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Abstract 

Flood prediction presents a pressing challenge in disaster management, especially in regions vulnerable to extreme weather events. In response, 

this study offers a novel approach to flood risk prediction by developing a deep learning-based Geo-Spatial Artificial Neural Network (ANN). 

The model actively integrates high-resolution satellite imagery, meteorological data, and topographic indicators, such as rainfall, elevation, and 

land use to capture complex spatial and environmental relationships that influence flood risk. This study conducted data preprocessing using 

Principal Component Analysis (PCA) and normalization to ensure consistency across datasets. It built the ANN with multiple hidden layers and 

trained it using the backpropagation algorithm on historical flood data. Furthermore, it designed the ANN model with multiple hidden layers and 

trained it using the backpropagation algorithm. The model achieved a notable 92% prediction accuracy, significantly outperforming traditional 

flood prediction methods, which typically yield 75–85% accuracy. Conventional metrics were Mean Squared Error (1.41) and R-squared (0.94). 

It confirmed the model’s superior ability to predict high-risk flood zones. The model also effectively captured non-linear patterns that 

conventional statistical or deterministic methods often failed to detect. The results showed that the model generalizes well and adapts effectively, 

making it suitable for real-time and data-driven flood forecasting. By integrating artificial intelligence with geo-spatial analytics, this study offers 

a scalable, accurate, and efficient tool for early warning systems and risk management. It recommends that future research should focus on 

incorporating additional data sources and refining model training techniques to further enhance scalability and performance. 
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1. Introduction  

Floods have long been among the most destructive natural disasters, causing substantial economic losses, significant 

loss of life, and severe disruption to communities [1], [2]. The frequency and intensity of floods have increased in 

recent years, largely driven by climate change, which leads to erratic weather patterns and more extreme rainfall events. 

As a result, accurate and timely flood prediction has become more critical than ever for mitigating the damage caused 

by such events. Flood forecasting plays not only a pivotal role in minimizing economic damage, but it also helps to 

save lives and facilitate better preparedness for affected communities [3], [4]. In recent years, Technological 

advancements in remote sensing and machine learning have significantly improved the accuracy of flood prediction 

models. By combining satellite imagery, meteorological data, and topographic indicators with Artificial Neural 

Networks (ANNs), researchers can generate highly accurate real-time flood forecasts [5], [6]. ANNs can model 

complex relationships and learn from large datasets, making them highly effective in enhancing the forecasting 

capabilities of flood prediction systems [7], [8].  

However, despite these advancements, researchers have yet to fully explore the use of ANN models integrated with 

high-resolution geospatial data for operational flood forecasting. Most existing studies rely on isolated datasets or 

simplified models, without leveraging the full potential of available geospatial and meteorological data. This limitation 

creates a gap in producing real-time, accurate flood predictions. 
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This study bridges the existing gap by developing and evaluating an ANN-based flood prediction model that integrates 

high-resolution geospatial data, including satellite imagery, rainfall, and elevation data. It has three main objectives: 

(1) to develop a robust geo-spatial ANN framework that effectively utilizes satellite, meteorological, and topographic 

data for flood prediction; (2) to evaluate the model’s performance against traditional flood prediction methods; and (3) 

to identify key spatial features and environmental factors that significantly influence flood risk in specific regions. 

Moreover, it employs a methodological framework that begins with collecting comprehensive geo-spatial and 

meteorological datasets. In addition, preprocessing techniques apply, including data cleaning, interpolation, and 

normalization. It uses the processed datasets to train an ANN model, which undergoes hyperparameter optimization 

and cross-validation to ensure robust performance. To assess the model's effectiveness, the process compares its 

predictive accuracy with that of conventional flood prediction methods. Through this approach, the study advances the 

integration of machine learning in flood forecasting and offers a scalable framework for real-time flood risk assessment. 

The structure of this study proposes section 2 reviews relevant literature, focusing on existing flood prediction 

approaches and the contribution of machine learning to forecasting accuracy. Then, Section 3 outlines the data 

collection process, detailing the geospatial and meteorological variables used in the study. Section 4 explains the 

methodology for developing and training the ANN model and describes the evaluation metrics applied. Section 5 

presents and analyzes the model’s performance in comparison with traditional methods. Finally, Section 6 concludes 

the paper by summarizing the key findings, discussing study limitations, and proposing future research directions for 

flood forecasting using machine learning. 

2. Method 

The method of this study used a quantitative experimental design and integrated various geospatial datasets into an 

ANN model to predict flood risk. It collected high-resolution satellite images from Landsat and Sentinel, 

meteorological data from BMKG and BNPB, and topographic indicators such as elevation and slope. They performed 

data preprocessing using PCA to reduce dimensionality, followed by normalization to ensure variable uniformity. 

This study trained the ANN model, which comprised multiple hidden layers, using the backpropagation algorithm. 

They optimized the hyperparameters through grid search to improve predictive accuracy. They applied a 

70%/20%/10% split for training, testing, and evaluation to ensure the model generalized well to unseen data. They 

assessed model performance using Mean Squared Error (MSE), R-squared (R²), and its effectiveness in predicting 

high-risk flood zones. 

