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Abstract 

This work presents the development of an intelligent chatbot system capable of identifying rice plants and weeds from aerial photographs captured 

by smartphones, thereby enhancing precision agriculture. The study involves creating an AI model that utilizes image processing and deep 

learning techniques. Users can access the model through a LINE chatbot, and the study will also assess users' satisfaction with the model. 

Researchers gathered 12,000 pictures of rice fields in Phayao Province, Thailand, to train a modified InceptionV3 model using transfer learning. 

The dataset included images of rice plants and various types of weeds. The model was trained using image data collected under natural lighting 

and augmented to improve generalization. It achieved training, validation, and testing accuracies of 98.79%, 96.08%, and 97.83%, respectively. 

When deployed through a LINE Chatbot, it analyzed user-submitted images to estimate rice-to-weed ratios, yielding 73.33% average accuracy 

with consistent rice detection. Thirty individuals who used the system reported that it functioned well, was user-friendly, and provided significant 

benefits for farming in real-world applications. These results suggest that the system could leverage easily accessible AI tools to enhance farming 

efficiency, reduce costs, and positively impact the environment. 

Keywords: Aerial Image Analytics, Chatbot System, Plant Classification, Precision Agriculture, Rice Recognition, Weed Recognition 

1. Introduction  

In the era of the Fourth Industrial Revolution (Agriculture 4.0), integrating information technology, artificial 

intelligence, and automation into agricultural activities has become a vital approach to enhance production efficiency, 

management accuracy, and sustainable resource use. One of the core concepts of precision agriculture is the ability to 

monitor, analyze, and make real-time decisions based on accurate data, particularly in distinguishing between rice 

plants and weeds, which are crucial factors that directly impact yields and farm management costs.  

It results in precision agriculture being crucial in modern times [1], [2], [3]. It is a method of agricultural land 

management that prioritizes technology and comprehensive data to enhance efficiency and production, reduce costs 

[4], and sustainably mitigate environmental impacts [5]. The need for sustenance is concurrently escalating in this era, 

marked by a rapid rise in the global population. As a result, precision agriculture is an essential tool that enables farmers 

to optimize resource management and adapt more effectively to market demands and climate change.  

Furthermore, weed management and plant identification in rice fields are significant challenges for farmers [6], [7]. 

Weeds greatly affect the growth of essential crops like rice by competing for water, nutrients, and sunlight, ultimately 

leading to reduced yields. Accurate and timely weed identification and management are, therefore, essential. However, 

traditional weed detection methods in rice fields are labor-intensive and time-consuming, resulting in errors and delays 

in management. Consequently, developing technology to assist in identifying plants and weeds based on images has 

emerged as a more effective alternative. Consequently, the necessity for Artificial Intelligence (AI) technology and 

image processing to assist agricultural practitioners represents a viable solution to current challenges [8]. Likewise, 
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artificial intelligence and image processing are necessary for precise object analysis and classification within images. 

The deployment of artificial intelligence in agriculture enables fast and accurate picture data analysis from rice fields, 

resulting in reduced dependency on human inspections and empowering farmers to make more timely and effective 

decisions [9]. This benefit is especially noteworthy when deep learning technology, capable of identifying intricate 

visual patterns, is included.  

Innovations in smartphone technology and wide-angle photography have profoundly altered image data acquisition in 

agriculture, particularly in precision agriculture. This process necessitates high-resolution and comprehensive image 

data for precise analysis and informed decision-making. Researchers can delineate three principal dimensions. The first 

dimension involves integrating AI-driven image processing with smartphone cameras [8], [10], [11]. AI image 

processing combines AI technology with smartphone cameras to facilitate faster and more accurate image processing, 

including auto-lighting, noise reduction, and image sharpening. These enhancements are valuable for analyzing 

agricultural images to support informed decision-making.  

The second dimension emphasizes enhanced convenience and cost efficiency [4], [5]: AI provides farmers with a more 

convenient and cost-effective method for collecting aerial images using smartphones, which is more affordable than 

employing drones or other aerial photography equipment. Farmers can use their existing smartphones to take pictures 

of their fields and run various applications that allow for immediate analysis of the images. 

Finally, the last dimension focuses on utilizing chatbots for communication [12], [13]. AI can enhance chatbot 

communication by developing chatbot platforms that farmers already use, such as LINE, facilitating fast and efficient 

communication and providing agricultural information. Farmers can request information or receive expert advice via 

chatbots at any time. With these advancements, smartphones represent a highly effective tool to support precision 

agriculture, particularly in areas with limited resources or access to advanced technology.  

