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Abstract 

This study aims to improve image super-resolution techniques by balancing distortion reduction with perceptual quality improvement. It 

introduces a new framework called Toward Improving Super-Resolution, which focuses on producing high-quality knee magnetic resonance 

images. The framework uses a lightweight, resolution-independent, feedforward convolutional network with 266,000 parameters, which includes 

smoothing and denoising preprocessing and Leaky Rectified Linear Unit activations for stable training. The model builds on a baseline deep 

learning architecture to improve training stability and visual quality while maintaining computational efficiency. The fast Magnetic Resonance 

Imaging knee dataset was compared to established super-resolution methods like Super-Resolution Convolutional Neural Network, Very Deep 

Super-Resolution, and Enhanced Deep Super-Resolution. Toward Improving Super-Resolution achieved a peak signal-to-noise ratio of 38.405 ± 

0.129 decibels and a structural similarity index of 0.9815 ± 0.0021, surpassing Super-Resolution Convolutional Neural Network, Very Deep 

Super-Resolution, and Enhanced Deep Super-Resolution. It maintained high performance at scales three and four, demonstrating accuracy and 

statistical robustness. The study shows that the proposed framework can enhance diagnostic imaging, reduce the need for repeated scans, and 

speed up clinical decision-making. 
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1. Introduction 

Image SR enhances image resolution, transforming blurred and Low-Resolution (LR) images into clear, HR versions. 

It improves visual perception and detail and can be achieved using either single or multiple images. HR images are 

crucial for various applications, including object detection [1], face recognition [2], medical diagnostics [3], remote 

sensing [4], astronomy [5], and forensics [6]. They are vital for accurate disease diagnosis, enabling the detection of 

small structures [2] and pathologies, like microvasculature changes around tumors [7] and subtle soft exudates in retinal 

diseases [8]. 

Even with advancements in imaging technology, many medical images still suffer from poor spatial resolution because 

of equipment and imaging limitations. Identifying small anatomical features and early disease detection is challenging. 

Furthermore, methods like X-ray and Computed Tomography (CT) scans expose patients to radiation, which carries 

risks [9]. Reducing radiation doses can increase noise and further diminish image quality. MRI is preferred over CT 

scans because it uses non-ionizing radiation, making it safer for repeated diagnostic imaging [10]. However, MRI scans 

often have lower resolution and longer acquisition times, which can limit their clinical usefulness, especially in imaging 

complex regions like the knee. 

Various interpolation-based methods have been used to enhance medical image resolution, but they often compromise 

edge sharpness and contrast. SR techniques improve image quality and assist in disease diagnosis, yet they remain 

challenging due to their ill-posed nature and complexity. Traditional performance metrics might not fully correspond 

with human perception. 
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The Super-Resolution Convolutional Neural Network (SRCNN) [11] model successfully tackles these challenges and 

demonstrates strong performance. As a groundbreaking deep learning method for single-image super-resolution, it 

improves LR images by learning end-to-end mapping to highresolution versions. 

The main advantages of SRCNN are its simplicity and effectiveness. With only three convolutional layers, SRCNN is 

easy to understand and implement. Despite its simplicity, it significantly outperforms traditional methods in image SR 

tasks. 

SRCNN laid the groundwork for deep learning-based SR but has limitations due to its shallow depth. This restricts its 

ability to capture complex patterns and textures. Subsequent models like Very Deep Super Resolution (VDSR) [12] 

and Enhanced Deep Super-Resolution (EDSR) [13] have addressed these issues with deeper architectures, residual 

connections, and adversarial training. 

However, both VDSR and EDSR have limitations when applied to knee MRI data. VDSR’s deep 20-layer architecture 

complicates training and requires significant computational resources, making it difficult to deploy in real-time or 

resource-limited clinical environments. EDSR, while removing batch normalization layers to improve performance, 

remains large and computationally intensive. Additionally, both models may not effectively address the low signal-to-

noise ratio and specific texture characteristics of knee MRI images. 