2.1. Data Collection and Preprocessing 

For data Collection and preprocessing, it obtained data from Landsat and Sentinel satellite imagery (2010–2020) and 

from BMKG and BNPB datasets. This phase used key variables such as rainfall, temperature, humidity, wind speed, 

elevation, land use, and slope, as shown in table 1. It normalized all data and applied PCA to reduce dimensionality 

and improve model performance.  

Table 1. Complete PCA Loadings Matrix 

Variable 
PC1 (38.

7%) 

PC2 (22.

1%) 

PC3 (12.

4%) 

PC4 (7.

2%) 

PC5 (5.

8%) 

PC6 (4.

3%) 

PC7 (3.

1%) 

PC8 (2.

6%) 

Commun

ality 

1. Rainfall (mm) 0.91 -0.12 0.08 0.04 -0.03 0.15 0.02 0.01 0.87 

2. NDWI 0.89 0.18 -0.05 0.11 0.07 -0.08 0.03 0.04 0.85 

3. Slope (%) 0.85 -0.21 0.13 -0.09 0.14 0.06 -0.08 0.05 0.82 

4. Temperature 

(°C) 
-0.14 0.76 0.32 -0.82 0.18 0.12 0.09 -0.04 0.91 

5. Humidity (%) 0.22 0.68 -0.11 0.71 -0.05 0.03 -0.13 0.07 0.88 

6. Wind Speed 

(km/h) 
-0.07 0.54 0.63* 0.23 -0.17 0.08 0.41 -0.12 0.79 

7. Elevation (m) 0.78 -0.29 0.17 -0.14 0.22 -0.03 -0.11 0.09 0.83 
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8. Topographic 

Wetness 
0.62 0.13 -0.45 0.27 0.51 0.08 -0.22 0.14 0.76 

9. Urban Area 

(%) 
-0.18 0.42 0.77 0.21 -0.09 -0.05 0.33 -0.18 0.81 

10. Vegetation 

Index 
0.71 0.25 -0.32 0.18 0.44 0.12 -0.19 0.07 0.74 

11. Soil 

Permeability 
0.53 0.17 0.29 0.41 0.63 -0.08 0.05 0.22 0.69 

12. Drainage 

Density 
0.67 -0.08 0.38 -0.21 0.52 0.11 -0.07 0.15 0.78 

13. River 

Proximity 
0.59 0.05 0.41 -0.13 0.47 0.14 -0.09 0.18 0.72 

14. Land Use 

Mix 
-0.21 0.38 0.69 0.25 -0.12 -0.07 0.37 -0.15 0.75 

15. Surface 

Roughness 
0.48 -0.33 0.55 -0.18 0.39 0.09 -0.14 0.11 0.68 

16. Soil Moisture 0.74 0.19 -0.28 0.22 0.38 0.15 -0.17 0.08 0.81 

17. Impervious 

Surface 
-0.25 0.47 0.72 0.19 -0.14 -0.09 0.35 -0.17 0.83 

18. Groundwater 

Depth 
0.66 -0.15 0.33 -0.24 0.45 0.12 -0.11 0.16 0.77 

19. Sediment 

Type 
0.42 0.24 0.38 0.33 0.58 -0.06 0.08 0.19 0.71 

20. SPI (30-day) 0.87 -0.09 0.11 0.07 -0.05 0.17 0.04 0.03 0.84 

21. Flow 

Accumulation 
0.69 -0.12 0.35 -0.19 0.49 0.13 -0.08 0.14 0.79 

22. Curvature 0.51 -0.27 0.62 -0.15 0.42 0.07 -0.16 0.12 0.73 

23. Historical 

Flood Freq 
0.83 0.06 -0.19 0.13 0.27 0.21 -0.05 0.09 0.86 

ANN model with multiple hidden layers was created to analyze this spatial data and improve the accuracy of flood risk 

prediction [9]. The data was split into 70% for training, 20% for testing, and 10% for evaluation. The training process 

involved using the backpropagation algorithm to adjust the network weights based on prediction errors. For the data 

training, it used 280 instances for training data, dividing them into 240 for training inputs and 40 for targets. For testing, 

they used 70 instances, consisting of 60 testing inputs and 10 targets. 

This phase selected the instances based on their availability and relevance to being understanding and predicting 

flooding events with greater precision. They collected the data with careful consideration of the need for comprehensive 

spatial and temporal information. Satellite imagery from Landsat and Sentinel provided information on land use, land 

cover, and environmental changes, as shown in table 2. These images also allowed the researchers to monitor large 

areas and detect changes that could influence flood risks, such as deforestation and urbanization [10].  

Table 2. Specification of High-Resolution Satellite Imagery 

It obtained rainfall data from meteorological stations and weather satellites. They identified rainfall as a key factor in 

flood prediction, as excessive rainfall can generate surface runoff that leads to flooding [11], [12].  The study obtained 

information about water surface elevation from satellite sensors and field measurements. This data played a crucial 

Satellite Spatial Resolution Temporal Resolution Data Period Source 

Landsat 8 30 meters 16 days 2010–2020 USGS 

Sentinel-2 10–20 meters 5 days 2010–2020 Copernicus 
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role in tracking fluctuations in water levels that could indicate potential flooding [3], [13]. Moreover, the study gathered 

topographic data, including elevation and land slope, from topographic maps and Digital Elevation Models (DEM). 

