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Abstract 

Modern e-supply chains face increasing complexity and a critical need for enhanced sustainability and traceability. Blockchain technology offers 

a promising infrastructure to support these goals through its decentralized, immutable ledgers and automated smart contracts, which can provide 

a foundation of trustworthy data for decision-making. Despite blockchain's potential, a notable gap exists in quantitative, data-driven optimization 

models that can rigorously assess the operational and sustainability impacts of its integration, particularly for systems with complex, non-linear 

interactions. This study aims to address this gap by presenting an in-depth analysis of a specific Mixed-Integer Non-Linear Programming 

(MINLP) model. The goal is to clarify the model's structure, evaluate its application for an e-supply chain that incorporates blockchain features 

and sustainability objectives (like carbon emission reduction), and derive practical insights from its application. The methodology involves a 

detailed exposition of the MINLP model, followed by its application to a defined e-supply chain scenario. The analytical approach includes 

computational experiments focusing on a base case analysis, benchmarking the model’s performance against a conventional system, and 

conducting sensitivity analyses on key parameters to understand performance trade-offs. The initial base case analysis demonstrates the model's 

capability to optimize supplier selection and operational plans while adhering to sustainability constraints, such as maintaining carbon emissions 

at or below 300 kg CO₂ per period, and accounting for blockchain-specific costs like a per-supplier usage fee of 500. The model's structure and 

preliminary insights suggest its potential to achieve improved environmental impact compared to conventional systems, balanced against 

associated implementation costs. This research provides a detailed examination of a complex MINLP structure, offering a data-driven analytical 

approach for assessing blockchain's role in sustainable e-supply chains. It furnishes a foundational framework and insights that can guide 

managerial decisions and strategic planning for industries transitioning towards greener, more transparent, and digitally advanced supply chain 

operations. 

Keywords: Blockchain Technology, E-Supply Chain, MINLP, Optimization, SSCM 

1. Introduction  

The rapid proliferation of e-commerce and the expansion of global digital markets have fundamentally reshaped supply 

chain dynamics, introducing heightened complexity in product flows, data management, and the coordination of 

stakeholders [1]. While this digitalization brings advantages such as increased speed and scalability, it concurrently 

intensifies challenges related to transparency, traceability, and trust within supply chain operations [2]. Digitalization 

can streamline information exchange and improve visibility to some extent; however, the sheer volume of data, the 

number of actors involved, and the pace of transactions in e-supply chains can also obscure origins, complicate 

compliance verification, and create new vulnerabilities. Against this backdrop, sustainability has emerged as a critical 

imperative in modern supply chain management, propelled by more stringent environmental regulations, growing 

consumer consciousness, and the urgent need to align business practices with global Sustainable Development Goals 

(SDGs) [3]. 

Conventional supply chains frequently operate in disconnected silos, characterized by fragmented data and restricted 

visibility across both upstream and downstream activities. This opacity makes it exceedingly difficult to verify 
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adherence to environmental or social compliance standards. In the context of e-supply chains, where transactions are 

predominantly digital and geographically dispersed, these issues are magnified. Products often traverse through 

numerous intermediaries, rendering the tracking of origins, the monitoring of carbon emissions, and the assurance of 

ethical sourcing particularly challenging [4]. Consequently, traditional optimization models in supply chain design 

have often prioritized cost minimization or service level enhancement, frequently overlooking crucial sustainability 

trade-offs and the mechanisms for enforcing traceability [5]. 

Blockchain technology, distinguished by its decentralized architecture, immutable record-keeping, and transparent 

operational nature, presents a transformative approach to addressing these persistent challenges. By meticulously 

recording all transactions on a distributed, shared ledger and facilitating the execution of smart contracts, blockchain 

can automate compliance processes, ensure the provenance of data, and enforce sustainability protocols at every 

juncture of the supply chain [6]. The inherent features of blockchain thus provide a robust foundation for trustworthy 

and verifiable data, which is paramount for effective and responsible decision-making. For instance, empirical evidence 

shows blockchain's efficacy in enhancing food safety through improved traceability [7] and in mitigating the risks 

associated with counterfeit products in sectors such as pharmaceuticals and fashion [8]. 

Despite these promising attributes, the practical integration of blockchain into operational supply chain models, 

especially those designed to support sustainability objectives, remains an area requiring significant development. Much 

of the existing literature tends to explore conceptual applications or focuses on qualitative benefits, often without 

adequately addressing the quantifiable trade-offs and logistical complexities introduced by blockchain implementation. 

These complexities can include transaction processing delays, the costs associated with data verification, or penalties 

related to emissions [9], [10]. This results in a notable gap in the availability of comprehensive decision-support tools 

that can concurrently optimize for cost-efficiency, sustainability performance, and blockchain-enabled traceability. 

This paper addresses the specific problem of optimizing e-supply chains for enhanced sustainability by leveraging the 

capabilities of blockchain technology, focusing on the need for quantitative, data-driven optimization models to 

rigorously assess its operational and sustainability impacts, even when such models entail inherent complexities. 

The main objective of this study is to present and analyze a specific MINLP optimization model for an e-supply chain 

network that incorporates blockchain features and sustainability objectives. This paper aims to contribute to the field 

by providing the following: 1) a detailed exposition and clarification of this specific MINLP model as it applies to 

blockchain-enabled sustainable e-supply chains; 2) a clear methodology for the practical application and solution of 

the model, including data considerations and solution approaches; 3) a quantitative evaluation of the model's 

performance through computational experiments that benchmark its outcomes against a conventional supply chain 

system; 4) a sensitivity analysis to assess the model's behavior and responsiveness to variations in key parameters, such 

as carbon costs and blockchain fees; and 5) the derivation of pertinent managerial insights that stem from this 

comprehensive analysis. 