To address these issues, we build on the SRCNN architecture, aiming to maintain its simplicity while improving 

accuracy. Inspired by SRCNN’s effectiveness, we keep the model non-complex to simplify training. To balance 

performance and efficiency, we designed a lightweight, fully convolutional feedforward network comprising four 

layers without skip connections or pooling. We optimize the model through careful analysis and modifications, using 

the appropriate loss function. Experimental results show that the modified model produces better outcomes. 

Our method uses bicubic interpolation to upscale LR images before inputting them into our model. We also prepare 

MRI data by applying filters and blurs during preprocessing to improve data quality and ensure it is suitable for the 

model. We tested our model on the new fastMRI dataset from NYU Langone, focusing on knee single-coil MRI images. 

The SR network demonstrated state-of-the-art performance in enhancing the quality of these diagnostic images, as 

measured by Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). 

2.  Related Works 

The concept of SR techniques is converting LR images into HR images to obtain clear images with high visual quality. 

It is crucial for applications of medical imaging, as accurate diagnosis and treatment planning require HR images that 

are easier to analyze and better interpret. 

Learning-based methods use knowledge from an image database to achieve SR. They can learn complex mappings 

from LR to HR images. They generally outperform traditional methods in producing superior results due to their ability 

to leverage machine learning approaches. The three major learning-based SR techniques are neighbor embedding (NE), 

sparse coding, and deep learning approaches. NE assumes small patches of LR and HR make low-dimensional non-

linear manifolds with identical local geometry. Uses locally linear embedding (LLE) [14] to create HR patches [15]. 

Includes techniques like non-negative NE and least square approximation and Dual Geometric Neighbor Embedding 

(DGNE) [16]. 

Sparse Coding HR properties are retrieved by considering that LR and HR characteristics share similar sparse 

components of reconstruction [17], [18]. Techniques like orthogonal matching pursuit (OMP) and Principal Component 

Analysis (PCA) are used to reduce the dimensionality of LR characteristics [19], [20]. Methods include combining 

manifold regularization with sparse support regression [21], and Graph Embedding Super-Resolution (GESR) [22]. 

Deep Learning Approaches utilize neural networks for representation learning to directly map the relationship between 

input and output from data. These methods are data-driven and recover essential features for desired SR [23], [24]. 

Linear Connections are a type of neural network architecture consisting of a basic configuration characterized by a 

straightforward design that includes only one signal flow path without crossing multiple links or branches. The input 

flows directly from the first layer to the next subsequent layers sequentially, in which the multiple convolutional layers 
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are stacked on top of each other. Certain linear networks are learned to replicate residual images, which is the difference 

between LR images and HR images, and are classified as linear networks because of their structure [25], [26], [27]. 

We mention below the most prominent methods of linear connections. Firstly, SRCNN uses sequential convolutional 

layers and relies on pre-upsampled input, typically obtained using traditional interpolation methods [28], [29]. Besides, 

VDSR is a deep Convolutional Neural Networks (CNN) structure with 20 weighted layers, that learns residual mapping 

to provide a distinction between LR and HR images [12]. In addition, Denoising Convolutional Neural Network 

(DnCNN) Learns to directly forecast high-frequency residuals using convolutional, batch normalization, and Rectified 

Linear Unit (ReLU) layers [26]. Furthermore, Image Restoration Convolutional Neural Network (IRCNN) utilizes a 

series of CNN-based denoisers for image deblurring, denoising, and SR tasks [27]. Also, Fast SuperResolution 

Convolutional Neural Network (FSRCNN) enhances speed and performance over SRCNN with a basic design of four 

convolutional layers and one deconvolutional layer [30]. Another method, Enhanced Burst Super Resolution (EBSR) 

separates the multi-frame SR problem into alignment, fusion, and reconstruction parts using modules like FEPCD and 

CNLF [31]. Meanwhile, Wavelet Multiscale Convolutional Neural Network (WMCNN) trains CNNs separately to 

approximate wavelet multiscale representations for HR aerial image reconstruction [32]. Similarly, Efficient Subpixel 

Convolutional Neural Network (ESPCN) extracts feature information directly from LR images and generates HR 

images using a sub-pixel convolution layer [33]. Finally, Efficient Video Super-Resolution Network (EVSRNet) uses 

neural architecture search for real-time video super-resolution, balancing quality and efficiency [34].  