At the same time, the role of deep learning, an AI tool, in plant image classification is meaningful. Deep learning plays 

a big part in identifying plant and weed images by learning complicated photo patterns and details [14], [15]. This 

results in better accuracy than older methods like classical image processing or set features. Whereas image processing 

and deep learning are processes that take raw images and convert and analyze them to extract useful information, deep 

learning is an AI technique that utilizes multiple layers of neural networks to learn complex image features, enabling 

high-performance and accurate object classification. Popular deep neural network architectures, such as InceptionV3 

[16], ResNet [17], and EfficientNet[18], are utilized to improve image classification performance. InceptionV3 is 

specifically designed to capture detailed and multidimensional image features, enabling high-accuracy classification 

of rice and weed images. Ultimately, the model's accuracy and efficiency in classifying rice and weeds led to its ability 

to classify rice and weed images, demonstrating high precision in differentiating between various plant species. 

Consequently, it can serve as a decision-making tool for effective rice field management and as a foundation for the 

future development of smart agricultural technology.  

This research proposes an intelligent chatbot system that can collect aerial photography data from users and 

automatically analyze and identify rice plants and weeds using image processing and deep learning models built on 

field datasets. Researchers created the chatbot system with a conversational interface to make advanced technologies 

accessible without technical understanding. The system may also advise on herbicide spraying and field operations, 

reducing expenses, increasing productivity, and supporting sustainable agriculture. Thus, this research uses artificial 

intelligence, image processing, human-machine communication, and agricultural science to build tools for the Thai 

agriculture industry and developing nations in the 21st century.  

1.1. Research Objective  

This research primarily aims to develop an intelligent chatbot system capable of identifying rice plants and weeds using 

aerial images captured via mobile devices, thereby enhancing the efficiency of precision agriculture. The study has 

three main goals: (1) to create an AI model that can identify different types of rice and weeds using image processing 

and deep learning; (2) to create a platform that farmers can use to get plant analysis data, helping them make better 

decisions for managing their rice fields; and (3) to assess how satisfied users are with the system that combines image 

analysis and chatbot features. These objectives support the formulation of both primary and secondary research 
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hypotheses. For training and testing, the dataset comprises images of sticky rice, jasmine rice, and various weed species. 

However, the aim is not to identify specific rice or weed types, but to classify images broadly as either rice or weed. 

1.2. Research Hypothesis  

The central premise of this research is that an innovative chatbot system, integrating image processing, deep learning, 

and context-aware communication, can accurately distinguish between rice plants and weeds in aerial photographs 

while effectively supporting local farmers in their decision-making processes. The researchers propose three sub-

hypotheses: (1) A deep learning model trained on real aerial images can correctly identify rice plants and weeds at least 

90% of the time while respecting the cultural importance of rural farming; (2) A chatbot that communicates in a way 

that fits rural users will be easier to understand and more widely used than one that ignores local context; and (3) Users 

will see the system as a helpful tool that adds to, not replaces, traditional farming knowledge. The research adhered to 

an ethically sound structure, with all images and data collected with the explicit consent of the landowners. The system 

was implemented and evaluated with the involvement of users and experts possessing domain knowledge in both 

artificial intelligence and agriculture. 

2. Materials and Methods  

This research aims to classify and diagnose weeds in rice fields using wide-angle and aerial images captured exclusively 

via smartphones, ensuring representation of real-world field conditions. It also focuses on developing and deploying 

an intelligent Line chatbot that integrates digital image processing with OpenCV and advanced AI techniques to detect 

common weed species found in northern Thailand, including Echinochloa crus-galli (Ya Khao Nok), Leptochloa 

chinensis (Ya Hang Ma Jing Jok), Sphenoclea zeylanica (Ya Dok Khao), Fimbristylis miliacea (Kok Khanak), and 

Cynodon dactylon (Ya Praek). The system is designed not only to classify these weeds but also to estimate field areas 

and provide actionable guidance for effective weed management, with the overall research framework comprising five 

core components as shown in figure 1.  

 

Figure 1. System Architecture Diagram 

Figure 1 shows the five main research stages. Researchers create a database of real-world weed and rice samples by 

taking wide- and high-angle images of rice fields in northern Thailand using high-resolution cellphones. Second, we 

build an AI model using deep learning to categorize weeds from these photos, continuously modifying it to improve 

accuracy and efficiency. Third, a Line chatbot analyzes user-submitted pictures and offers diagnostic advice and weed 

control advice. Fourth, the system is tested in real farms for classification accuracy, processing speed, and user 

satisfaction. Researchers review the final findings to evaluate the chatbot's effectiveness, pinpoint its shortcomings, 

suggest improvements, and explore its agricultural potential.  

2.1. Data Collection  

Between August and November 2024, researchers took high-resolution, wide-angle aerial photos of sticky rice and 

Thai Hom Mali rice fields in Mueang District, Phayao Province, Northern Thailand, using current smartphone cameras. 