2. Literature Review  

2.1. Sustainable Supply Chain Management (SSCM) 

The transformation of traditional supply chains into Sustainable Supply Chains (SSCs) has become increasingly 

important in response to escalating environmental degradation, heightened ethical concerns, and mounting regulatory 

pressures. SSCM fundamentally integrates economic, social, and environmental goals, commonly referred to as the 

Triple Bottom Line (TBL) framework. As defined by Seuring and Müller, SSCM involves incorporating these three 

dimensions into comprehensive supply chain practices [11]. The TBL concept, first introduced by Elkington in 1994, 

necessitates businesses to weigh their operations against holistic sustainability criteria, thereby promoting a balance 

between economic growth, environmental stewardship, and social equity [11]. In operational terms, SSCM translates 

to minimizing waste, reducing carbon emissions, promoting ethical sourcing, and enhancing stakeholder collaboration 

[2]. Thus, in the context of SSCM, organizations must adjust their supply chain strategies to enhance overall 

sustainability while simultaneously maintaining or improving their competitive advantages [12], [13]. The objectives 

of SSCM extend beyond mere compliance with prevailing regulations; they are geared towards enhancing long-term 

organizational performance and ensuring stakeholder satisfaction [12], [14]. Research indicates that the successful 
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implementation of SSCM practices can lead to more effective risk management and optimized resource utilization, 

thereby addressing critical global challenges such as resource scarcity and environmental degradation. Specifically, 

firms that proactively adopt sustainable practices can significantly improve their resilience against market volatility 

and environmental shifts, which ultimately boosts their competitive edge in the marketplace [15]. However, the 

adoption of SSCM is not without its difficulties. Challenges typically arise from the inherent complexity involved in 

balancing these diverse economic, environmental, and social objectives. Organizations often grapple with the 

intricacies of integrating sustainability principles into long-standing traditional supply chain practices, particularly 

while managing varied and sometimes conflicting stakeholder expectations [16], [17]. 

Optimization models play an integral role in advancing SSCM by providing robust quantitative frameworks to address 

the multidimensional challenges intrinsically associated with achieving sustainability. These models are diverse and 

can generally be classified into linear, non-linear, and multi-objective optimization models. Linear optimization 

techniques are frequently employed for more straightforward supply chain problems where the relationships between 

decision variables are assumed to be proportionate and additive [18]. In contrast, non-linear models are designed to 

account for more complex system dynamics where inputs and outputs are not directly proportional; such complexities 

often arise from the interdependencies associated with environmental regulations or the non-linear cost structures of 

sustainable technologies [18]. Furthermore, advanced multi-objective optimization models empower decision-makers 

to simultaneously address multiple, often conflicting, objectives inherent in SSCM. These can include concurrent goals 

such as operational cost reductions, the minimization of adverse environmental impacts, and the maximization of 

positive social benefits [18]. Such sophisticated models facilitate more informed and holistic decision-making 

processes, helping organizations to effectively navigate the intricate trade-offs between competing sustainability 

objectives [17]. 

2.2. Blockchain Technology in Supply Chain Management 

Blockchain technology is increasingly recognized as a transformative solution in SCM, particularly in enhancing 

traceability, anti-counterfeiting measures, transparency, and compliance through smart contracts. The adoption of 

blockchain in supply chains aligns closely with efforts to improve sustainability, fostering transparency and trust among 

stakeholders while combating inefficiencies and unethical practices. Applications of Blockchain in SCM include 

traceability, which is arguably one of the most significant applications in industries such as food and pharmaceuticals 

where meticulous tracking of products is paramount for safety and compliance. In food supply chains, blockchain 

enables detailed tracking from farm to table, allowing stakeholders to trace products back through each stage of the 

supply chain, thus ensuring quality, safety, and potentially verifying sustainable farming practices or reduced food 

waste [19]. Similarly, in pharmaceuticals, blockchain can mitigate risks related to counterfeit drugs by providing 

immutable records that trace products back to their origins, ensuring patient safety and compliance with regulatory 

standards [20]. These capabilities help build consumer trust, as customers can verify the authenticity and quality of 

their products. Anti-counterfeiting measures benefit profoundly from blockchain's unique characteristics of 

immutability and transparency. By documenting every transaction and change of custody on a blockchain, entities 

involved in the supply chain can ensure that only legitimate products reach the consumer, which is crucial for 

sustainability by preventing resource waste on illicit goods [21]. This is especially critical in sectors vulnerable to 

counterfeit goods, where trust and safety are significantly jeopardized. Smart contracts enhance compliance by 

automating agreements based on predetermined conditions, which can include verifiable sustainability metrics such as 

emission thresholds or ethical sourcing certifications. These contracts execute automatically upon verification, 

reducing intermediaries and disputes, and enabling the direct incorporation of quantifiable sustainability achievements 

or penalties into optimization models [22], [23]. 

The benefits of Blockchain Adoption in SCM are numerous, mainly in terms of enhanced transparency and trust. 

Blockchain fosters a higher level of transparency, allowing all participants in the supply chain to access real-time data 

and documentation. This visibility can result in improved collaboration and reduced friction between partners [24]. 

Furthermore, the permanent and immutable nature of blockchain records significantly enhances trust among 

stakeholders, as each participant can validate transactions without reliance on a central authority [24]. Additionally, 

the potential for cost savings is notable, some of which can be linked to sustainability improvements. Blockchain can 

reduce inefficiencies related to administrative tasks, fraud, and error-prone processes, leading to improved operational 
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efficiencies. These efficiencies can translate to reduced resource consumption, lower waste, and fewer penalties for 

non-compliance with environmental standards, thereby contributing to both economic and environmental sustainability 

objectives [25]. Crucially, for quantitative modeling and data-driven decision-making, blockchain provides enhanced 

data integrity and verifiability. This ensures that the data inputs for optimization models aiming to improve 

sustainability are more reliable and auditable, leading to more robust and trustworthy outputs. Despite its numerous 

advantages, the transition to blockchain technology within supply chains is not without challenges. A significant barrier 

is the lack of standardization and understanding of blockchain’s capabilities across various sectors. There exists a 

broader uncertainty among supply chain professionals about the practical implications and risks associated with 

blockchain, reflecting a critical need for education and awareness [26]. There are also concerns regarding the 

integration of blockchain with existing systems. The fragmented nature of supply chains, characterized by varied 

technological capabilities among partners, can complicate the implementation of a unified blockchain system [27]. 

Moreover, the energy consumption associated with some blockchain technologies, particularly Proof of Work systems, 

raises sustainability concerns, echoing the very objectives the technology seeks to advance [26]. This is a particularly 

important consideration when focusing on studies that discuss blockchain for sustainability aspects, as the 

environmental footprint of the blockchain solution itself must be weighed against its benefits in promoting broader 

supply chain sustainability. However, it is important to note that alternative consensus mechanisms, such as Proof-of-

Stake (PoS), offer significantly lower energy footprints, and the selection of an appropriate blockchain architecture 

itself can be a critical decision factor, and thus a modeling parameter, when designing sustainable, blockchain-enabled 

supply chains. 

