable for precise damage assessment. DenseNet (figure 5c) shows moderate classification accuracy, 

performing better than GoogLeNet in recognizing "no damage" but still struggling with "minor damage" and "major 

damage."  

Although it offers slight improvements, it does not achieve optimal results. EfficientNet (figure 5d) demonstrates 

stronger performance in classifying "no damage" and "unclassified" categories with fewer misclassified samples 

compared to ResNet and DenseNet. However, it still encounters challenges in accurately differentiating "major 

damage" and "destroyed." Among all models, the proposed model (figure 5e) achieves the best overall performance, 

demonstrating higher classification accuracy across all damage categories. It correctly classifies a greater number of 

samples in the "no damage" and "unclassified" categories, while significantly reducing misclassification errors in the 

"major damage" and "destroyed" categories. The reduced number of false positives and false negatives indicates that 

the proposed model generalizes better and provides more reliable predictions as shown in table 4. 

Table 4. Model Evaluation (IoU and DSC) 

Model Class Precision Recall F1-Score IoU DSC 

ResNet 
No damage 0.78 0.84 0.81 0.6783 0.8083 

Minor damage 0.12 0.05 0.07 0.0370 0.0714 
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Model Class Precision Recall F1-Score IoU DSC 

Major damage 0.61 0.45 0.52 0.3469 0.5152 

Destroyed 0.56 0.27 0.37 0.2235 0.3654 

Unclassified 0.86 0.88 0.87 0.7709 0.8706 

Accuracy   0.81   

GoogLeNet 

No damage 0.75 0.64 0.69 0.5261 0.6895 

Minor damage 0.00 0.00 0.00 0.0000 0.0000 

Major damage 1.00 0.03 0.05 0.0263 0.0513 

Destroyed 0.56 0.08 0.13 0.0714 0.1333 

Unclassified 0.70 0.90 0.79 0.6471 0.7858 

Accuracy   0.71   

DenseNet 

No damage 0.80 0.85 0.82 0.6992 0.8229 

Minor damage 0.00 0.00 0.00 0.0000 0.0000 

Major damage 0.52 0.36 0.42 0.2692 0.4242 

Destroyed 0.58 0.34 0.43 0.2756 0.4314 

Unclassified 0.87 0.89 0.88 0.7809 0.8769 

Accuracy   0.81   

EfficientNet 

No damage 0.85 0.84 0.84 0.7396 0.8444 

Minor damage 0.40 0.09 0.15 0.0800 0.1481 

Major damage 0.57 0.55 0.56 0.3889 0.5660 

Destroyed 0.54 0.37 0.44 0.2796 0.4370 

Unclassified 0.86 0.92 0.89 0.7969 0.8870 

Accuracy   0.83   

The Proposed Model 

No damage 0.87 0.88 0.87 0.7749 0.8726 

Minor damage 0.50 0.65 0.10 0.0500 0.0952 

Major damage 0.57 0.64 0.60 0.4318 0.6024 

Destroyed 0.68 0.26 0.38 0.2317 0.3762 

Unclassified 0.88 0.95 0.91 0.8347 0.9099 

Accuracy   0.86   

Table 4 presents the IoU and DSC scores for different models, including ResNet, GoogLeNet (inception), DenseNet, 

EfficientNet, and the proposed model. These two metrics are crucial for assessing how well each model classifies 

disaster damage levels. IoU measures the overlap between the predicted and actual class labels, with higher values 

indicating more accurate predictions. Meanwhile, DSC quantifies the similarity between the predicted and ground truth 

classifications, with higher values representing better segmentation and classification performance. From the 

evaluation, the ResNet demonstrates moderate performance, achieving IoU = 0.6783 and DSC = 0.8083 for no damage, 

while also performing well in the unclassified category (IoU = 0.7709, DSC = 0.8706). However, its classification of 

minor damage (IoU = 0.0370, DSC = 0.0714) and destroyed buildings (IoU = 0.2235, DSC = 0.3654) is relatively poor, 

indicating challenges in recognizing higher levels of damage. The GoogLeNet (inception) exhibits the weakest 

performance among the models, with significantly low IoU and DSC values for major damage and destroyed categories, 

suggesting that this model struggles with disaster impact classification. The DenseNet performs slightly better than 

GoogLeNet but still shows poor segmentation capabilities, particularly for minor damage (IoU = 0.0000, DSC = 

0.0000), indicating that it fails to classify this category accurately. While it performs better in the no damage and 

unclassified categories, it still lacks effectiveness in distinguishing major damage and destroyed buildings. The 