This data was essential for spatial analysis, as topography directly influenced water flow and flood distribution [12], 

[14].  

The collected data was processed through a series of stages including cleaning, interpolation, and normalization [15]. 

This process ensures that the data is ready for further analysis and feature extraction, which includes identifying 

relevant variables such as land slope, rainfall patterns, and elevation changes [10], [14], [16].  Data interpolation was 

performed using the Inverse Distance Weighting (IDW) method, as it offers reliable accuracy for sparse spatial data 

while preserving local variations. IDW was chosen for its simplicity and effectiveness in small datasets like ours. 

2.2. Geo-Spatial Neural Network Architecture 

In this phase, it designed the ANN model architecture with an input layer, multiple hidden layers, and an output layer. 

The input layer contained the normalized geospatial variables [10], [11]. The hidden layers used Rectified Linear Unit 

(ReLU) activation functions, while the output layer utilizes a sigmoid function for binary classification (flood or no-

flood) [13], [15]. The ANN was trained using the backpropagation algorithm, and the model was fine-tuned using 

hyperparameter optimization techniques, such as grid search, to identify the most effective network architecture [17]. 

Preprocessing involved normalizing data to uniformly scale features and dimensionality reduction to decrease data 

complexity without sacrificing important information. The applied techniques used PCA to identify key features that 

most influenced flood predictions [6]. In figure 1, the system architecture operated as follows: 

DATA 
COLLECTION 

LAYER

DATA 
PREPROCESSING 

LAYER
ANN MODEL

TRAINED 
MODEL

DEPLOYED

 

Figure 1. Architecture Design 

As shown in figure 1, the system architecture followed a structured and systematic process to effectively predict flood 

events. The system started with the collection of geo-spatial data, including satellite imagery, rainfall measurements, 

and elevation data, which formed the foundation for subsequent analysis. In the next stage, the researchers carried out 

data preprocessing by cleaning inconsistencies, interpolating missing values, normalizing the data, and extracting key 

features to highlight the most relevant information. Furthermore, it conducted the processed data into the ANN model, 

allowing it to pass through the input, hidden, and output layers to learn complex patterns within the data. Once they 

configured the ANN, they trained the model using cross-validation to ensure generalizability and applied 

hyperparameter optimization to enhance its performance. After training, they deployed the model for flood prediction, 

generating valuable insights to support early warning systems and inform mitigation strategies. This end-to-end 

framework integrated multi-source geo-spatial data with advanced ANN modelling to produce accurate flood risk 

assessments, as shown in figure 2. 
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Figure 2.  Simplified Model ANN Architecture 
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2.3. Mathematical Model of the ANN 

The proposed Geo-Spatial ANN started with the definition of an input feature vector, 𝑿 =  [𝑥1, 𝑥2, … , 𝑥𝑛], where 

each component 𝑥𝑖 represents a normalized geospatial variable such as rainfall, elevation, or surface water level. The 

objective of the network was to predict the output,  𝑦̃, which corresponds to the predicted flood probability or a class 

label, by propagating the input through L layers of computation. In the first hidden layer, this is achieved by computing 

the linear transformation:  𝑧(1) = 𝑊(1)𝑥 + 𝑏(1) … ..… (1), followed by the application of a non-linear activation 

function: 𝑎(1) = 𝑓(𝑧(1)) …..(2). For all subsequent hidden layers (from layer 2 to L-1), the same process continues 

with:  𝑧(1) = 𝑊(1)𝑎(𝑙−1) + 𝑏(1) ….…(3)  and 𝑎(𝑙) = 𝑓(𝑧(𝑙) …(4). The final output layer calculates the predicted 

probability using  𝑦̃ = 𝜎(𝑊(𝐿)𝑎(𝐿−1) + 𝑏(𝐿))  … (5), where the function 𝜎(⋅) is either a sigmoid or softmax, depending 

on whether the task is binary or multi-class classification. 

The activation function 𝑓(⋅) typically used a ReLU, defined as 𝑓(𝑧) = max(0, 𝑧), introducing non-linearity into the 

model. To train the network, a suitable loss function was minimized MSE for regression tasks or Binary Cross-Entropy 

(BCE) for classification. MSE was computed as  
1

𝑁
 ∑ (𝑦𝑖−𝑦̃𝑖)2𝑁

𝑖−1  …(6), while BCE was given by  

1

𝑁
 ∑ [𝑦𝑖 log(𝑦̃𝑖) + (1 − 𝑦̃𝑖) log (1 − 𝑦̃𝑖)]𝑁

𝑖−1 … (7), where N was the number of training samples yi, was the actual label, 

and y ̃i  was the predicted output. Through this structured formulation, the Geo-Spatial ANN was designed to effectively 

capture and learn the complex spatial relationships among environmental features that influence flooding dynamics. 