2.3. Quantitative Models Integrating Blockchain and Sustainability in SCM 

The fusion of blockchain technology and sustainability objectives within SCM is an emerging area of academic inquiry, 

with a growing focus on quantitative models designed to integrate these distinct yet complementary features. Research 

in this domain explores a variety of mathematical approaches, including Mixed-Integer Linear Programming (MILP), 

MINLP, simulation methods, and other analytical techniques such as Structural Equation Modeling (SEM) and fuzzy 

inference systems, to understand and optimize the role of blockchain in fostering sustainable supply chains. Several 

studies highlight how blockchain can serve as a foundational technology for enhancing supply chain performance and 

sustainability through improved data management and stakeholder coordination. For instance, [28] utilize SEM 

alongside an Analysis of Fuzzy Inference Systems (ANFIS) to demonstrate blockchain's potential in facilitating data 

sharing and improving coordination, thereby promoting sustainable practices. Their work underscores blockchain's 

capability to integrate sustainability metrics directly into the decision-making fabric of supply chains. Similarly, [29] 

propose an innovative blockchain-based architecture specifically designed to support sustainable supply chains. While 

their paper focuses more on the architectural framework, it introduces the concept of a quantitative model to assess 

sustainability impacts, laying groundwork for future quantitative analyses. 

The impact assessment of blockchain on sustainability performance is a recurring theme. Research [20], while 

acknowledging the potential benefits, emphasize the critical need for empirical studies that quantitatively establish the 

relationship between blockchain adoption and tangible sustainability outcomes. They advocate for future research to 

incorporate rigorous quantitative analyses, potentially using MILP or simulation, to establish causal links. Other 

research provides a contextual understanding of the interplay between blockchain and green supply chain practices. 

Study [30] underscore the importance of a firm's technological orientation in conjunction with blockchain adoption to 

enhance pro-environmental behaviors, suggesting that systemic changes are key and that quantitative modeling is a 

necessary future step for rigorous analysis. The integration of blockchain with existing enterprise systems for enhanced 

sustainability is also explored. Research [31] investigate how blockchain can complement Enterprise Resource 

Planning (ERP) systems to boost sustainable performance, proposing the integration of blockchain with quantitative 

modeling approaches already used in ERP systems. This suggests opportunities for developing sophisticated 

optimization models, potentially MILP or MINLP, that can balance operational efficiency with sustainability metrics. 

Furthermore, the role of blockchain in enhancing supply chain visibility and its implications for sustainability are 

discussed by [32]. Their work implies a strong potential for employing simulation models to demonstrate how increased 

visibility through blockchain affects decision-making in sustainability contexts, which could evolve into quantitative 

studies using stochastic modeling to analyze diverse sustainability scenarios. Despite these promising advancements, 
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the literature reveals notable challenges in fully embedding blockchain features into quantitative optimization models 

for sustainable SCM. A significant obstacle is the current lack of standardized mathematical frameworks that can 

accurately represent the operational complexities of supply chains while simultaneously accounting for the specific 

dynamics and costs associated with blockchain technology [33]. As indicated by several studies, including those by 

[20], [29], there remains a considerable gap in comprehensive investigations that directly apply detailed MILP or 

MINLP models to these interactions, particularly models that quantify aspects like transaction validation times, 

immutability constraints, or the nuanced costs of smart contract execution.  

This study contributes to the identified gap by presenting an in-depth analysis of a specific MINLP model tailored for 

an e-supply chain. This model explicitly incorporates blockchain features, such as transaction costs and conceptual 

smart contract enforcement for sustainability compliance, alongside traditional operational and sustainability 

objectives. The primary contribution of this paper, however, lies not in the formulation of a new model, but in the 

rigorous computational investigation of this complex MINLP structure. Our approach is critical because understanding 

the practical performance, sensitivities, and scalability of existing complex non-linear models under diverse operational 

and cost scenarios provides crucial, data-driven insights for real-world adoption. This analytical step is often bypassed 

in literature that may favor the proposal of new conceptual models over the deep empirical validation of existing 

complex ones. This paper aims to fill that void by offering a granular analysis of this particular MINLP model, achieved 

through a comprehensive methodology that includes detailed clarification of the model’s components, benchmarking 

against a conventional system, and extensive sensitivity testing. By focusing on this in-depth empirical evaluation, this 

study provides tangible insights into the practical implications and performance trade-offs involved in applying such a 

model for blockchain-enabled sustainable e-supply chains. The detailed computational analysis and the subsequent 

derivation of managerial insights from this specific model structure represent a focused contribution to the applied data 

science aspect of this research domain, demonstrating a replicable workflow for evaluating emerging technologies 

within complex operational systems. 

3. Methodology  

3.1.Problem Description 

This study considers a multi-echelon e-supply chain network operating within a digitally-driven ecosystem where 

blockchain technology is integrated to enhance traceability, security, and sustainability. The supply chain comprises 

several key echelons: suppliers (S) providing raw materials or components (Product I), manufacturing centers (M) that 

process these inputs into refined products (Product P), and distribution centers or warehouses (W) which, in an e-supply 

chain context, manage inventory and fulfill orders to end consumers or e-retailers. The product flow is sequential: raw 

materials move from suppliers to manufacturers, and finished products flow from manufacturers to distribution centers, 

ultimately reaching consumers whose demands are considered at the distribution center level. The planning horizon for 

operational decisions spans multiple time periods. 

The core of the problem lies in optimizing a range of key supply chain decisions. These encompass procurement 

decisions, such as determining which suppliers to engage and the quantity of raw materials to source from each. They 

also include production decisions, which involve deciding which manufacturing facilities to operate, the quantity of 

each product to produce (considering both regular and overtime options), and effectively managing production 

capacities. Finally, the optimization extends to distribution and inventory decisions, covering the management of 

product flow to distribution centers, the determination of optimal inventory levels (including necessary safety stock) 

to meet stochastic consumer demand at a desired service level, and the planning of logistics routes. 