Approximately 12,000 photos were collected at elevations of 2-5 meters, with sizes of 1477 × 1108 and 960 × 1280 
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pixels. The dataset was evenly split between 6,000 rice plants and 6,000 weed shoots. Weed photos showed green-leaf, 

flowering, yellow-red, white-flowered, and yellowish-brown grasses. A complete image library of the natural field 

environment is available at https://shorturl.at/SBXbk. Figure 2 and figure 3 illustrate representative views of sticky rice 

and Thai Hom Mali rice, along with photographs of each weed species within multidimensional rice fields. 

 

Figure 2. Sticky Rice and Thai Hom Mali Rice Plants in the Rice Field 

 

Figure 3. Weeds in the Rice Field 

2.2. Data Preparation  

The dataset was prepared by collecting rice and weed photos from various sources. The dataset has 12,000 photos, 

evenly split between rice plants (6,000) and weeds (6,000). Sticky rice and jasmine rice dominate the images. Each 

variety has equal representation in three growth stages: green leaves without panicles, green leaves with panicles, and 

yellow leaves with panicles. The weed category includes green-leaf grasses, flowering grasses, yellow-red leaves, 

white-flowered grasses, and yellowish-brown vegetation, with photos uniformly dispersed. Agricultural specialists in 

rice cultivation and weed detection manually annotated and cross-validated all photos to improve labeling accuracy 

and model reliability. Labeling mistakes were reduced, and rice and weed classification were consistent with this 

validation approach. Different rice development phases and weed types are included to make the model more robust in 

real-world agriculture. Table 1 details the dataset.  

Table 1. Summary of Dataset Classes and Sample Sizes 

Label Sub-category 
Number of 

Images 
Training Validation Testing 

Rice 

Sticky rice, green leaves without panicles 1,000 700 150 150 

Sticky rice, green leaves with panicles 1,000 700 150 150 

Sticky rice, yellow leaves with panicles 1,000 700 150 150 

Jasmine rice, green leaves without panicles 1,000 700 150 150 

Jasmine rice, green leaves with panicles 1,000 700 150 150 

https://shorturl.at/SBXbk
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Label Sub-category 
Number of 

Images 
Training Validation Testing 

Jasmine rice, yellow leaves with panicles 1,000 700 150 150 

Weeds 

Green-leaf grasses 1,200 840 180 180 

Flowering grasses 1,200 840 180 180 

Leaves with yellow-red pigmentation 1,200 840 180 180 

White-flowered grasses 1,200 840 180 180 

Yellowish-brown vegetation 1,200 840 180 180 

 Total 12,000 8,400 1,800 1,800 

The images then underwent a comprehensive and meticulous preprocessing phase, which included data cleaning, 

labeling, and resizing. Subsequently, the dataset was systematically divided into training (70%), validation (15%), and 

testing sets (15%). This rigorous data preparation ensured the dataset’s quality and consistency, ultimately enhancing 

the model’s training efficiency and accuracy. The entire process was structured into five key steps.  

2.2.1. Data Cleaning  

Data cleaning is a crucial step in creating efficient, highly accurate deep learning models. This step aims to ensure that 

the collected data is of high quality and suitable for training the model.  

2.2.2. Connecting to Data Sources  

The dataset used in this study was stored on Google Drive, and a connection was established between Google Drive 

and Google Colab to enable efficient data access and usage. The dataset was organized into three subsets within the 

main folder: a training set, a validation set, and a test set. The training set was used to teach the model to distinguish 

between rice and weed characteristics. The validation set monitored model performance during training and guided the 

tuning of parameters. The test set, comprising unseen images, was used to evaluate the model’s generalization 

capabilities. This data partitioning approach ensures robust performance evaluation and reduces the risk of overfitting. 

2.2.3. Data Volume Monitoring  

Before initiating the training process, it is crucial to verify the number of image samples in each classification category. 

This step ensures that the dataset is both comprehensive and balanced, which is critical for practical model training. 

Monitoring data volume helps identify and mitigate potential issues such as class imbalance, which can negatively 

impact model accuracy and generalization performance. 

2.2.4. Data Augmentation  

Data augmentation is used to enhance a model's performance and prevent overfitting, which occurs when a model 

focuses excessively on specific details from the training data, resulting in reduced accuracy with new data. In this study, 

applied data augmentation to the training set using Keras’ ImageDataGenerator. Transformations such as random 

rotations (up to 20 degrees), width and height shifts (up to 10%), shear, zoom, and horizontal flips were used. These 

augmentations simulate real-world image variations, increasing dataset diversity without requiring additional data 

collection and helping the model generalize better. The validation and test sets were only rescaled to ensure that 

performance evaluation reflected realistic, unaltered image conditions. 