2.4. Training and Validation 

This phase involved several key steps to ensure its accuracy and generalizability.  First, the model is trained using 

historical data that encompasses both flood events and weather variables. This data was partitioned into a training set 

and a testing set, allowing for model training and performance evaluation [18]. The training process utilized the 

backpropagation algorithm, which adjusts the network's weights based on the errors made in its predictions, thereby 

improving the model's accuracy over time [12]. The training process utilized the backpropagation algorithm, which 

adjusts the network's weights based on the errors made in its predictions, thereby improving the model's accuracy over 

time. To further enhance the model's robustness, cross-validation was employed. This method applied cross-validation 

by dividing the data into multiple folds, training the model on different subsets and testing it on the remaining portions. 

It helped mitigate the risk of overfitting and ensured that the model could generalize well to unseen data [19], [20], 

[21].  Lastly, hyperparameter optimization is conducted to fine-tune the model's architecture and training parameters. 

Lastly, hyperparameter optimization was conducted to fine-tune the model's architecture and training parameters. This 

included adjusting factors such as the number of hidden layers, the number of neurons per layer, and the learning rate. 

Optimization techniques, such as Grid Search, were used to identify the combination of hyperparameters that yields 

the best [10], [12], [21]. Through these combined steps, the ANN model was refined to accurately predict flood 

probabilities while minimizing errors and enhancing its ability to adapt to new data [22].  

Figure 3 showed the end-to-end workflow of the proposed model, covering data collection, preprocessing, ANN 

modelling, and implementation into a decision-support system. This study leveraged ANN for flood prediction by 

utilizing diverse geospatial inputs including satellite imagery, rainfall, water surface elevation, and topography which 

underwent preprocessing through cleaning, interpolation, normalization, and feature extraction. The ANN architecture 

processed this data to identify complex patterns and generate flood likelihood predictions. It optimized model 

performance using training/testing splits, cross-validation, and hyperparameter tuning, and validated its accuracy 

against historical benchmarks. They implemented the final model to support proactive flood management through early 

warnings and informed mitigation strategies. 
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Figure 3. Research Design 

2.5. Analytical Methodology 

The flood event prediction process conducted a Backpropagation Neural Network for flood event prediction and 

configured it through a series of extensive experimental procedures. They validated the model while optimizing key 

parameters such as layer depth, number of neurons, and training epochs. These adjustments were made with the goal 

of enhancing the model's predictive performance [23]. The flood event prediction process conducted a Backpropagation 

Neural Network, which was carefully configured and validated through a series of extensive experimental procedures 

aimed at optimizing key parameters such as layer depths, neuron counts, and training epochs. These adjustments were 

made with the goal of enhancing the model's predictive [24], [25]. 

Training (70%), testing (20%), and evaluation (10%) splits were applied. Cross-validation ensured model robustness 

and reduced overfitting, data set shown in table 3. Performance was assessed using MSE and R² metrics. RapidMiner 

was employed for model experimentation. the rigorous testing and validation process, employing RapidMiner for 

analysis, underscored the model’s robustness in interpreting complex nonlinear relationships between multiple 

meteorological variables and flood events as shown on figure 4. 

 

Figure 4. Modelling Research 

The correlation matrix in figure 5 showed the various factors in the dataset related to each other worked. Rainfall 

showed a strong positive correlation with flood risk (0.98), confirming its role as a key driver of flooding events. In 

contrast, temperature and rainfall had an inverse relationship (-0.83), reflecting interactions between different weather 

conditions. These insights enhanced the accuracy of the flood prediction model.   
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Figure 5. Variables Correlation 

For example, the first entry, located at longitude -5.36275 and latitude 105.2297, recorded 140 mm of rainfall, a 

temperature of 26°C, and 85% humidity. The wind speed measured 16 km/h, and the water surface elevation was 10 

meters. The slope at this location was 12%, and the calculated flood risk reached 80%. This process continued for each 

row, with varying values across environmental variables, reflecting the diverse conditions that influenced flood risk. 

This dataset served as a valuable resource for developing predictive models to forecast flood events based on 

environmental factors. By analyzing how these variables interacted, the study assessed flood risk more accurately and 

identified high-risk areas requiring intervention or mitigation. Overall, the dataset provided a comprehensive 

foundation for flood risk analysis, incorporating both spatial and environmental dynamics. 

Table 3. Dataset 

No Long. Lat. 
Rainfall 

(mm) 

Temperature 

(°C) 

Humidity 

(%) 

Wind 

Speed 

(km/h) 

Water 

Surface 

Elevation 

(m) 

Topography 

(Slope %) 

Flood 

Risk 

(%) 

1 -5.36275 105.2297 140 26 85 16 10 12 80 

2 -5.36275 105.2297 130 27 82 15 9 11 75 

3 -5.45505 105.25803 150 25 88 18 12 15 85 

4 -5.43291 105.27265 120 28 80 14 8 10 70 

5 -5.40631 105.25345 135 26 84 17 11 13 78 

6 -5.40273 105.28375 110 29 78 12 7 9 65 

7 -5.47791 105.28803 145 25 86 19 13 16 82 

8 -5.45630 105.24563 130 27 83 15 10 12 75 

9 -5.43487 105.26758 140 26 87 16 12 14 80 

10 -5.36275 105.2297 125 26 82 14 9 11 70 

11 -5.36275 105.2297 135 25 84 17 10 13 75 

12 -5.45505 105.25803 145 24 87 18 11 14 85 

13 -5.43291 105.27265 120 27 80 13 8 10 68 

14 -5.40631 105.25345 130 26 83 16 9 12 73 

15 -5.40273 105.28375 115 28 78 12 7 9 65 

16 -5.47791 105.28803 140 25 85 18 12 14 80 
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17 -5.45630 105.24563 130 27 82 14 9 11 72 