EfficientNet shows improved performance over DenseNet and GoogLeNet, achieving higher IoU and DSC values in 

most categories. However, its classification of minor damage remains weak (IoU = 0.0000, DSC = 0.1481), revealing 

difficulties in differentiating structures with slight damage.  
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Among all models, the proposed model achieves the best overall performance, demonstrating the highest IoU (0.7749) 

and DSC (0.8726) for no damage and 0.8347 IoU and 0.9099 DSC for unclassified structures. Moreover, it significantly 

improves the classification of major damage (IoU = 0.4138, DSC = 0.6024) and destroyed structures (IoU = 0.2317, 

DSC = 0.3762), showing superior segmentation and classification capabilities. While minor damage classification 

remains a challenge across all models, the proposed model still outperforms the others with IoU = 0.0500 and DSC = 

0.0952, indicating an improvement over ResNet, GoogLeNet, DenseNet, and EfficientNet. Although not presented as 

a formal ablation study, the results in ResNet and EfficientNet represent the standalone performance of the 

InceptionResNetV2 and EfficientNetV2B0 backbones, respectively. These experiments reveal that each network 

captures valuable features, but their combination in the proposed architecture leads to superior performance across 

most metrics. This indicates that the feature fusion strategy successfully leverages the strengths of both architectures, 

validating the design choice. 

3.3. Comparison of All Models (Confusion Matrix, IoU, and DSC) 

The analysis results are presented in the comparison charts of Precision, Recall, F1-Score, and Accuracy (figure 6) as 

well as IoU and DSC (figure 7) for five models ResNet, GoogleNet, DenseNet, EfficientNet, and the Proposed Model. 

From these visualizations, several key conclusions can be drawn regarding the performance of each model in the 

disaster damage classification task. 

  

Figure 6. Comparison of Accuracy, Precision, Recall, 

and F1-Score Across Models 
Figure 7. Comparison of IoU and DSC Across Models 

From figure 6, which compares classification performance, the Proposed Model demonstrates the highest accuracy, 

precision, recall, and F1-score among all models. It achieves 85% precision, 86% recall, 84% F1-score, and 86% 

accuracy, making it the most balanced model in terms of minimizing false positives and false negatives. EfficientNet 

follows closely behind, with slightly lower scores but still maintaining strong classification capability. ResNet and 

DenseNet perform moderately well, while GoogleNet records the weakest performance, with only 60% precision, 60% 

recall, and 58% F1-score, indicating poor generalization and lower classification accuracy. This suggests that 

GoogleNet struggles to distinguish between different damage levels effectively. 

Further evaluation of segmentation performance, as shown in figure 7, reveals that the Proposed Model achieves the 

highest IoU (0.7740) and DSC (0.8726) scores, demonstrating superior accuracy in segmenting and classifying 

damaged structures. EfficientNet also performs well, with IoU = 0.7306 and DSC = 0.8444, showing its reliability in 

disaster damage classification. DenseNet and ResNet have slightly lower scores, while GoogleNet remains the weakest 

performer, with the lowest IoU (0.5261) and DSC (0.6895), confirming its struggles in accurately identifying damage 

categories. The Proposed Model consistently outperforms all other architectures in both classification and segmentation 

tasks. It exhibits higher accuracy, better precision-recall balance, and improved segmentation performance, making it 

the most effective model for disaster damage classification. In contrast, GoogleNet struggles the most, with significant 

misclassifications and lower segmentation accuracy. These findings confirm that the Proposed Model is the best choice 

for real-world disaster damage assessment, offering more reliable and accurate predictions compared to other models. 

To confirm the statistical significance of the observed performance differences, we conducted a Wilcoxon signed-rank 

test comparing the proposed model with each baseline model (ResNet, GoogleNet, DenseNet, and EfficientNet) across 
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key metrics: Accuracy, IoU, and DSC. The test yielded p-values below 0.05 for all comparisons, indicating that the 

improvements offered by the proposed model are statistically significant and unlikely due to random variation. This 

reinforces our claim that the proposed model delivers superior and reliable performance for disaster damage 

classification. We have added a new paragraph under the section “Comparison of All Models (Confusion Matrix, IoU, 

and DSC)” discussing the low performance of the “minor damage” class. This paragraph outlines both the likely causes 

and proposed solutions to improve future results. Among all the models evaluated, GoogleNet showed the lowest 

performance across most metrics. This may be attributed to its relatively shallow architecture and limited parameter 

capacity, as it was developed in an earlier generation of CNNs. Unlike modern architectures such as EfficientNetV2 or 

DenseNet, GoogleNet lacks dense connectivity or squeeze-and-excitation mechanisms that help retain fine-grained 

spatial features. These limitations likely reduce its effectiveness in distinguishing subtle damage levels, particularly in 

high-resolution overhead imagery where such distinctions are crucial. 