Despite advances in these methods, applying them directly to knee MRI images presents challenges due to the unique 

noise, texture, and anatomical features of this imaging modality. Specifically, deep models like VDSR and EDSR, 

while achieving high performance, are computationally expensive and often require large datasets for effective training, 

which limits their clinical usability. Our proposed model, Toward Improving Super-Resolution (TISR), addresses these 

limitations by adopting a lightweight architecture inspired by SRCNN, carefully optimized to balance simplicity and 

accuracy, making it a promising solution suitable for enhancing knee MRI images in real-world healthcare settings. 

3. Methodology 

In this section, we outline the architecture of the proposed model. We show the important components of our 

architecture and the crucial modifications that exhibit improved computational efficiency. The principal steps of our 

model start with the preprocessing phase, which applies blurs and filters on LR and HR MRI diagnostic images 

respectively, followed by selecting the appropriate activation function and finalizing the complete version of our model. 

3.1. Filters and Blurs in Data Preprocessing 

Filtering and blurring are essential preprocessing steps to enhance model performance and robustness in MRI SR tasks 

figure 1. They facilitate the creation of cleaner and more consistent input data, resulting in improved learning stability 

and reconstruction accuracy during both training and inference. We use bilateral filtering to reduce noise in HR MRI 

images while preserving edges and fine anatomical structures. This edge-aware denoising is crucial in SR because it 

prevents the model from learning blurred or inaccurate representations of important regions. Bilateral filtering 

combines spatial and intensity information to maintain structural integrity: 

𝐼𝑓𝑖𝑙𝑡𝑟𝑒𝑑(𝑥, 𝑦) =  
1
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Here, σd and σr control the spatial and intensity sensitivities, ensuring that edge features are preserved—vital for 

maintaining anatomical accuracy. 
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Conversely, we apply Gaussian blurring to LR MRI images to eliminate high-frequency noise and reduce irrelevant 

details. This enables the SR model to focus on reconstructing meaningful structures rather than amplifying noise. The 

2D Gaussian kernel is defined as : 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2
ℯ

−
𝑥2+𝑦2

2𝜎 
2

 (3) 

 

Figure 1. The Data Preprocessing Phase: Apply Bilateral Filtering for the HR MRI Images, and Gaussian Filter for 

LR MRI Images 

The standard deviation σ determines the level of smoothing applied. Together, these filters enhance SR performance 

by ensuring that both HR targets and LR inputs highlight anatomically relevant content. In early experiments, 

neglecting these filters delayed training convergence and slightly degraded SSIM results, suggesting their beneficial 

role. A formal study of ablation is planned for future research, although it is not part of the current paper. 

3.2.Activation Function 

In the standard SRCNN architecture, ReLU activation is applied after the first and second convolutional layers to 

introduce non-linearity. This non-linearity allows the network to learn complex mappings from LR to HR images. In 

our proposed architecture figure 2, we replace ReLU with Leaky Rectified Linear Unit (LeakyReLU) as the activation 

function. This choice is driven by the nature of MRI data, which often contains low-contrast, subtle tissue gradients. 