2.2.5. Loading Data in Batches   

Loading all images at once can degrade system performance due to the large dataset size. Batch processing addresses 

such an issue by loading data in predefined batches during training. This technique reduces memory consumption, 

improves efficiency, and enables parallel processing. When using GPUs or TPUs, selecting the optimal batch size is 

crucial for achieving both speed and stability during training. 
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2.3. AI Model Development and Training  

This study developed a model to classify images of rice and weeds using five techniques: DenseNet121, InceptionV3, 

MobileNetV3, ResNet-50, and VGG16. These techniques are types of deep Convolutional Neural Network (CNN) 

architecture designed to improve the analysis and sorting of complex images. Researchers constructed and trained the 

model using those deep learning methods, as demonstrated by its performance in table 2. Moreover, the training 

approach relies on systematically prepared data to optimize model parameters for accurate and reliable results, whereas 

researchers have divided this process into four main steps.  

2.3.1. Importing Libraries and Defining Initial Parameters  

Before creating a model, import essential libraries for machine learning, such as TensorFlow, Keras, and OpenCV for 

image processing and neural network building. Next, define the basic model training parameters for efficient and stable 

training. Key parameters include (1) the size of the input images, which should be set to a standard resolution that 

works well with the InceptionV3 architecture for accurate image analysis; (2) the number of classes, as this study is 

looking at two categories: rice and weeds; and (3) training settings, such as batch size, number of training cycles 

(epochs), and learning rate. Proper configuration of these parameters is crucial to achieving optimal model performance 

and preventing issues such as unstable training or poor convergence. The detailed training parameter settings used in 

this study are presented in table 2.  

Table 2. Model Training Parameter Settings  

Parameter Value Parameter Value 

Model InceptionV3 Learning Rate 0.0001 

Epochs 80 Loss Function Categorical Cross-Entropy 

Batch Size 32 Activation Function SoftMax 

Image Size 299 x 299 Data Augmentation Rotation, Flip, Zoom, Shear 

Optimizer Adam   

This study's parameter configurations are in table 2. The model design uses InceptionV3, a pre-trained convolutional 

neural network learned on ImageNet that can classify difficult pictures. The 80 epochs allow enough learning iterations 

without overfitting. Training with 32 photos in reasonable batches improves memory efficiency and computational 

performance. The input image is rescaled to a normalized range of [0, 1] by dividing pixel values by 255, where the 

size is 299×299 pixels. The Adam optimizer's variable learning rate improves training stability and efficiency. The 

learning rate is 0.0001 for gradual and stable model updates.  

2.3.2. Transfer Learning Using InceptionV3  

This study employs transfer learning using the InceptionV3 model pre-trained on ImageNet, with its original top layer 

removed (include_top=False) to preserve learned low- and mid-level features. A custom classification head was added, 

consisting of global average pooling, a dense ReLU layer, dropout for regularization, and a final layer with softmax 

activation to predict the two classes: rice and weeds. The base model’s weights were initially frozen to maintain learned 

features while training the new layers. This strategy reduces training time, improves accuracy with limited labeled data, 

and facilitates faster convergence, making it suitable for deployment on resource-constrained devices. 

2.3.3. Defining the Loss Function and the Optimizer  

In the process of training a model, it is necessary to define the loss function and the optimizer, which are the key 

components that enable the model to learn efficiently. Loss Function: Uses categorical cross-entropy since it is a 

classification problem with multiple classes. Optimizer: Uses the Adam Optimizer, which can automatically adjust the 

learning rate, making the learning process stable and rapid. Evaluation Metrics: Uses accuracy as a measure of model 

performance.  
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2.3.4. Training the Model  

Once the model structure is defined, training is performed using previously prepared datasets, and batch processing 

techniques are employed to reduce memory load and increase training efficiency. During training, the model learns 

from rice and weed image data, adjusting the parameters within the neural network accordingly. Accuracy and loss are 

checked in each training epoch. 

2.3.5. Real-World Area Estimation Using Camera Parameters 

To estimate the physical dimensions of objects or areas captured in an image, the pinhole camera model is often 

employed. This model describes the geometric relationship between the real-world scene and its image projection on 

the camera sensor. By applying the principle of similar triangles, a proportional relationship can be established between 

the object in the real world and its corresponding image on the sensor [19], as shown in the following equation: 

𝑠𝑗

ⅆ𝑖
=
𝑠0
ⅆ0

 (1) 

Si   represents the dimension of the object as it appears on the camera sensor (measured in millimeters), di  denotes the 

focal length of the camera lens (in millimeters), So refers to the actual size of the object in the physical world (in 

millimeters or meters), do  indicates the distance between the camera and the object in the scene (in millimeters or 

meters). The ground width and height can be computed using the following equations: 

𝑊𝑖ⅆ𝑡ℎ =
𝐷 × 𝑤𝑠

𝑓
,𝐻𝑒𝑖𝑔ℎ𝑡 =

𝐷 × ℎ𝑠
𝑓

 (2) 

D  represents the vertical distance between the camera and the ground (e.g., in mm), ws and hs denote the physical width 

and height of the camera sensor, 𝑓 is the focal length of the camera lens. refers to the focal length of the camera lens 

By multiplying the resulting width and height, researchers obtain an approximation of the total area in the real world 

that is covered by the image. This method is particularly effective in field applications where cameras are mounted at 

known heights, such as in agricultural monitoring using smartphones or drones. 