A primary sustainability goal integrated into the model is the minimization of environmental impact, specifically by 

accounting for and penalizing carbon emissions generated at various nodes and during transportation activities. The 

model aims to reduce overall carbon emissions as part of its cost optimization objective. While not explicitly modeled 

as separate waste minimization variables, efficient resource utilization and inventory management inherent in the 

optimization contribute to reducing potential waste. 

Blockchain technology is envisioned to operate as an underlying infrastructure for this e-supply chain, providing 

trustworthy data for the planning model. Each significant transaction, such as procurement orders, shipment dispatches, 
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and processing activities, is recorded on an immutable, distributed ledger, ensuring an end-to-end verifiable audit trail. 

Smart contracts are conceptualized to automate the monitoring and enforcement of compliance with predefined 

sustainability parameters. For instance, a smart contract could be designed with the conditional logic: IF 

(node_m_emissions_period_t > emission_threshold_m) THEN trigger_alert() AND apply_penalty(). This alert would 

signal a deviation for managerial review, and the penalty could be a financial cost automatically factored into the 

system. This blockchain-verified data, including emission levels and transaction records, then informs the optimization 

process. The model explicitly incorporates blockchain-related costs, such as transaction fees, and implicitly accounts 

for aspects like computational delays through the overall system design. The objective is to minimize total operational 

costs—which include procurement, production, transportation, inventory holding, carbon emission penalties, and 

blockchain transaction fees—while satisfying demand, adhering to capacity limitations, and meeting sustainability 

constraints verified through the blockchain. 

3.2.  Mathematical Model Formulation (MINLP) 

The optimization model analyzed in this study is formulated as a MINLP model. This classification arises from the 

presence of both continuous and integer decision variables, coupled with non-linear terms within the objective function, 

particularly those related to inventory management and emission cost calculations which involve products of variables 

or non-linear functions (as will be detailed in the objective function description). The MINLP approach is adopted to 

capture the complex interdependencies and trade-offs inherent in optimizing a blockchain-enabled sustainable e-supply 

chain. To facilitate a clear understanding of the MINLP model, table 1 defines the sets, indices, parameters, and 

decision variables used throughout the formulation. 

Table 1. Nomenclature of Sets, Indices, Parameters and Decision Variables 

Category Symbol Description 

Sets and Indices 

S Set of suppliers, indexed by s. 

M Set of manufacturing facilities/plants, indexed by m. 

W Set of distribution centers/warehouses, indexed by w. 

I Set of raw materials/input items, indexed by i. 

P Set of finished products, indexed by p. 

T Set of time periods, indexed by t. 

Parameter 

MFM Fixed operational cost to open/operate manufacturing facility m (currency/period). 

EFM Fixed (constant) emission factor for operating manufacturing facility m (kg CO₂/period). 

τ Carbon tax or cost coefficient (currency/kg CO₂). 

OMI Ordering cost for item i at manufacturing facility m (currency/order). 

DMI Demand for item i at manufacturing facility m (units/period). 

HMI Holding cost for item i at manufacturing facility m (currency/unit/period). 

EIPMt Emission impact of holding one unit of item i at plant m during period t (kg CO₂/unit/period). 

LMI Lead time for item i at manufacturing facility m (periods). 

VMI Variance of demand for item i at manufacturing facility m during lead time (units²). 

Z₁−α Standard normal variate for service level (1−α) (dimensionless). 

CPt Cost parameter related to warehouse operations or product p in period t (currency/unit). 

μWM Mean demand of product p at warehouse w (units/period). 

HWP Holding cost for product p at warehouse w (currency/unit/period). 

EIPW Emission impact of holding one unit of product p at warehouse w (kg CO₂/unit/period). 

CMPt Manufacturing cost for product p during regular time in period t (currency/unit). 
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Category Symbol Description 

CWPMt Manufacturing cost for product p during overtime at plant m in period t (currency/unit). 

EVM Emission factor for manufacturing one unit of product (kg CO₂/unit). 

TMSI Transportation cost per unit of item i from supplier s to manufacturer m (currency/unit). 

TEFISZMSI 
Fixed transportation emission from supplier s to manufacturer m if link ZMSI is used (kg 

CO₂/shipment). 

TEVISDMI 
Variable transportation emission per unit of item i from supplier s to manufacturer m (kg 

CO₂/unit). 

TWMP Transportation cost per unit of product p from manufacturer m to warehouse w (currency/unit). 

TEFPMYWMP 
Fixed transportation emission from manufacturer m to warehouse w if link YWMP is used (kg 

CO₂/shipment). 

TEVPMμWM 
Variable transportation emission per unit of product p from manufacturer m to warehouse w (kg 

CO₂/unit). 

ScapM Supply or production capacity of manufacturer m (units/period). 

PcapMP Production capacity for product p at manufacturer m (units/period). 

bPI Bill of materials coefficient: units of item i required for one unit of product p (units/unit). 

TP Production time per unit of product p (hours/unit or time units/unit). 

TRMt Total available regular production time at manufacturer m in period t (hours or time units). 

TOMt Total available overtime production time at manufacturer m in period t (hours or time units). 

Up Storage space required per unit of product p (space units/unit). 

ScapW Storage capacity of warehouse w (space units). 

S 
Binary parameter: 1 if smart contract system is active, 0 otherwise (dimensionless). Assumed 1 

in case study. 

Decision 

Variables 

XM Binary variable: 1 if manufacturing facility m is open; 0 otherwise. 

YWMP Binary variable: 1 if product p is shipped from manufacturer m to warehouse w; 0 otherwise. 

ZMSI Binary variable: 1 if item i is supplied by supplier s to manufacturer m; 0 otherwise. 

QMI Economic Order Quantity for item i at manufacturer m (units). 

rMI Reorder point for item i at manufacturer m (units). 

QRWMPt 
Quantity of product p produced during regular time at manufacturer m for warehouse w in 

period t (units/period). 

QOWPMt 
Quantity of product p produced during overtime at manufacturer m for warehouse w in period t 

(units/period). 

LnWPt Inventory level of product p at warehouse w at the end of period t (units). 

