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Abstract 

This study presents a novel comparative approach to maximum temperature forecasting in Surabaya, Indonesia, by integrating Extreme Gradient 

Boosting (XGBoost) with Grid Search Hyperparameter Tuning and benchmarking it against Autoregressive Integrated Moving Average 

(ARIMA) and Neural Prophet models. The main idea is to evaluate the capability of XGBoost in capturing nonlinear patterns in environmental 

time series data, which traditional models often fail to address. Using 15,388 historical daily maximum temperature records from the BMKG 

Juanda weather station spanning 1981–2022, the objective is to identify the most accurate predictive model for short- and medium-term forecasts. 

The modeling process involved four stages: data acquisition, preprocessing, training, and evaluation, with performance assessed using Mean 

Absolute Error (MAE) and Root Mean Squared Error (RMSE). The findings show that, after hyperparameter tuning, XGBoost achieved the best 

performance with MAE = 0.32 and RMSE = 0.65, outperforming ARIMA (MAE = 0.85, RMSE = 1.20) and Neural Prophet (MAE = 0.70, RMSE 

= 0.98). Prediction results for 2025 indicate peak maximum temperatures in January, October, and November, aligning with recent climate 

patterns. The contribution of this research lies in demonstrating the superiority of a tuned XGBoost model for complex environmental datasets, 

offering a practical tool for urban climate planning, agricultural scheduling, and heatwave risk mitigation. The novelty of this work is the 

systematic integration of Grid Search-based optimization with XGBoost for meteorological forecasting in a tropical urban context, producing 

higher accuracy than both classical statistical and modern hybrid time series methods. These results highlight the model’s adaptability and 

potential for broader climate-related applications, with future research recommended to incorporate additional meteorological variables such as 

humidity and wind speed for even greater predictive capability. 
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1. Introduction  

Temperature is a quantity or measure of the degree of heat and cold in an area. Temperature greatly affects daily human 

activities [1], [2]. Humans unconsciously assess environmental conditions based on stimuli perceived through the five 

senses and responded to the brain to be assessed [3], [4]. Temperature is often used as an important attribute in a study 

so it is interesting to look deeper into other research objects [5], [6].  

Based on previous research funded by ASHRAE and documented in their standards such as ASHRAE 55-1992 and 

ISO 7730, thermal comfort can be defined as the condition in which at least 80% of building occupants express 

satisfaction with the thermal environment. These standards provide a framework for assessing comfort based on both 

environmental and personal factors [7]. The recommended effective temperature for thermal comfort in tropical 

climates is 21°C–25°C, with approximately 23.4°C considered optimal and temperatures above 25.6°C leading to 

discomfort. To achieve this range in hot and humid conditions, passive design strategies such as solar shading and 

cross-ventilation are advised [8]. 
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The current phenomenon of global warming, resulting in increasingly hot temperatures and a significant impact on the 

earth [9]. Global warming is the increase in average temperatures across the earth's surface due to the emission of large 

amounts of greenhouse gases that cause heat energy to be trapped in the atmosphere [10], [11]. The impacts of these 

phenomena contribute to climate change, which can alter long-term weather patterns, the climate system and human 

life as a whole [12], [13]. In addition, the impacts of global warming and climate change can be felt in Indonesia, 

including Surabaya City, East Java [14], [15]. 

A regional climate simulation using the RegCM5 model driven by ERA5 reanalysis data shows that Surabaya has 

experienced a rise in maximum temperatures of approximately 1.5 °C from 2020 to 2023, highlighting accelerated 

local warming trends [16]. This warming occurs in a city that is already the second largest in Indonesia, with a 

population of 2,987,863 in 2022, which continues to grow and place increasing demands on land, infrastructure, and 

public services [17].  Apart from the temperature, due to poor air quality with dense population and high vehicle usage, 

this greatly affects the effectiveness of daily activities [18].  

The problems caused by high temperatures are very diverse, such as the increase in skin diseases [19], [20], [21], 

respiration caused by the reaction of chemical compounds with high temperatures [22], [23], excessive fatigue and 

dehydration [24], [25]. In agriculture, hot temperatures can be detrimental to the production of food commodities due 

to drought [26], [27]. A hot environment can worsen air quality which will impact overall quality of life [28], [29], 

including convenience [30], productivity [31], [32] and affect mood [6]. 