18 -5.43487 105.26758 135 26 85 15 10 13 78 

19 -5.36275 105.2297 140 26 85 16 11 12 78 

20 -5.36275 105.2297 120 27 80 13 9 10 70 

21 -5.45505 105.25803 155 24 89 19 12 15 90 

22 -5.43291 105.27265 125 28 82 15 8 11 72 

23 -5.40631 105.25345 145 26 86 18 11 14 80 

24 -5.40273 105.28375 130 29 81 13 9 12 75 

25 -5.47791 105.28803 150 25 87 20 13 16 85 

26 -5.45630 105.24563 135 27 83 17 10 13 78 

27 -5.43487 105.26758 140 26 86 16 12 14 80 

3. Result 

3.1. Flood Risk Across Regions 

Figure 6 mapped flood risk using geo-coordinates and showed the flood risk levels at different locations. Darker 

markers indicated higher flood risk in those areas. The map highlighted critical hotspots where mitigation efforts 

needed prioritization, helping decision-makers plan resource allocation more effectively. 

 

Figure 6. Risk Level Locations 

3.2. How the Environment Shapes Flood Risk 

Figure 7 demonstrated how topography, elevation, and rainfall collectively shaped flood susceptibility, with steep 

terrain and high rainfall intensity serving as key flood indicators. The scatter plot revealed a positive correlation 

between topographic slope (9–16%) and water surface elevation (7–13 m), with flood risk color-coded from purple 

(65%) to yellow (90%). Higher flood risk concentrated in areas with steeper slopes and higher elevations, as steep 

terrain created rapid runoff, reduced infiltration, and increased flow velocities that amplified flood likelihood when 

combined with intense rainfall. 

The confusion matrix validated the flood prediction model’s performance, showing 80% accuracy (8 out of 10 correct 

predictions). The model effectively identified actual flood events, with 5 true positives out of 6 total floods, confirming 

that topographic variables combined with rainfall data provided strong predictive power for flood assessment. One 

false negative suggested that some topographic–rainfall interactions remained complex to capture, but the results 

supported using steep terrain with high rainfall as reliable flood indicators overall. 
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(a) Valuable Insight (b) Confusion Matrix 

Figure 7. Valuable Insight and Confusion Matrix 

3.3. Tracking Flood Through Satellite Imaging 

Figure 8 showed the administrative and topographic context, highlighting settlements, infrastructure, and the main 

water body (in blue), which provided a spatial reference for understanding which areas and communities faced flood 

risks. Furthermore, figure 8 used satellite imagery with a color-coded duration analysis (red-to-blue gradient) to reveal 

how long different areas remained flooded. Darker blue zones indicated extended flood durations, while the gradient 

illustrated varying levels of flood persistence across the landscape. 

 

Figure 8. Satellite Imagery 

This approach enabled planners to distinguish between permanently flooded areas, seasonal flood zones, and 

occasionally inundated regions. By mapping flood persistence duration, authorities made more informed decisions 

regarding infrastructure placement, emergency preparedness, and community resilience strategies. Areas with 

consistent, long-duration flooding required different management approaches compared to zones that experienced 

brief, infrequent inundation. 

3.4. Model Performance 

The ANN model achieved a remarkable 92% accuracy in flood prediction, significantly outperforming traditional 

methods, which typically ranged between 75–85%. This strong performance was supported by robust evaluation 

metrics, including a MSE of 1.41 and a coefficient of determination (R²) of 0.94, indicating that the model effectively 

captured complex, non-linear relationships—such as those between rainfall, slope, and water flow that were often 

overlooked by conventional statistical and hydrological models. While linear regression resisted with variable 

interactions and hydrological models required difficult-to-estimate parameters, the ANNs architecture excelled in both 

accuracy and generalization. In particular, the model demonstrated superior capability in detecting areas with elevated 

flood risk, delivering lower prediction errors and better generalization to new, unseen datasets. Unlike traditional 

hydrological models that required extensive parameter tuning, or statistical techniques that often overlooked complex 

non-linear interactions, the ANNs effectively captured these intricate spatial and environmental relationships. As 

shown in figure 9, certain model configurations (e.g., with 5, 7, or 12 neurons) exhibited signs of overfitting, evidenced 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2594-2606 

ISSN 2723-6471 

2603 

 

 

 

by a sharp decline in testing correlation despite strong training results. This emphasized the importance of maintaining 

a proper balance between bias and variance when optimizing the model, a trade-off further detailed in table 4. 