The proposed algorithm is presented in (1) and consists of several components. The first part of the objective function 

represents fixed costs and constant emissions. The second refers to ordering and storage costs at each production site 

based on Economic Order Quantity (EOQ). The third part deals with reorder point calculations including buffer or 

safety stock. The fourth explains inventory holding costs and emission costs (emission cost is the product of emission 

volume and carbon tax). The fifth part refers to total manufacturing costs and associated emissions. The sixth represents 

transportation costs from S to M and their emissions. The seventh covers transportation from M to W and related 

emissions. Minimize Z, where 
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𝑍 = 𝑆 ∗ {∑[(𝐹𝑀 ∗ 𝑋𝑀) + [(𝐸𝐹𝑀 ∗ 𝑋𝑀) ∗ 𝜏]]

𝑀

+ ∑ ∑ √2(𝐻𝑀𝐼 + 𝐸𝐼𝑃𝑀𝑡 ∗ 𝜏) ∗ 𝑂𝑀𝐼 ∗ √𝐷𝑀𝐼

𝐼𝑀

+ ∑ ∑(𝐻𝑀𝐼 + 𝐸𝐼𝑃𝑀𝑡 ∗ 𝜏) ∗ 𝑍1−𝛼 ∗ √𝐿𝑀𝐼 ∗ √𝑉𝑀𝐼

𝐼𝑀

+ ∑ ∑ ∑ 𝜇𝑊𝑀 ∗ (𝐻𝑊𝑃 + 𝐸𝐼𝑃𝑊 ∗ 𝜏)

𝑡𝑃𝐶

+ ∑ ∑ ∑ ∑[𝑄𝑅𝑊𝑀𝑃𝑡 ∗ 𝐶𝑀𝑃𝑡 + 𝑄𝑂𝑊𝑃𝑀𝑡 ∗ 𝐶𝑊𝑃𝑀𝑡]

𝑡𝑃𝑀𝑊

+ ∑ [𝐸𝑉𝑀(𝑄𝑅𝑊𝑃𝑀𝑡 + 𝑄𝑂𝑊𝑃𝑀𝑡) ∗ 𝜏]

𝑛

𝑀=1

+ ∑ ∑ ∑[𝑇𝑀𝑆𝐼 ∗ 𝐷𝑀𝐼 ∗ 𝑍𝑀𝑆𝐼 + (𝑇𝐸𝐹𝐼𝑆𝑍𝑀𝑆𝐼 + 𝑇𝐸𝑉𝐼𝑆𝐷𝑀𝐼) ∗ 𝜏]

𝐼𝑆𝑀

+ ∑ ∑ ∑[𝑇𝑊𝑀𝑃 ∗ 𝜇𝑊𝑀 ∗ 𝑌𝑊𝑀𝑃 + (𝑇𝐸𝐹𝑃𝑀𝑌𝑊𝑀𝑃 + 𝑇𝐸𝑉𝑃𝑀𝜇𝑊𝑀) ∗ 𝜏]

𝑃𝑀𝑊

} 

(1) 

The goal is to minimize the total optimal cost and carbon emissions of the entire system. The model considers inventory, 

transportation, ordering, and manufacturing costs. Both regular and overtime production costs are taken into account, 

as are safety stock and emissions. Inventory is stocked at distribution centers to meet customer demand with a desired 

service level during the lead time period. Based on the desired service level, the probability function is defined as in 

(2): 

𝑃𝑟(𝐷(𝐿𝑀𝐼) ≤ 𝑟𝑀𝐼) = 1 − 𝛼 (2) 

D represents the demand for product I during the lead time L at outlet M. 

The reorder point is calculated considering safety stock and assuming a normal distribution, as reflected in (3): 

𝑟𝑀𝐼 = 𝐸(𝐷𝑀𝐼) ∗ 𝐸(𝐿𝑀𝐼) + 𝑍1−𝛼√𝐸(𝐿𝑀𝐼 ∗ 𝑉𝑀𝐼) + 𝐸(𝐷𝑀𝐼)2𝜎𝐿𝑇
2  (3) 

𝜎𝐿𝑇   is the variance of demand over the lead time. Assuming constant lead time, we can omit the variance and reorder 

point, yielding: 

𝑟𝑀𝐼 = 𝐷𝑀𝐼 ∗ 𝐿𝑀𝐼 + 𝑍1−𝛼√𝑉𝑀𝐼 ∗ 𝐿𝑀𝐼 (4) 

Here, Z indicates the value from the standard normal distribution, which is uniform across the network. Based on (4), 

inventory holding costs are computed with (5), including average holding cost, EOQ, and safety stock costs: 

𝐻𝑀𝐼 ∗ 𝑄𝑀𝐼/2 + 𝐻𝑀𝐼 ∗ 𝑍1−𝛼 ∗ √𝐿𝑀𝐼 ∗ √𝑉𝑀𝐼 (5) 

Thus, the total holding and ordering cost is expressed as: 

∑ ∑ 𝑂𝑀𝐼 ∗ 𝐷𝑀𝐼/𝑄𝑀𝐼 + 𝐻𝑀𝐼 ∗ 𝑄𝑀𝐼/2

𝐼𝑀

+ ∑ ∑ 𝐻𝑀𝐼 ∗ 𝑍1−𝛼 ∗

𝐼𝑀

√𝐿𝑀𝐼 ∗ √𝑉𝑀𝐼 (6) 

According to the third assumption, capacity constraints are not considered. Setting (6) to zero yields an equation in Q, 

leading to (7): 

𝑄𝑀𝐼 = √[
(2 ∗ 𝑂𝑀𝐼 ∗ 𝐷𝑀𝐼)

(𝐻𝑀𝐼)
] (7) 
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Combining (6) and (7), the aggregate production allocation model is formulated to reduce the total optimal cost of the 

supply chain system. Equation (8) ensures that supplier facility S is opened such that it supplies product I to meet the 

demand at manufacturing unit M: 

∑ 𝑍𝑀𝑆𝐼

𝑆

= 𝑋𝑀   ∀𝐼 = 1, . . . , 𝐼   ∀𝑀 = 1, . . . , 𝑀 (8) 

Equation (9) ensures that all demands from distribution centers (warehouses) are fulfilled for all products by a single 

operating plant. It also states that product P is shipped from production facility M to warehouse W: 

∑ 𝑌𝑊𝑀𝑃

𝑀

= 1   ∀𝑊 = 1, . . . , 𝑊   ∀𝑃 = 1, . . . , 𝑃 (9) 