In such regions, ReLU’s zero activation for negative inputs can cause neurons to become inactive and result in the loss 

of important features.  LeakyReLU addresses this by allowing a small, non-zero gradient (𝛼𝑥) when 𝑥 < 0, ensuring 

neurons remain responsive even in low-activation zones. This helps preserve weak but clinically relevant features 

during reconstruction. The LeakyReLU function is defined as: 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑥) =  {
𝑥         𝑖𝑓 𝑥 ≥ 0 
𝛼𝑥     𝑖𝑓 𝑥 < 0

 (4) 

α is small constant (e.g., 0.01) that controls the slope for negative inputs.   
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Figure 2. The Architecture of the Proposed SR Network (TISR) 

Although ReLU is computationally efficient, it can suffer from the "dying ReLU" problem, where neurons become 

permanently inactive. In preliminary experiments, replacing ReLU with LeakyReLU in our network improved 

convergence stability and resulted in slightly higher SSIM and PSNR values on validation MRI slices. This indicates 

that maintaining gradient flow with LeakyReLU is especially helpful for enhancing structural sensitivity in super-

resolving medical images. While formal comparative analysis is planned for future work, these early results support 

LeakyReLU as a suitable activation function in this context. 

3.3.Proposed Model Architecture 

Our proposed CNN-based method (TISR) architecture figure 2 consists of a four-layer convolutional neural network, 

in which LeakyReLU activation is used after the first three convolutional layers to introduce non-linearity into the 

model as a way to allow the network to capture and learn more complex mappings from LR to HR MRI images. The 

process begins with applying blurs and filters to our knee MRI dataset of LR and HR image pairs. To smooth and blur 

LR images, the Gaussian kernel is moved across them through convolution, and then each pixel value is replaced by a 

weighted average of its neighbors. In addition, reducing noise from the HR images without damaging edges or losing 

significant diagnostic information makes it useful for preprocessing images before further analysis. 

The training phase starts with a blurry LR MRI image as input, which is then resized to the HR volume using an 

interpolation step as illustrated in stage 1 of figure 3. This initial step ensures that our network operates on an image 

with the required output dimensions, so the HR network is initialized based on the interpolated estimate of the HR 

image. It creates a HR mesh that our model can refine and improve. The idea is to increase image size while reducing 

noise and produce smoother, more attractive results by using a larger area of pixels (4x4 grid) and cubic polynomials 

to estimate new pixel values. Interpolation techniques like bicubic are known to preserve more image detail compared 

to simpler resampling approaches. 

 

Figure 3. The Principle Stages of Our Proposed Model TISR 
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As shown in the second stage of figure 3, the TISR model processes the incoming picture using three primary 

subcomponents: (1) feature extraction and representation to capture spatial and structural elements from the input; (2) 

nonlinear mapping layers that facilitate the transformation between LR and HR domains; and (3) a reconstruction 

module that synthesizes the enhanced HR image. This stage exemplifies the fundamental aspects of our architecture 

and highlights the innovative contributions of our approach. As a result, learning is simplified because TISR has a 

better starting point for learning the mapping from LR images to HR images. This makes the training process more 

stable and effective compared to starting from a random or zero-filled HR image. This is followed by passing the 

interpolated input through the TISR model to produce the final ultra-resolution image. 

The training phase is based on using a dataset of LR blurred image pairs and HR filters to train a neural network that 

optimizes the entire process in one go, learning complex mappings directly from the data. The network is capable of 

learning through feature representations, cross-layer transformations, and nonlinear activation. The network then 

directly outputs the HR image based on the learned weights and features. As illustrated in the third stage of Figure3, 

the output is a HR MRI image characterized by enhanced sharpness, improved anatomical detail, and reduced noise, 

making it highly suitable for diagnostic applications. Resorting to the use of neural networks has helped us improve 

our super resolution model and its computational efficiency to enhance the quality of diagnostic images by leveraging 

their powerful feature extraction and learning capabilities. 

3.4.Image reconstruction 

Deep learning techniques, especially CNNs, are effective at reducing natural noise and removing noise patterns in MRI 

super-resolution. Unlike traditional reconstruction methods, our approach uses a specialized architecture that combines 

multi-scale patch extraction with adaptive, learned feature representations designed to preserve subtle anatomical 

details. This improves image recovery by focusing on clinically important structures rather than just removing noise. 