 

Figure 9. Correlations Between Model Training and testing 

Table 4. Model Training Results 

Config Layers Neurons Corr Error Config Layers Neurons Corr Error 

1 3 40 0.97 0.00181 11 2 50 0.95 0.00571 

2 4 50 0.99 0.00439 12 5 30 0.99 0.01166 

3 2 30 0.92 0.02140 13 4 50 0.95 0.03586 

4 3 20 0.94 0.00476 14 3 50 0.97 0.00585 

5 4 40 0.97 0.01037 15 5 50 0.97 0.00951 

6 2 30 0.92 0.00099 16 5 20 0.96 0.00202 

7 3 30 0.97 0.00838 17 5 20 0.98 0.01589 

8 2 20 0.92 0.00004 18 2 50 0.93 0.00820 

9 5 50 0.97 0.00193 19 5 10 0.94 0.02036 

10 5 20 0.98 0.00898 20 4 30 0.98 0.00134 

Optimizing model complexity was essential to achieving optimal performance. Simpler models tended to exhibit higher 

bias, which led to weaker correlations between training and testing results, whereas more complex models often overfit 

the data due to increased variance. To address this, hyperparameters such as the number of layers, neurons, and learning 

rates were carefully adjusted to find the right balance between training accuracy and generalization. Configurations 

such as 3, 4, and 19 showed better alignment between training and testing performance, indicating improved 

generalization capability. The observed fluctuations in testing correlation further highlighted the difficulty in 

maintaining consistent performance across both training and unseen data. Therefore, continuous tuning and cross-

validation were conducted to reduce overfitting and enhance model reliability. As presented in table 5, the comparative 

results further demonstrated that the proposed ANN model outperformed traditional approaches. 

Table 5. Benchmark Comparison with Other Models 

Model Accuracy MSE R² 

ANN (Proposed) 92% 1.41 0.94 

Linear Regression 76% 6.35 0.69 

Hydrological Model 83% 3.2 0.81 
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3.5.Uncertainty and Sensitivity Analysis 

To address model uncertainty and validate prediction reliability, Monte Carlo simulations (n=100 iterations) were 

conducted to assess prediction variance across different scenarios. Additionally, sensitivity analysis using the One-at-

a-Time (OAT) method was performed to identify the most influential variables affecting flood risk predictions. In 

figure 10, the histogram showed how flood risk predictions varied across 100 simulation runs, with values ranging 

from about 4 to 10. Most predictions clustered between 7 and 8 with forming a near-normal distribution. This pattern 

demonstrated that the model maintained consistent performance and low prediction variance. Despite uncertainties in 

the input data, the model reliably estimated flood risk levels. 

 

Figure 10. MonteCarlo Simulations and One-at-aTime Analysis 

Moreover, the bar chart revealed the relative importance of key variables in flood prediction. Rainfall showed the 

highest average sensitivity (~5.0), confirming its dominant role in flood risk assessment. Slope displayed moderate 

sensitivity (~2.0), indicating its secondary yet significant contribution to flood susceptibility. This analysis validated 

the model’s emphasis on these critical topographic and meteorological factors. 

The combined results demonstrated that the model-maintained prediction stability through Monte Carlo validation. 

Rainfall emerged as the primary driver of flood risk, followed by topographic slope. This quantitative sensitivity 

assessment supported the model’s variable selection and provided confidence intervals for operational flood risk 

predictions. The ANNs model was deployed in a simulated early warning system dashboard, showing flood risk maps 

updated in real time. Integration with BMKG and BPBD APIs is planned for real-world deployment shows on figure 

11. 

 

Figure 71. System Deployment Mockup (dashboard flood prediction) 

4. Conclusion 

This study finds that a Geo-Spatial ANN significantly enhances the accuracy of flood prediction models. By integrating 

high-resolution satellite imagery, meteorological data, and topographic information, the ANN model delivers stronger 

predictive performance than conventional methods. With an accuracy rate of up to 92%, the model provides reliable 

forecasts that support effective flood risk mitigation and management. Future research should expand the dataset, refine 
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model training techniques, and incorporate more real-time data sources to improve scalability and predictive precision. 

These findings highlight the potential of combining ANN with geo-spatial data to advance flood forecasting systems. 

By applying machine learning techniques, flood prediction becomes faster and more accurate, enabling better disaster 

risk management and emergency response. Furthermore, it can further improve the model by including additional 

environmental variables such as urbanization levels or drainage infrastructure. Integrating real-time data also supports 

the development of adaptive flood warning systems that issue early alerts, helping save lives and reduce economic 

losses. 

5. Declarations 

5.1. Author Contributions 

Conceptualization: R.Z.A.A., R.N., R.H., and M.S.H.; Methodology: R.N.; Software: R.Z.A.A.; Validation: R.Z.A.A., 

R.N., and M.S.H.; Formal Analysis: R.Z.A.A., R.N., and M.S.H.; Investigation: R.Z.A.A.; Resources: R.N.; Data 

Curation: R.N.; Writing Original Draft Preparation: R.Z.A.A., R.N., and M.S.H.; Writing Review and Editing: R.N., 

R.Z.A.A., and M.S.H.; Visualization: R.Z.A.A. All authors have read and agreed to the published version of the 

manuscript. 

5.2. Data Availability Statement 

The data presented in this study are available on request from the corresponding author. 

5.3. Funding 

The authors received no financial support for the research, authorship, and/or publication of this article. 