2.4. Model Evaluation  

Model evaluation is essential for assessing classification performance and reliability. In this study, key metrics such as 

the confusion matrix, accuracy, precision, recall, and F1 score were used [20], [21], [22]. The confusion matrix 

summarizes correct and incorrect predictions, offering insight into how well the model distinguishes between classes. 

From this, accuracy reflects overall correctness, precision indicates the reliability of positive predictions, recall 

measures the model's ability to detect actual positives, and the F1 score balances both precision and recall, especially 

useful for imbalanced data. In summary, these evaluation metrics collectively provide deep insights into the model’s 

strengths and weaknesses, guiding further refinement to enhance classification accuracy, minimize prediction errors, 

and support more effective decision-making. 

2.5. Chat Bot Development  

2.5.1. Webhook and LINE Developers Console Settings  

Developing a chatbot capable of receiving and analyzing images of paddy fields involves a coordinated system built 

using the LINE Messaging API for user interaction, a Flask web server for backend logic, and NGROK for secure, 

temporary public access during development. Central to this system is the integration of a machine learning model to 

provide efficient and accurate image classification. The LINE Messaging API supports bi-directional communication, 

enabling users to send both text and images, with development starting by registering a channel on the LINE Developers 

Console to obtain credentials such as the access token, channel ID, and channel secret. After configuring the Webhook 

URL, the Flask server can receive real-time events, including image uploads and messages. Using Python and the LINE 

Messaging API SDK, researchers implement logic to manage incoming data, classify images, and generate real-time 

feedback. The system’s responsiveness and communication reliability depend on seamless orchestration between event 

handling, image processing, and dynamic response delivery, as illustrated in figure 4.   
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Figure 4. Webhook and LINE Developers Console Settings  

2.5.2. Connection between Server and Generated Model  

A critical step in building a fully functional system involves developing a web server to process images and interface 

with the LINE Chatbot, for which researchers used Flask as the web framework and NGROK to expose the local server 

to the internet. The core application logic is housed in an ̀ app.py` file, which handles incoming requests from the LINE 

Messaging API, processes uploaded images, and returns classification results to the chatbot. Setting up the Flask server 

requires installing Flask via pip and coding the application's structure, including API endpoints that handle HTTP 

POST requests containing user messages or images. These endpoints route data through image processing algorithms 

and the integrated classification model to generate appropriate responses. To enable real-time communication during 

development, NGROK is configured to generate a temporary public URL that tunnels requests to the local Flask server, 

allowing seamless interaction between the chatbot and backend services. This setup is essential for debugging and 

iterative testing prior to deployment in a production environment.   

2.5.3. Integrating Models with Chat Bots  

The interaction between the chatbot and the machine learning model is a critical component in ensuring the system 

accurately distinguishes rice from weeds in user-submitted photos. This process begins with the development of a 

Python script, which is responsible for loading the trained model and performing image classification tasks. The script 

loads the pre-trained model, processes input images received from users, performs any necessary preprocessing steps, 

and executes inference to determine whether each image depicts rice or weeds. The chatbot then organizes and returns 

the resulting classification for user interpretation.  

To facilitate communication between the chatbot and the model, a Flask-based API is implemented. This API handles 

the incoming image data sent by the chatbot, passes it through the machine learning model for prediction, and returns 

the classification results. The API functions as a bridge, enabling seamless integration between the LINE Messaging 

API and the core deep learning model. The final stage involves testing and system optimization. This step includes 

verifying the reliability of image transmission, model inference, and response generation. Results from this phase are 

used to troubleshoot potential issues and fine-tune system performance, ensuring the model operates accurately and 

efficiently in real-world conditions. 

Algorithm 1. Webhook-based Integration Algorithm for LINE Messaging API 

1. START PROGRAM 

 

2. IMPORT necessary libraries: Image processing, I/O, DateTime, Web Framework (Flask), Model loading, etc. 

 

3. SET LINE API credentials: 

4. CHANNEL_ACCESS_TOKEN 

5. WEBHOOK_ENDPOINT 

 

6. LOAD pretrained model: 

7. MODEL_PATH = "inceptionv3_model.h5" 
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8. model = load_model(MODEL_PATH) 

9. CLASS_NAMES = ["Rice", "Weed"] 

 

10. INITIALIZE Flask app 

 

11. DEFINE route for GET "/": 

12. FUNCTION home(): 

13. RETURN "Webhook is running" 

 

14. DEFINE route for POST "/webhook": 

15. FUNCTION webhook(): 

16. GET JSON data from incoming request 

17. PRINT data as JSON (formatted) 

18. RETURN "OK" 

 