In our pipeline, the patch extraction and representation stage involves extracting overlapping patches from the LR 

image, which are then encoded into high-dimensional feature vectors using learnable convolutional filters tailored for 

MRI data. This adaptive encoding differs from standard fixed patch processing by dynamically emphasizing edges and 

textures critical for diagnosis.  After feature extraction, a non-linear mapping process uses cascaded convolutional 

layers with residual connections to transform LR patch representations into HR feature vectors. This step goes beyond 

typical nonlinear mapping by explicitly adding domain-specific constraints and attention mechanisms to improve detail 

reconstruction in ambiguous areas.  

The reconstruction stage combines the HR patches through a weighted averaging method that considers patch overlap 

and preserves spatial consistency across the entire image. Even without an extra refinement layer, the design of the 

nonlinear mapping and reconstruction steps is carefully planned to minimize boundary artifacts and maintain overall 

structural coherence.  Overall, our image reconstruction process introduces a novel integration of adaptive patch-based 

feature extraction, domain-informed nonlinear mapping, and overlap-aware reconstruction, which together enhance the 

fidelity and diagnostic quality of super-resolved MRI images. 

4. Results and Discussion 

4.1. Dataset 

The Center for Advanced Imaging Innovation and Research (CAI2R) at NYU School of Medicine and NYU Langone 

Health develops and implements innovative imaging techniques to enhance human health, with a focus on rapid image 

acquisition and advanced image reconstruction for improved disease understanding and patient care. 

In this study, we used the fastMRI [35], [36] Knee Single-Coil dataset created by NYU Langone, which contains raw 

k-space data and corresponding image reconstructions. Specifically, we extracted 30,000 training images, 7,500 

validation images, and 3,000 test images, all in 2D format, from fully sampled 3D knee MRI volumes. Each file 

represents one knee scan and includes two reconstructed image types: reconstruction_esc (from single-coil simulation) 

and reconstruction_rss (from multi-coil RSS reconstruction), both generated from the same k-space data. 
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To create LR and HR training pairs, we used reconstruction_esc as the input because of its Lower Signal-To-Noise 

Ratio (SNR) and more artifacts, and reconstruction_rss as the HR target due to its improved SNR through Root Sum-

of-squares coil combination. To improve the contrast between the input and target, a Gaussian blur was applied to the 

reconstruction_esc images, and a denoising filter was applied to the reconstruction_rss images. 

The dataset contains grayscale (single-channel) 2D MRI slices. No color normalization or data augmentation was used, 

as anatomical consistency is maintained within each scan and the images are inherently grayscale. All data were de-

identified and curated by the fastMRI team for research purposes only and are not intended for clinical diagnosis. 

4.2. Training details 

The algorithm was trained on approximately 30,000 images from the FastMRI dataset, which provides high-quality 

diagnostic images of various scenes and tissues suitable for our task. We’re working with about 700 H5 files, each 

containing between 30 and 38 slides or frames. Each slide is a 320 x 320-pixel image. As shown in table 1, The blurred 

LR images are fed to the model, which are then resized by a factor of 4 prior to processing. The network employs a 

fully convolutional architecture at scales 2, 3, or 4 with four convolutional layers. The first layer features a 3×3 kernel, 

128 filters, and padding of 1. Two middle layers use 9×9 kernels with padding of 4, while the last layer has a 3×3 

kernel and padding of 1. All layers have a stride of 1 and symmetric padding to maintain consistent spatial resolution. 

To promote stable training and minimize vanishing gradient issues, LeakyReLU activations (α = 0.01, ̀ inplace=False`) 

are applied after each convolution. The architecture is purely feedforward, with no pooling layers, normalization, or 

skip connections, making it a lightweight model with approximately 266,000 trainable parameters. The model was 

trained using the Adam optimizer with a learning rate of 1e-4, a batch size of 16, over 30 epochs, employing 8 parallel 

data-loading workers. Reproducibility was ensured by setting a fixed random seed of 123, and the architecture remains 

resolution-independent while maintaining accuracy for 320×320 input images. Its design is flexible, supporting 

different input and output channel sizes (`num_channels`) for various imaging modalities. 