5.4. Institutional Review Board Statement 

Not applicable. 

5.5. Informed Consent Statement 

Not applicable. 

5.6. Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

References 

[1] E. S. Puspita Wulandari, R. Nurpambudi, and R. A. Aziz, “Prediction model with artificial neural network for tidal flood 

events in the coastal area of bandar lampung City,” J. Infotel, vol. 15, no. 2, pp. 135–149, 2023, doi: 

10.20895/infotel.v15i2.882. 

[2] K. R. B and G. A, “Rainfall Prediction Using Data Mining Techniques - A Survey,” Computer Science & Information 

Technology (CS & IT), vol. 2013, no. 1, pp. 23–30, 2013, doi: 10.5121/csit.2013.3903. 

[3] H. Darabi et al., “Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood,” 

Geocarto Int., vol. 37, no. 19, pp. 5716–5741, 2022, doi: 10.1080/10106049.2021.1920629. 

[4] D. P. M. Abellana and D. M. Lao, “A new univariate feature selection algorithm based on the best–worst multi-attribute 

decision-making method,” Decis. Anal. J., vol. 7, no. May, pp. 1-20, 2023, doi: 10.1016/j.dajour.2023.100240. 

[5] Saulia, L., Hanif, F., & Herwanto, R. (2024, August). Geospatial Mapping of Occupational Safety and Health Risks of an 

Aquaculture Enterprise. In IOP Conference Series: Earth and Environmental Science, vol. 1386, no. 1, pp. 1-16, IOP 

Publishing, doi: 10.1088/1755-1315/1386/1/012016. 

[6] H. Zhu, J. Leandro, and Q. Lin, “Optimization of artificial neural network (Ann) for maximum flood inundation forecasts,” 

Water (Switzerland), vol. 13, no. 16, pp. 1–15, 2021, doi: 10.3390/w13162252. 

[7] M. S. G. Adnan et al., “A novel framework for addressing uncertainties in machine learning-based geospatial approaches for 

flood prediction,” J. Environ. Manage., vol. 326, no. 1, pp. 1-13, 2023, doi: 10.1016/j.jenvman.2022.116813. 

https://www.doi.org/10.20895/infotel.v15i2.882
https://www.doi.org/10.20895/infotel.v15i2.882
https://www.doi.org/10.20895/infotel.v15i2.882
https://www.doi.org/10.5121/csit.2013.3903
https://www.doi.org/10.5121/csit.2013.3903
https://www.doi.org/10.1080/10106049.2021.1920629
https://www.doi.org/10.1080/10106049.2021.1920629
https://www.doi.org/10.1016/j.dajour.2023.100240
https://www.doi.org/10.1016/j.dajour.2023.100240
https://www.doi.org/10.1088/1755-1315/1386/1/012016
https://www.doi.org/10.1088/1755-1315/1386/1/012016
https://www.doi.org/10.1088/1755-1315/1386/1/012016
https://www.doi.org/10.3390/w13162252
https://www.doi.org/10.3390/w13162252
https://www.doi.org/10.1016/j.jenvman.2022.116813
https://www.doi.org/10.1016/j.jenvman.2022.116813


Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2594-2606 

ISSN 2723-6471 

2606 

 

 

 

[8] N. M. Gharakhanlou and L. Perez, “Flood susceptible prediction through the use of geospatial variables and machine learning 

methods,” J. Hydrol., vol. 617, no. 1, pp. 1-21, 2023, doi: 10.1016/j.jhydrol.2023.129121. 

[9] S. Kordrostami, M. A. Alim, F. Karim, and A. Rahman, “Regional flood frequency analysis using an artificial neural network 

model,” Geosci., vol. 10, no. 4, pp. 1–15, 2020, doi: 10.3390/geosciences10040127. 

[10] F. Y. Dtissibe, A. A. A. Ari, C. Titouna, O. Thiare, and A. M. Gueroui, “Flood forecasting based on an artificial neural 

network scheme,” Nat. Hazards, vol. 104, no. 2, pp. 1211–1237, 2020, doi: 10.1007/s11069-020-04211-5. 

[11] M. Rahman et al., “Flooding and its relationship with land cover change, population growth, and road density,” Geosci. 

Front., vol. 12, no. 6, p. 101224, 2021, doi: 10.1016/j.gsf.2021.101224. 

[12] H. Darabi et al., “A hybridized model based on neural network and swarm intelligence-grey wolf algorithm for spatial 

prediction of urban flood-inundation,” J. Hydrol., vol. 603, no. PA, p. 126854, 2021, doi: 10.1016/j.jhydrol.2021.126854. 

[13] D. Tien Bui et al., “A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at 

a high frequency tropical storm area,” Sci. Total Environ., vol. 701, no. 1, pp. 1-13, 2020, doi: 

10.1016/j.scitotenv.2019.134413. 

[14] N. Khoirunisa, C. Y. Ku, and C. Y. Liu, “A GIS-based artificial neural network model for flood susceptibility assessment,” 

Int. J. Environ. Res. Public Health, vol. 18, no. 3, pp. 1–20, 2021, doi: 10.3390/ijerph18031072. 