19. DEFINE function start_ngrok(): 

20. START subprocess to run ngrok on port 5000 

21. LOOP indefinitely: 

22. TRY to fetch public URL from ngrok API (localhost:4040) 

23. EXTRACT public URL 

24. PRINT the public URL 

25. RETURN the URL 

26. IF error: continue loop 

 

27. DEFINE function update_line_webhook(url): 

28. SET HTTP headers with Authorization and Content-Type 

29. PREPARE payload to update LINE webhook endpoint with new URL 

30. SEND PUT request to LINE endpoint 

31. PRINT response 

 

32. IF __main__: 

33. public_url = start_ngrok() + "/webhook" 

34. CALL update_line_webhook(public_url) 

35. RUN Flask app on port 5000 

 

36. END PROGRAM 

3. Results  

3.1. Model Analysis and Performance Assessment  

In table 3, researchers compared the accuracy and processing time of five models—DenseNet121, InceptionV3, 

MobileNetV3, ResNet-50, and VGG16—using different methods. Table 4 and table 5 show the selected top-performing 

models. Google Colab used a Pascal-based NVIDIA Tesla P100 GPU for the trials. This GPU has 16 GB of HBM2 

memory.  

Table 3. Evaluation Results of Model Performance 

Models Accuracy Time (Sec.) Models Accuracy Time (Sec.) 

DenseNet121 0.9161 442.5388 ResNet-50 0.7946 15.6503 

InceptionV3 0.9783 918.2502 VGG16 0.8532 1675.6260 

MobileNetV3 0.7191 450.6975    

Table 3 presents a performance comparison of five deep learning models based on classification accuracy and inference 

time. InceptionV3 achieved the highest accuracy (0.9783) but required the longest processing time (918.25 seconds), 

while DenseNet121 offered a strong trade-off with 0.9158 accuracy and faster inference at 442.54 seconds. ResNet-50 

struck an effective balance between speed and performance, delivering 0.7946 accuracy in just 15.65 seconds, making 

it suitable for time-sensitive applications. VGG16, despite its reasonable accuracy (0.8532), was the slowest at 1675.63 
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seconds. MobileNetV3, despite being lightweight, demonstrated limited classification capability, achieving only 

0.7191 accuracy. These results suggest that while InceptionV3 leads in accuracy, DenseNet121 and ResNet-50 offer 

viable alternatives depending on specific application requirements. The effectiveness of the binary classification model 

was confirmed using a test set of 1,800 samples (evenly split between two classes), as shown in the confusion matrix 

in table 4.  

Table 4. Confusion Matrix of InceptionV3 Model 

 Predicted: Rice Predicted: Weeds 

Actual: Rice 883 17 

Actual: Weeds 22 878 

Table 4, the model performs well in distinguishing between the two classes, with a low number of misclassifications 

in both False Positive (FP) and False Negative (FN) categories. The slight imbalance in FN compared to FP suggests 

that the model is marginally more likely to misclassify class weeds instances as class rice than vice versa. Table 5 the 

model achieved high classification performance for both classes. For rice, precision was 0.9899 and recall 0.9768, 

indicating highly accurate and consistent identification. For weeds, the precision and recall were similarly strong at 

0.9766 and 0.9899, respectively. The F1 scores for both classes were balanced at approximately 0.983, demonstrating 

the model's robustness in distinguishing between rice and weeds. 

Table 5. Confusion Matrix of InceptionV3 Model 

Class Precision Recall F1 Score 

Rice 0.9899 0.9768 0.9833 

Weeds 0.9766 0.9899 0.9832 

Table 6 illustrates the performance of the most effective model, InceptionV3, across selected training epochs. The 

model demonstrated consistent improvements in both training and validation accuracy, with validation accuracy 

peaking at 0.9608 by epoch 79. Simultaneously, training and validation loss decreased over time, indicating enhanced 

generalization and reduced overfitting. These results confirm the model’s progressive learning and optimal 

performance near the final training stage. 

Table 6. The Most Effective Models (InceptionV3)  

Epoch Train Accuracy Validation Accuracy 

1 0.9279 0.9263 

3 0.9647 0.9479 

5 0.9682 0.9229 

77 0.9879 0.9496 

79 0.9879 0.9608 

3.2. Classification of Rice and Weeds using LINE Chatbot  

Researchers developed a system to assist mobile-using smallholder farmers by integrating a LINE chatbot with a Flask 

backend server via ngrok, enabling users to upload images and receive real-time predictions from a server-hosted 

InceptionV3 model. Chosen for its high classification accuracy, InceptionV3 operates entirely on the server, avoiding 

computation on user devices and maintaining low latency even for users with limited hardware. In testing with 60 wide-

angle smartphone images, 30 of rice and 30 of weeds, the model achieved perfect classification in both categories, 

demonstrating real-world applicability. The test set, which was different from the training data, included a variety of 

examples: rice images showed sticky and jasmine rice at three different growth stages, while weed images included 
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five different types with different colors and shapes, making sure the model was thoroughly tested in different visual 

situations.  