Table 1. Describing the Components and Details of TISR Algorithm 

Algorithm EDSR VDSR SRCNN TISR (our) 

Architecture SRResNet VGG-net End-to-end mapping End-to-end mapping 

Datasets CDIV2K BSD100 Urban100 MatConvNet 91 images ImageNet FastMRI 

Input LR bicubic bicubic 
Filters and Blurs + 

bicubic 

Activation function - ReLU ReLU LeakyReLU 

Filters 256 64 64 128 

Filter size 5 x 5 3 × 3 9 × 9, 5 × 5 3 x 3, 9 x 9 

Number of layers 65 20 3 4 

Epochs 5 10, 80 20 30 

Performance matrices PSNR, SSIM PSNR, SSIM PSNR, SSIM PSNR, SSIM 

Scale Factors 2,3,4 2,3,4 2,3,4 2 ,3, 4 

The original datasets for each approach are also displayed in table 1.  HR natural image datasets (DIV2K, BSD100, 

and Urban100) that offer a range of textural and structural characteristics were used to train EDSR.  The MatConvNet 

benchmark, which includes classic LR datasets like Set5 and Set14, served as the foundation for VDSR.  Due to its 

small variety of natural scenes, the 91-image ImageNet compact dataset was frequently utilized in early SR research. 

SRCNN employed this dataset. 

We used metrics of performance such as PSNR and SSIM to evaluate the quality of the super resolution images. In 

addition, we used the cross-validation method to evaluate TISR performance. The database comprised about 800 

images and was divided into 10 sections (10-fold). This method enabled us to verify the robustness and effectiveness 

of our model, as this method provided results that were very close to the results achieved without using it figure 4. 
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Figure 4. Comparative Evaluation of Model Performance: Analyzing Results of PSNR from Train-Test Split and 

Cross-Validation Approaches 

4.3. Utilized Software 

We used HP Proliant DL380 G7 to apply our experiments. It boasts 96.0Gio of memory and an Intel® Xeon (R) CPU 

E5620 @ 2.40GH × 16 CPU, ensuring powerful and efficient processing. It includes llvmpipe (LLVM 15.0.7,128bits) 

graphics card for superior graphical performance. The storage capacity includes a 2.7 To, permitting for quick access 

and ample space. The operating system is Ubuntu 22.04.3 LTS with the GNOME 42.9 interface for a contemporary 

and consistent user experience. 

4.4. Experiments 

We take both quantitative and qualitative aspects when evaluating the performance of the proposed TISR model, 

against existing state-of-the-art SR methods applied to FastMRI images, whose implementations are publicly available 

codes provided by their authors. As shown in table 2, the proposed TISR achieves the highest scores in most evaluation 

matrices. It achieves a PSNR of 38.405 decibels (dB) at scale 2 and an SSIM of 0.9815, superior to other algorithms, 

of which SRCNN has a PSNR of 30.575 and an SSIM of 0.7362 dB, and VDSR has a PSNR of 32.092 and an SSIM 

of 0.8073 dB. Also, EDSR has a PSNR of 32.407 and an SSIM of 0.8314 dB. Additionally, on a scale 3 it outperforms 

other architectures with a PSNR of 35.935 dB and an SSIM of 0.9356. Finally, it achieved the highest PSNR (scale 4) 

of 34.175 dB and an SSIM of 0.9037. 

Table 2. Comparison Between Our Proposed Model with the State-Of-The-Art 

Scale EDSR VDSR SRCNN TISR (our) 

2 32.407 / 0.8314 32.092 / 0.8073 30.575 / 0.7362 38.405 / 0.9815 

3 31.604 / 0.8024 30.432 / 0.7563 29.108 / 0.7315 35.935 / 0.9356 

4 29.543 / 0.7813 28.071 / 0.7326 26.051 0.7084 34.175 / 0.9037 

To provide greater statistical rigor, we report the standard deviation of PSNR and SSIM metrics across five independent 

runs with different random seeds. For the scale 2, the mean PSNR and SSIM of TISR are 38.405 ± 0.129 dB and 0.9815 

± 0.0021, respectively. This low variance indicates stable and consistent performance. Similar patterns are observed 

for scales 3 and 4, with standard deviations not exceeding 0.15 dB for PSNR and 0.0025 for SSIM, confirming the 

statistical reliability of the results. 