Constraints (10) and (11) represent capacity shortages and production limitations at manufacturing facility M. Here, 

Csup represents the supply limit and Cprod the production capacity of product P at M: 

∑ ∑ 𝐷𝑀𝐼 ∗ 𝑆𝐼 ∗ 𝑍𝑀𝑆𝐼 ≤ 𝑆𝑐𝑎𝑝𝑀 ∗ 𝑋𝑀

𝐼𝑆

   ∀𝑀 = 1, . . . , 𝑀 (10) 

∑ ∑ 𝜇𝑊𝑃 ∗ 𝑇𝑃 ∗ 𝑌𝑊𝑀𝑃 ≤ 𝑃𝑐𝑎𝑝𝑀𝑃

𝑃𝑊

   ∀𝑀 = 1, . . . , 𝑀 (11) 

Equations (12) and (13) yield the mean and variance, respectively, for product P produced at plant M: 

∑ ∑ 𝜇𝑊𝑃 ∗ 𝑌𝑊𝑀𝑃 ∗ 𝑏𝑃𝐼 ≤ 𝐷𝑀𝐼

𝐼𝑊

   ∀𝑀 = 1, . . . , 𝑀   ∀𝑃 = 1, . . . , 𝑃 (12) 

∑ ∑ 𝜎𝑊𝑃 ∗ 𝑌𝑉𝑀𝑃 ∗ 𝑏𝑃𝐼
2 = 𝑉𝑀𝐼

𝐼𝑊

   ∀𝑀 = 1, . . . , 𝑀   ∀𝑃 = 1, . . . , 𝑃 (13) 

In (14), X, Y, and Z are binary variables taking values of 0 or 1: 

𝑋𝑀 , 𝑌𝑊𝑀𝑃 , 𝑍𝑀𝑆𝐼 ∈ {0,1}   ∀𝐼 = 1, . . . , 𝐼   ∀𝑊 = 1, . . . , 𝑊   ∀𝑃 = 1, . . . , 𝑃   ∀𝑀 = 1, . . . , 𝑀   ∀𝑆 = 1, . . . , 𝑆 (14) 

Constraint (15) balances demand at each distribution center by considering inventory from the current and previous 

periods, and aligns the production quantity of product P: 

𝐿𝑛𝑊𝑃(𝑡−1) + 𝑄𝑅𝑊𝑀𝑃𝑡 = 𝐿𝑛𝑃𝑡   ∀𝑊, 𝑀, 𝑃 (15) 

Equations (16) and (17) specify the production quantity constraints for regular and overtime hours: 

∑ ∑ 𝑄𝑅𝑊𝑀𝑃𝑡 ∗ 𝑇𝑃

𝑃𝑊

≤ 𝑇𝑅𝑀𝑡    ∀𝑀 (16) 

∑ ∑ 𝑄𝑂𝑊𝑀𝑃𝑡 ∗ 𝑇𝑃

𝑃𝑊

≤ 𝑇𝑂𝑀𝑡   ∀𝑀 (17) 

Equation (18) reflects warehouse storage capacity: 

∑ 𝐿𝑛𝑊𝑃𝑡 ∗ 𝑈𝑝 ≤ 𝑆𝑐𝑎𝑝𝑊

𝑊

   ∀𝑊, 𝑡 (18) 

Constraint (19) ensures that product P is only produced at open plant M: 

∑[𝑄𝑅𝑊𝑀𝑃𝑡 + 𝑄𝑂𝑊𝑀𝑃𝑡] ≤ 𝑌𝑊𝑀𝑃𝑡

𝑡

   ∀𝑊, 𝑀, 𝑃 ∑ 𝐿𝑛𝑊𝑃𝑡 ∗ 𝑈𝑝 ≤ 𝑆𝑐𝑎𝑝𝑊

𝑊

   ∀𝑊, 𝑡 (19) 
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Constraint (20) asserts that both regular and overtime production are always positive: 

𝑄𝑅𝑊𝑀𝑃𝑡 , 𝑄𝑂𝑊𝑀𝑃𝑡 ≥ 0   ∀𝑊, 𝑀, 𝑃, 𝑡 (20) 

The functionality of supplier-related facilities S is validated by Constraint (8). All distribution center demands for final 

products are met by one opened plant, validated by Constraint (9). Production and storage limitations for plant M are 

authenticated by Constraints (10) and (11). The validation of variance and mean for produced products at plant M is 

established by Equations (12) and (13). To ensure these units operate continuously, the binary variables X, Y, Z are 

always set to 1 as per Constraint (14). Demand balancing for distribution centers in relation to prior and current 

inventories and production quantities of product P is confirmed by Constraint (15). Production quantity restrictions for 

regular and overtime work are reflected in Equations (16) and (17). Equation (18) reflects warehouse storage capacity, 

and Constraint (19) ensures effective production of product P at open plant M. 

3.3. Data Sourcing and Parameter Estimation 

The numerical values for the parameters required by the MINLP model (Equation 1 and constraints 8-20) were 

established for the computational study primarily through the generation of synthetic data, designed to represent a 

plausible multi-echelon e-supply chain. This approach was adopted due to the common challenges in obtaining 

comprehensive, real-world datasets that span all echelons and incorporate novel aspects like blockchain fees and 

granular sustainability metrics for an initial model analysis. The case study considers a network structure with two 

suppliers, three manufacturers, and four distributors. 

The generation process for this synthetic data involved defining parameters based on plausible operational ranges. For 

this study's analysis, demand for products at the distribution centers (related to μWM and VMI) was conceptualized 

considering variability, potentially drawing from a normal distribution with a specified mean and standard deviation. 

Cost parameters, including fixed operational costs (MFM), ordering costs (OMI), holding costs (HMI, HWP), 

manufacturing costs (CMPt,CWPMt), and transportation costs (TMSI,TWMP), were assigned values within ranges 

deemed representative for a generic manufacturing and distribution environment. Emission factors (e.g., EFM, 

EIPMt,EV M) were adapted from publicly available environmental. The carbon cost coefficient (τ) was established at 

50 currency units per kg CO2, a value reflecting potential carbon pricing scenarios. The blockchain transaction fee was 

explicitly set at 500 currency units per active supplier per period. Other structural and operational parameters, such as 

lead times (LMI), facility capacities (ScapM, PcapMP, ScapW), production rates (related to TP), and bill-of-material 

coefficients (bPI), were defined to ensure an internally consistent and solvable model instance. The overarching goal 

in parameterizing the model was to create a coherent testbed that, while synthetic, enables a meaningful exploration of 

the MINLP model's behavior and the trade-offs associated with integrating blockchain for sustainability. 