[15] Z. Guo, J. P. Leitão, N. E. Simões, and V. Moosavi, “Data-driven flood emulation: Speeding up urban flood predictions by 

deep convolutional neural networks,” J. Flood Risk Manag., vol. 14, no. 1, pp. 1–14, 2021, doi: 10.1111/jfr3.12684. 

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms, 4 Edition. 2022.  

[17] F. R. G. Cruz, M. G. Binag, M. R. G. Ga, and F. A. A. Uy, “Flood Prediction Using Multi-Layer Artificial Neural Network 

in Monitoring System with Rain Gauge, Water Level, Soil Moisture Sensors,” IEEE Reg. 10 Annu. Int. Conf. 

Proceedings/TENCON, vol. 2018-Octob, no. October, pp. 2499–2503, 2018, doi: 10.1109/TENCON.2018.8650387. 

[18] N. Dahri, R. Yousfi, A. Bouamrane, H. Abida, Q. B. Pham, and O. Derdous, “Comparison of analytic network process and 

artificial neural network models for flash flood susceptibility assessment,” J. African Earth Sci., vol. 193, no. 1, pp. 1-16, 

2022, doi: 10.1016/j.jafes.2022.104576. 

[19] M. Motta, M. de Castro Neto, and P. Sarmento, “A mixed approach for urban flood prediction using Machine Learning and 

GIS,” Int. J. Disaster Risk Reduct., vol. 56, no. February, pp. 1-14, 2021, doi: 10.1016/j.ijdrr.2021.102154. 

[20] S. Xie, W. Wu, S. Mooser, Q. J. Wang, R. Nathan, and Y. Huang, “Artificial neural network based hybrid modeling approach 

for flood inundation modeling,” J. Hydrol., vol. 592, no. February, pp. 1-15, 2021, doi: 10.1016/j.jhydrol.2020.125605. 

[21] B. Bazartseren, G. Hildebrandt, and K. P. Holz, “Short-term water level prediction using neural networks and neuro-fuzzy 

approach,” Neurocomputing, vol. 55, no. 3–4, pp. 439–450, 2003, doi: 10.1016/S0925-2312(03)00388-6. 

[22] R. Tabbussum and A. Q. Dar, “Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy 

logic, and adaptive neuro-fuzzy inference system for flood prediction,” Environ. Sci. Pollut. Res., vol. 28, no. 20, pp. 25265–

25282, 2021, doi: 10.1007/s11356-021-12410-1. 

[23] A. B. Dariane and S. Azimi, “Streamflow forecasting by combining neural networks and fuzzy models using advanced 

methods of input variable selection,” J. Hydroinformatics, vol. 20, no. 2, pp. 520–532, 2018, doi: 10.2166/hydro.2017.076. 

[24] G. Wang, J. Yang, Y. Hu, J. Li, and Z. Yin, “Application of a novel artificial neural network model in flood forecasting,” 

Environ. Monit. Assess., vol. 194, no. 2, pp. 125-137, 2022, doi: 10.1007/s10661-022-09752-9. 

[25] M. Panahi et al., “Deep learning neural networks for spatially ex plicit prediction of flash flood probability,” Geosci. Front., 

vol. 12, no. 3, pp. 1-16, 2021, doi: 10.1016/j.gsf.2020.09.007.  

 

https://www.doi.org/10.1016/j.jhydrol.2023.129121
https://www.doi.org/10.1016/j.jhydrol.2023.129121
https://www.doi.org/10.3390/geosciences10040127
https://www.doi.org/10.3390/geosciences10040127
https://www.doi.org/10.1007/s11069-020-04211-5
https://www.doi.org/10.1007/s11069-020-04211-5
https://www.doi.org/10.1111/jfr3.12684
https://www.doi.org/10.1111/jfr3.12684
http://lccn.loc.gov/2021037260
https://www.doi.org/10.1109/TENCON.2018.8650387
https://www.doi.org/10.1109/TENCON.2018.8650387
https://www.doi.org/10.1109/TENCON.2018.8650387
https://www.doi.org/10.1016/j.jafes.2022.104576
https://www.doi.org/10.1016/j.jafes.2022.104576
https://www.doi.org/10.1016/j.jafes.2022.104576
https://www.doi.org/10.1016/j.ijdrr.2021.102154
https://www.doi.org/10.1016/j.ijdrr.2021.102154
https://www.doi.org/10.1016/j.jhydrol.2020.125605
https://www.doi.org/10.1016/j.jhydrol.2020.125605
https://www.doi.org/10.1016/S0925-2312(03)00388-6
https://www.doi.org/10.1016/S0925-2312(03)00388-6
https://www.doi.org/10.1007/s11356-021-12410-1
https://www.doi.org/10.1007/s11356-021-12410-1
https://www.doi.org/10.1007/s11356-021-12410-1
https://www.doi.org/10.2166/hydro.2017.076
https://www.doi.org/10.2166/hydro.2017.076
https://www.doi.org/10.1007/s10661-022-09752-9
https://www.doi.org/10.1007/s10661-022-09752-9
https://www.doi.org/10.1016/j.gsf.2020.09.007
https://www.doi.org/10.1016/j.gsf.2020.09.007