3.3. Results from Rice-to-Weed Ratio Image Analysis  

The evaluation of the rice-to-weed ratio derived from image processing was conducted to objectively measure the 

percentage of rice plants to weeds in each image. This research gave an understanding of the density and distribution 

of rice and weed coverage in the field, facilitating subsequent decision-making for weed management. Moreover, 

researchers have created a function capable of calculating the traversable area by processing wide-angle photographs 

from cellphones, facilitating quick image analysis and providing a clear perspective of the rice fields. The proposed 

rice and weed classification system was evaluated using 60 wide-angle images captured by a smartphone in real rice 

field conditions through the LINE Chatbot interface. The results had been analyzed and interpreted, as presented in 

table 7. 

Table 7. Performance Results of Rice and Weed Classification via LINE Chatbot 

Class Classification Accuracy (%) Area Detection Accuracy (%) 

Rice 73.33 63.33 

Weeds 70.00 56.66 

Table 7 shows that the model detected rice in all 30 photos of rice plants, with an average classification accuracy of 

73.33% and an area detection accuracy of 63.33%. Part 2 used 30 weed-containing photos, and the model had 70.00% 

classification accuracy and 56.66% area detection accuracy. These results demonstrate that chatbot interaction can be 

used for realistic in-field classification.  

3.4. User Satisfaction and Acceptance  

The researcher conducted a study on user satisfaction and acceptance through a questionnaire survey that targeted 30 

computer science students from the School of Information and Communication Technology at the University of Phayao 

in Thailand. The participants have personal or family backgrounds in farming, which provides them with relevant 

experience related to the application context of the system. The study utilized specified criteria and a designed 

questionnaire, presented in table 8 and table 9. Data collection occurred during the second semester of the 2024 

academic year.  

Table 8. The Five-Level Evaluation Criteria 

Level Description Score Range 

5 = Excellent 

The system can accurately classify rice and weeds (accuracy ≥ 80%) and calculate the rice-to-

weed ratio with high precision. Users express very high satisfaction with the LINE Chatbot’s 

usability and clarity of results. 

80 – 100 

4 = Good 
The system classifies rice and weeds with reasonable accuracy (70 – 79%). The ratio 

calculation is reliable, and users are generally satisfied with the system. 
70 – 79 

3 = Fair 
Moderate classification accuracy (60 – 69%) with some minor errors in ratio calculation. 

Users can use the system but may provide suggestions for improvement. 
60 – 69 

2 = Needs 

Improvement 

Classification accuracy falls below standard (50 – 59%), and errors in ratio calculation are 

apparent. Users encounter difficulties using the system or interpreting the results. 
50 – 59 

1 = Poor 
The system functions poorly (accuracy < 50%); the ratio calculation is incorrect, and users are 

unable to utilize the system effectively. 
0 – 50 

Table 8 illustrates the five-level evaluation criteria. This evaluation framework aims to assess the performance and 

usability of a system that classifies rice and weeds using the LINE Chatbot and calculates the rice-to-weed ratio through 

image processing. Researchers analyzed the quantitative data from the questionnaire by computing the average score 

for each item. These average scores were then interpreted according to a five-level scale: very low or strongly disagree 
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(1.00–1.50), low or disagree (1.51–2.50), moderate or neutral (2.51–3.50), high or agree (3.51–4.50), and very high or 

strongly agree (4.51–5.00). The collected data had been analyzed and interpreted, as presented in table 9. 

Table 9. Satisfaction Assessment Results  

Evaluation Item Average S.D. Interpretation Results 

1. Ease of use of the LINE Chatbot 3.97 0.72 Agree 

2. Accuracy in classifying rice from images 4.06 0.72 Agree 

3. Accuracy in classifying weeds from images 4.03 0.72 Agree 

4. Reliability of the rice-to-weed ratio calculation 4.04 0.69 Agree 

5. Speed of data processing 4.10 0.75 Agree 

6. Clarity of the results displayed 3.94 0.70 Agree 

7. Applicability in real agricultural settings 4.37 0.66 Agree 

8. Overall satisfaction with the system 4.17 0.64 Agree 

Table 9 displays the user satisfaction survey and system evaluation. The scoring criteria included five levels (5 = 

excellent, 4 = good, 3 = fair, 2 = needs improvement, 1 = poor), as outlined in the scope and definitions in table 4.  

All eight evaluation items received average scores above 3.9, indicating overall agreement among users regarding the 

system’s effectiveness. The highest-rated item was applicability in real agricultural settings (mean = 4.37, S.D. = 0.66), 

followed by overall satisfaction (mean = 4.17, S.D. = 0.64) and data processing speed (mean = 4.10, S.D. = 0.75). 