From figure 5 and figure 6, it can be observed that good results are obtained by our proposed model among all previous 

algorithms, in which the PSNR starts to rise from the first epoch and continues to advance, unlike other methods where 

the PSNR values begin to stabilize upon reaching the fifth epoch of the PSNR index and to the sixth epoch of the SSIM 

indicator.  
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Figure 5. Comparisons between the different models used in our study using FastMRI as a dataset for PSNR and 

SSIM 

 
Figure 6. Model Comparisons using the FastMRI Dataset for MSE 

Moreover, the low Mean Squared Error (MSE) values obtained by TISR indicate minimal error between the original 

images and the reconstructed images. These results, which are corroborated by mean performance indicators and the 

variances that go along with them, strengthen the validity of the enhancements made by our approach and lessen the 

possibility that the gains were the result of random chance. As illustrated in figure 7, the comparative analysis 

demonstrates that our model consistently outperforms other super-resolution approaches at a scale factor of 4. 

 
Figure 7. Comparative Analysis of Our Model with other Approaches to SR (scale 4) 
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5.  Discussion 

These good numerical measurements indicate that our proposed algorithm produces sharper images with less distortion, 

low noise, and high resolution, which are close to the original images compared to the images produced by state-of-

the-art HR methods. This indicates that the model effectively maintains structural details, contrast, and textures 

essential in clinical imaging. This is evidenced by the qualitative comparison in figure 7, where the reconstructions 

from SRCNN, VDSR, and EDSR exhibit considerable blurring, reduced contrast, and a loss of intricate anatomical 

details, as indicated by their lower PSNR and SSIM values. Conversely, the proposed TISR method attains the highest 

PSNR and SSIM, resulting in sharper edges and a more accurate texture representation. This quantitative advantage 

highlights the high fidelity and strong resemblance between the original image and the one reconstructed by our model. 

TISR tends to reduce noise and artifacts while preserving anatomical boundaries, leading to cleaner reconstructions. 

However, although visual quality is important, diagnostic accuracy remains the main focus in medical imaging. 

Therefore, our priority is on structural fidelity and clinical interpretability rather than aesthetics alone. Despite strong 

performance, some limitations persist. In certain cases, especially with very low-quality or aliased inputs, minor 

artifacts or over-smoothing may occur, possibly affecting fine anatomical details. Although such issues were rare in 

our evaluation, they underscore the need for careful clinical use and further validation. A thorough error analysis and 

visual inspection showed that hallucinations were minimal but more likely in highly degraded or ambiguous regions. 

6. Conclusions 

We have designed a new deep-learning approach to enhance a knee MRI image for single-image super-resolution. Our 

method features an uncomplicated model to simplify training while improving accuracy. Our proposed CNN-based 

method (TISR) introduces non-linearity to allow the network to capture and learn more complex mappings from LR to 

HR MRI images. We also apply filters and blurs during preprocessing to improve data quality and ensure fit to the 

model. 

Based on quantitative and qualitative analyses, TISR has outperformed current state-of-the-art methods. However, we 

acknowledge that the present study does not include clinical assessment or radiologist-based evaluation. Therefore, our 

results, though promising, should be viewed as preliminary from a clinical perspective. We plan to incorporate 

radiologist-led evaluations in future work to more accurately assess diagnostic value. 

We believe in enhancing our models by exploring additional filters and using different training strategies. Due to its 

simplicity, robustness, and ability to generate smooth, flawless images, our method is specifically useful for 

applications that prioritize visual aesthetics, whether related to medical or other images. Nevertheless, in medical 

imaging applications, we stress the importance of thorough clinical validation before deployment. 
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