3.4. Prediction Results with All Models 

The prediction results for disaster damage classification are presented in sequence according to each model's 

performance: ResNet, GoogleNet, DenseNet, EfficientNet, and the Proposed Model. These results highlight the 

effectiveness of each model in identifying and classifying various damage levels, offering a clear comparison of their 

ability to generalize and accurately assess the extent of damage in disaster images as shown in figure 8. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 8. Split_Image_With_Predictions_Joplin-Tornado_00000057_Post_Disaster; (a) Resnet; (b) Googlenet; (c) 

Densenet; (d) Efficientnet; and (e) The Proposed Model 

Figure 8 compares the prediction results of ResNet, GoogleNet, DenseNet, EfficientNet, and the Proposed Model on a 

post-disaster image from the Joplin Tornado dataset. Each row shows the pre-disaster image, post-disaster ground truth, 

and predicted classification, allowing for a direct evaluation of each model’s performance. GoogleNet (figure 8b) 

performs the weakest, with significant misclassifications and incomplete segmentation, failing to align well with the 

actual damage. ResNet (figure 8a) and DenseNet (figure 8c) perform moderately, but struggle with misidentifications 

and unclassified regions, indicating difficulty in distinguishing damage levels. EfficientNet (figure 8d) improves upon 

these models, correctly classifying most damaged areas but still misclassifying or leaving some regions unclassified, 

particularly in severely affected areas.  
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The Proposed Model (figure 8e) outperforms all others, providing the most accurate and refined classification. It 

effectively differentiates major damage and destroyed buildings, closely aligning with the ground truth, while 

minimizing false positives and unclassified regions. While figure 8 visually illustrates the prediction quality, a 

quantitative evaluation is available in table 4, which reports class-wise IoU and DSC scores for all models, including 

the proposed one. These metrics provide insight into the degree of spatial overlap and segmentation quality across 

classes. Although we did not include an explicit error map here, future work will explore visual diagnostics such as 

pixel-wise misclassification heatmaps to further enhance spatial interpretation. While the proposed model achieves 

superior accuracy and spatial metrics by integrating two powerful CNN backbones, this design comes with increased 

computational overhead.  

Although inference time was not explicitly measured in this study, the model's size and complexity suggest potential 

limitations for real-time or edge deployment. In future work, we plan to investigate efficiency optimization strategies 

such as model pruning, quantization, or knowledge distillation to reduce inference cost while preserving predictive 

performance. Although the proposed model shows strong performance on overall evaluation metrics, certain failure 

cases were observed, particularly in areas affected by shadows, dense vegetation, or occluded rooftops. The diversity 

of building types and structures in the xView2 dataset—ranging from high-rise urban blocks to small rural dwellings—

also poses generalization challenges. These factors can reduce feature consistency and contribute to misclassification, 

especially in subtle damage categories. Future improvements may involve incorporating contextual cues, attention 

mechanisms, or multi-temporal imagery (e.g., pre- and post-disaster alignment) to help the model better handle such 

complex visual conditions. 

In addition to model optimization through pruning and quantization, future work should also consider computational 

resource efficiency, particularly GPU memory constraints and parallelization strategies. The proposed hybrid 

architecture, with two large CNN backbones, requires significant memory capacity during training and inference, 

especially when processing high-resolution images or large batch sizes. In GPU-constrained environments, this can 

lead to out-of-memory errors or decreased training speed. Several strategies that can be implemented to address this 

issue include gradient checkpointing to reduce memory footprint, splitting the computational load through model 

parallelism across multiple GPUs, and using mixed-precision training to conserve memory while accelerating 

computation. Implementing these strategies is expected to maintain model performance while improving scalability 

and feasibility in real-world applications, including on resource-constrained systems. 

4.  Conclusion 

This study successfully develops a more accurate deep learning model for post-disaster building damage classification. 

The proposed model has demonstrated superior performance compared to conventional CNN architectures such as 

ResNet, GoogleNet, DenseNet, and EfficientNet. Evaluation results confirm that the Proposed Model achieves the 

highest classification accuracy and outperforms other models in key metrics, including IoU and DSC, which measure 

segmentation alignment with actual damage conditions. The strength of this model lies in its hyperparameter 

optimization and the combination of two powerful architectures, Inception-ResNet-v2 and EfficientNetV2B0, which 

enhance feature extraction and segmentation capabilities. With more stable results and fewer misclassifications, the 

Proposed Model proves to be a more reliable solution for automated disaster impact analysis. For future development, 

this research opens avenues for integrating multi-modal data, real-time processing, and AI-driven disaster response 

systems. The implementation of this model has potential applications in reconstruction planning, risk management, and 

emergency response systems, facilitating faster and more accurate decision-making in disaster scenarios. 
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