Other aspects, including classification accuracy, reliability, and result clarity, also received favorable responses. These 

findings reflect strong user approval and suggest the system is practical and well-received in real-world agricultural 

contexts. 

4. Discussion 

4.1. Model Performance  

A comparison of five deep learning models—InceptionV3, DenseNet121, MobileNetV3, ResNet-50, and VGG16—

revealed that while InceptionV3 achieved the highest accuracy (0.9783), it required more processing time, whereas 

ResNet-50 was the fastest (15.65 seconds), making it ideal for time-sensitive applications. DenseNet121 offered a 

strong balance of accuracy and speed, making it suitable for scenarios demanding both. However, all models struggled 

with misclassifying visually similar vegetation types in remote sensing imagery, such as mistaking green/yellow leaves 

with panicles for yellowish-brown vegetation or grasses for early-stage rice. These mistakes probably happen because 

the colors and shapes of the plants look similar in certain images, showing that the models have trouble telling apart 

small visual differences. This suggests a need for more diverse and representative datasets, the inclusion of 

discriminative features like texture and morphology, and potentially more advanced architectures—such as hierarchical 

or attention-based models—that can better handle subtle class differences.  

4.2. Deployment of the Model in the LINE Chatbot  

The chosen InceptionV3 model was used in a LINE chatbot and tested with 60 wide-angle smartphone pictures, 

successfully identifying all 30 images with rice and 30 images with weeds, showing it works well in real-life situations. 

While the current integration using Flask and NGROK is sufficient for prototyping, it lacks production-grade features 

such as scalability, reliability, and security. To overcome these limitations, the system will be migrated to a cloud-

based, containerized infrastructure (e.g., Docker on AWS or GCP) with support for autoscaling, load balancing, and 

continuous deployment. NGROK will be replaced by a stable API gateway like NGINX or AWS API Gateway to 

ensure secure and consistent access, making the system more reliable and scalable for real-world agricultural 

applications.  
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4.3. Rice-to-Weed Ratio Analysis  

The system had a function that analyzed the ratio of rice to weeds using wide-angle images, allowing for a detailed 

look at how crops and weeds are spread out, which helps in better weed management. This analysis also included field 

area estimation, providing users with visual and spatial insights that extend the system's utility beyond basic 

classification. Training data were collected between 10:00 AM and 4:00 PM under strong sunlight and consistent 

lighting in Thailand to ensure high-quality input. In contrast, the LINE Chatbot testing images were captured under 

uncontrolled conditions, introducing lighting variability that may have impacted performance, highlighting the 

practical challenges of deploying AI systems in real-world agricultural environments.  

4.4. User Satisfaction and Acceptance  

A user evaluation was conducted among 30 computer science students from the University of Phayao. The results 

indicated that all evaluation items received average scores above 3.90, indicating a high level of user satisfaction. The 

highest-rated item was applicability in real agricultural settings (mean = 4.37), followed by overall system satisfaction 

(mean = 4.17) and processing speed (mean = 4.10). These findings confirm that the system is perceived as effective, 

user-friendly, and suitable for real-world agricultural use.  

5. Conclusion 

This paper reveals how an intelligent chatbot system employed deep learning and image processing to recognize weeds 

and rice in aerial photographs, satisfying all three research aims. Researchers trained a deep learning model using the 

InceptionV3 architecture on 12,000 aerial photographs of northern Thai rice fields to achieve Objective 1. InceptionV3 

could distinguish rice plants from weeds in real life with 98.79% training, 96.08% validation, and 97.83% testing 

accuracy. Second, to achieve Objective 2, researchers implemented the system on the LINE chatbot, enabling users to 

upload field photos and receive immediate feedback. In wide-angle field photos, the platform's ratio analysis function 

measured rice to weeds, aiding precision agriculture decision-making. Third, 30 participants were systematically 

evaluated for user satisfaction after Objective 3. Most users agreed on key usability factors, such as how easy it is to 

use, how quickly it works, how clear the information is, and how relevant it is to farming, confirming that the system 

aids decision-making.  

The findings show that smallholder agriculture can benefit from incorporating AI, image analytics, and chatbot 

technology. This method improves decision-making and provides swift, data-driven crop management insights. For 

scalability and reliability, future work should focus on production-ready deployment, including cloud infrastructure 

and secure API integration, rather than experimentation with Flask and NGROK. Researchers should look into 

supporting multiple languages, including more types of crops, combining GIS and weather data, and conducting large 

field tests to see how well these methods work in different farming situations. Although not mobile-optimized, 

InceptionV3 was utilized for its dependable categorization performance. For mobile and edge real-time performance, 

EfficientNet-Lite and other lightweight architectures will be studied.  
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