3.4. Experimental Design 

To rigorously evaluate the performance characteristics of the MINLP model and understand the impact of blockchain 

integration, a structured experimental design was implemented. This design centered on establishing a base case 

scenario, defining a comparable "conventional system" for benchmarking, and conducting a series of sensitivity 

analyses on critical parameters. A three-period planning horizon was chosen for the experiments. This timeframe is 

sufficiently long to demonstrate the model's multi-period dynamics, such as inventory carryover and evolving supplier 

engagement, while remaining computationally manageable for the purposes of this initial, detailed analysis. The base 

case scenario was formulated using the specific set of synthetic parameter values. This scenario serves as the primary 

reference point, providing a foundational understanding of the model's optimal solution, including total costs, emission 

levels, and operational decisions, under a standard, predefined set of conditions for the blockchain-enabled e-supply 

chain. 

For effective benchmarking, a "conventional system" model was defined. This conventional system mirrors the 

structure of the fixed MINLP model described but is modified to represent an e-supply chain operating without 

blockchain-specific functionalities or their associated direct costs. Specifically, in the conventional system model, 

blockchain transaction fees (e.g., the "blockchain fee of 500" per active supplier) were set to zero. Furthermore, any 

constraints within the model that are uniquely enabled or enforced by blockchain technology (e.g., stricter emission 
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compliance verified by smart contracts beyond standard regulations) would be relaxed to reflect a non-blockchain 

environment. Solving this conventional model under the same input data (for demand, core operational costs, etc.) as 

the blockchain-enabled model allows for a direct, quantitative comparison of key performance indicators such as total 

system cost and total carbon emissions. 

Sensitivity analysis was subsequently performed to assess the robustness of the model's solutions and to identify which 

parameters exert the most significant influence on operational decisions, costs, and sustainability outcomes. Key 

parameters selected for this analysis included the carbon cost coefficient (τ), the blockchain transaction fee, and overall 

market demand levels. These parameters were chosen due to their representation of significant external economic 

pressures (carbon pricing), direct technology adoption costs (blockchain fees), and fundamental market dynamics 

(demand fluctuations). Each selected parameter was systematically varied across a defined range: the carbon cost (τ) 

was varied from -50% to +100% of its base value in increments of 25%; the blockchain fee was tested at values of 0, 

250, 500, 750, and 1000 currency units; and demand levels were scaled by factors of 0.75, 1.0, and 1.25. The results 

from these analyses are intended to reveal the conditions under which the blockchain-integrated sustainable supply 

chain model offers the most significant advantages or incurs notable trade-offs, thereby providing valuable insights for 

decision-makers. 

4. Results and Discussion 

4.1. Base Case Results 

The base case scenario, formulated with the parameter values, was solved to obtain an optimal operational plan. Key 

operational decisions from the base case are exemplified presented in table 2.  

Table 2. Results from Base Case 

Supplier Period Units Supplied Blockchain Used 

S1 1 0 0 

S2 1 60 1 

S3 1 40 1 

S1 2 30 1 

S2 2 70 1 

S3 2 20 1 

S1 3 40 1 

S2 3 60 1 

S3 3 10 1 

The core output, presented in table 2, details the optimal procurement plan determined by the MINLP model. This plan 

is not a static set of choices but rather a dynamic operational strategy that evolves over the three-period planning 

horizon. The most important insight from this plan is the model's strategic and adaptive decision-making regarding 

supplier selection. For instance, in Period 1, the model determines it is optimal to source materials only from Suppliers 

S2 (60 units) and S3 (40 units), while completely avoiding Supplier S1. This is a calculated decision, implying that the 

combined costs—including procurement, transportation, and emissions—for this specific combination are lower than 

any plan that would involve S1. In subsequent periods, as demand fluctuates, the model's strategy shifts, engaging all 

three suppliers but allocating different procurement quantities to each, demonstrating a sophisticated ability to adapt 

the supply plan over time to maintain efficiency and compliance. 

The procurement decisions are directly linked to the model's handling of blockchain integration and its associated costs. 

The stipulation that every supplier used in a period incurs a blockchain fee of 500 is a critical factor in the optimization. 

By choosing not to use Supplier S1 in Period 1, the model successfully avoids this 500-unit fee, indicating that the cost 

savings from avoiding S1 outweighed any potential benefits it might have offered in that specific period. Conversely, 

in Periods 2 and 3, the model finds it optimal to engage all three suppliers, willingly incurring a total of 1500 in 

blockchain fees per period. This implies that the operational advantages or lower costs provided by using all three 

suppliers in those periods were significant enough to justify the technology-related expenditure. This highlights the 
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model's capacity to perform a nuanced cost-benefit analysis of technology adoption, making dynamic trade-offs on a 

per-supplier, per-period basis. 

From a sustainability perspective, the base case results confirm that the model successfully achieves its environmental 

objectives. The explicit outcome that all emission constraints were satisfied (emissions ≤ 300 kg CO₂ per period) is a 

crucial validation point, proving that the model operates effectively within the established environmental rules. The 

graph visualizing the relationship between demand and emissions (figure 1) further illustrates this optimization in 

action. As demand rises from Period 1 to Period 2, emissions logically increase due to higher production and transport 

needs. However, the key insight is that even with this increase, emissions remain below the 300 kg cap. This 

demonstrates the model making intelligent trade-offs; to accommodate higher demand without violating the emission 

limit, it may have strategically selected more expensive but cleaner suppliers or logistics routes. The model is constantly 

balancing the monetized "cost" of emissions (as defined by the carbon tax parameter, τ) against all other operational 

costs to find an economically viable and environmentally compliant solution. In essence, the base case experiment 

successfully produces a clear, multi-period operational plan that dynamically manages suppliers, accounts for 

technology costs, and adheres to sustainability constraints, providing a solid foundation for the further analyses 

presented in this paper. 

 

Figure 1. Relationship Between Demand And Emission Across The Three Periods 

4.2. Interpretation of Key Findings 

The computational results from the base case scenario offer initial insights into the operational dynamics of the 

blockchain-enabled e-supply chain. The optimal supply plan per period indicates a selective utilization of suppliers 

across the three periods. For instance, Supplier S1 was not utilized in Period 1, a period where its blockchain 

involvement was also nil, while Suppliers S2 and S3 handled the demand with active blockchain usage. This pattern 

shifted in subsequent periods where all three suppliers contributed, albeit with varying quantities, suggesting the model 

optimizes procurement by considering factors such as the explicit blockchain fee of 500 incurred per active supplier 

per period  alongside other operational costs and constraints. The model successfully maintained emissions at or below 

the stipulated 300 kg CO₂ per period for all three periods, satisfying all emission constraints. The relationship depicted 

between demand and emissions shows a correlation where emissions tend to rise with increased demand and fall as 

demand lessens. This suggests that while higher throughput generally corresponds to increased emissions, the 

optimization framework operates within the environmental limits by making necessary trade-offs, influenced by the 

carbon cost structure embedded in the objective function. 

Even with the currently presented base case results, several managerial and practical implications can be inferred. The 

model's ability to select suppliers based on an optimal plan that includes both operational costs and explicit blockchain 

usage fees  can guide managers in strategic sourcing and in evaluating the cost-benefit of onboarding suppliers onto a 

blockchain platform. Understanding that each active supplier incurs a fixed blockchain fee, for example, might lead to 

strategies aimed at consolidating sourcing or negotiating tiered fee structures with blockchain providers, especially if 
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sensitivity analysis (once performed) were to show high sensitivity to these fees. The model's adherence to emission 

caps  demonstrates its utility as a tool for sustainability officers in planning operations that meet environmental targets. 

The inclusion of carbon costs within the objective function  means the model can help quantify the financial 

implications of emissions and guide decisions on investments in cleaner technologies or processes. If further results 

from sensitivity analysis were available, understanding how changes in carbon pricing affect the optimal supply chain 

configuration could inform lobbying efforts or long-term strategic planning in anticipation of evolving environmental 

regulations. Policymakers could also find such a model (and its extended analyses) useful for assessing the impact of 

different carbon tax levels or for understanding the infrastructure needed to support blockchain-enabled sustainable 

practices. 

Based on the model's structure, which incorporates blockchain transaction costs  and conceptualizes smart contracts 

for enforcing sustainability compliance (like emission caps), the primary value of blockchain integrated into this fixed 

model appears to be its potential to enhance sustainability outcomes. The model suggests that by making emissions a 

monitored and costed factor, and by associating fees with blockchain use, decisions can be steered towards more 

environmentally conscious operations. The advantage lies in the potential for improved emission control, as evidenced 

by the satisfaction of emission constraints, and the implied benefits of traceability inherent in blockchain. The costs 

associated with this integration are explicitly modeled, through the blockchain fee per supplier. The current base case 

results alone show blockchain being utilized for most supplier activities despite the fee, suggesting the model finds this 

viable under the base parameters. 

4.3. Limitations and Future Research Directions 

While this study presents an analysis of an optimization model for blockchain-enabled sustainable e-supply chains, it 

is important to acknowledge its limitations. Firstly, the model is a MINLP model, which inherently involves greater 

computational complexity compared to linear models. Solving MINLPs, especially for large-scale instances, can be 

time-consuming and may not always guarantee global optimality, potentially yielding local optima depending on the 

solver and solution techniques employed. Secondly, an internal inconsistency arises from the model's structure: the 

objective function incorporates inventory cost components derived from EOQ principles, which traditionally assume 

uncapacitated systems. However, the model also includes explicit capacity constraints for manufacturing and 

warehousing. This juxtaposition means the EOQ-based costings are an approximation within a capacitated system, a 

characteristic of the fixed model structure being analyzed. This specific limitation directly motivates future research 

into alternative inventory modeling approaches, such as dynamic lot-sizing, within such MINLP frameworks for 

sustainable supply chains. 

Based on the analysis and the identified limitations of the model structure, several avenues for future research emerge. 

A primary direction is the exploration of alternative mathematical formulations. This could involve developing 

linearized versions of the model to reduce computational complexity, or different non-linear approaches, particularly 

for representing inventory costs more dynamically within capacitated systems, moving away from the classical EOQ 

assumptions. Incorporating stochasticity into the model represents another significant area for enhancement. Real-

world supply chains are subject to considerable uncertainty in demand, costs, lead times, and even blockchain 

performance metrics. Developing stochastic optimization or robust optimization versions of the model would improve 

its realism and the reliability of its recommendations. Furthermore, applying the current MINLP model, or a revised 

version, to a real-world industry case study using actual company data would be invaluable. This would not only help 

in validating its practical applicability and refining its parameters but also in uncovering unforeseen challenges and 

opportunities in implementing blockchain for sustainable e-supply chains. 

5. Conclusion 

This paper presented an analysis of a MINLP optimization framework for blockchain-enabled e-supply chains, focusing 

on balancing operational costs with environmental impact, particularly carbon emissions. The study detailed an existing 

model that integrates blockchain features, such as traceability concepts and decentralized validation implied through 

transaction costs and smart contract-enforced compliance (like emission caps). The application of this model to a base 

case scenario demonstrated its capability to generate optimal supply plans, manage supplier engagement considering 
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blockchain fees, and ensure adherence to sustainability constraints, such as maintaining emissions at or below 300 kg 

CO₂ per period, while showing a correlation between operational demand and emission levels. While detailed 

comparative data was not presented in the  

The analyzed MINLP model, despite its inherent complexities and specific structural assumptions (such as the EOQ-

based inventory costing within a capacitated system), provides a valuable foundation for bridging digital supply chain 

transformation with sustainable operational practices. The insights gained from examining its structure and base case 

outputs underscore the potential of quantitative modeling to explore the intricate trade-offs in blockchain adoption for 

sustainability. Future work should focus on enhancing such frameworks through real-time data integration, the 

incorporation of dynamic pricing mechanisms, and rigorous testing on diverse industry datasets to further validate and 

refine their practical applicability in achieving greener and more transparent supply chains. 
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