Based on these problems, the purpose of this research is to optimize the performance of the XGBoost model using Grid 

Search Hyperparameter Tuning and compare its forecasting accuracy against two other predictive models, namely 

ARIMA which is widely used due to its solid performance in linear time series. Neural Prophet is a relatively new 

model that has not been extensively applied for maximum temperature forecasting based on historical data. Through 

this comparative analysis, the study aims to identify the most effective model for temperature trend prediction in 

Surabaya. The results are expected to provide valuable insights to support decision-making in resource management, 

urban development, and extreme temperature risk mitigation, thereby improving the quality of life for the residents of 

Surabaya. As this study utilizes secondary meteorological data provided by BMKG and does not involve human 

participants or personal information, ethical approval and informed consent were not required. 

2. Literature Review  

The selection of XGBoost, ARIMA, and Neural Prophet in this study is based on their popularity and reported 

performance in time series forecasting. ARIMA is a classical linear model widely used for forecasting temperature due 

to its strength in modeling autoregressive and moving average patterns. Neural Prophet is a modern extension of 

Facebook Prophet, designed to handle time series with strong seasonality and holiday effects. Meanwhile, XGBoost is 

a powerful ensemble learning method known for its capability to capture complex, non-linear relationships, especially 

in large datasets with high dimensionality. 

This research refines and extends prior work on time series forecasting. In 2019, a study research builds upon previous 

work on time series forecasting by incorporating findings from a meta-analysis of 18 studies, which showed that 

reducing classroom temperatures from 30 °C to 20 °C can improve cognitive performance by about 20%, with optimal 

performance below 22 °C—though this was validated only for temperate climates [33]. In 2021, another study applied 

XGBoost for retail sales prediction, integrating feature engineering and weather factors, and outperformed ARIMA, 

LSTM, Prophet, and GBDT, achieving RMSEs of 0.2256 and 0.0632 on two datasets, confirming its accuracy and 

reliability in time series prediction [34]. 

Then, in the ARIMA model can be used to forecast regional temperature and precipitation in the near term. Annual 

projections from ARIMA models integrate recent observations with long-term historical trends, estimate confidence 

intervals and simulate future daily temperature and rainfall. This research found that ARIMA models provide more 

accurate and reliable temperature and rainfall projections than other common statistical techniques. Short-term 

temperature and rainfall projections can be interpreted and trusted for civil and environmental engineering applications. 

ARIMA-based methods can be an effective alternative for obtaining near-term regional climate information using local 

historical observation data [35].  
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The performance of Neural Prophet in 2023 was evaluated by Teuku Rizky Noviandy et al. [36] in Deep Learning-

Based Bitcoin Price Forecasting Using Neural Prophet, which used historical Bitcoin price data from 2014 to 2023 and 

achieved an RMSE of 6117.16, MAE of 4008.28, and MAPE of 1.77%, indicating strong effectiveness in capturing 

trends despite market volatility. Similarly, Djarot Hindarto et al. [37] in The Application of Neural Prophet Time Series 

in Predicting Rice Stock at Rice Stores applied the model to historical rice stock data, achieving a MAE of 12.90, 

RMSE of 15.80, and Loss of 0.0313. These metrics indicate reliable predictive accuracy for inventory management 

purposes. The results underscore the versatility of the Neural Prophet model in providing dependable forecasts not only 

for highly volatile financial data but also for more stable inventory time series. 

In the research of analysis and comparison of methods for maximum temperature prediction in Jakarta, Indonesia has 

been done by Armando Jacquis F. Z., et al [38] using GRU and ANFIS methods. The results showed that both ANFIS 

and GRU can effectively forecast the maximum temperature with a correlation value above 0.95 and RMSE and MAPE 

below 2. GRU algorithm is more efficient for short-term forecasting, while the ANFIS model shows higher 

effectiveness in long-term forecasting. In the computation time of GRU is much shorter than that of ANFIS.  

Munir et al. [39], proposed a hybrid model combining Discrete Wavelet Transform (DWT), ARIMA, and Artificial 

Neural Networks (ANN) for forecasting meteorological droughts using SPI and SIAP indices, yielding high accuracy 

with R values exceeding 0.91 and low RMSE scores. In contrast, a study [40] investigated the integration of ARIMA, 

SARIMAX, and Long Short-Term Memory (LSTM) models using a FUSION approach supported by IoT-based data 

collection. The findings indicated that individual models outperformed the integrated FUSION approach based on 

MAPE and MSE metrics, suggesting that stand-alone models may better capture domain-specific patterns. These 

results emphasize the critical importance of model selection and customization in developing accurate forecasting 

systems for environmental time series data.  

Previous studies on temperature forecasting have commonly used ARIMA. While ARIMA handles linear patterns well, 

it lacks flexibility for non-linear and complex seasonal variations. Neural Prophet improves trend and seasonality 

modeling but can be sensitive to parameter tuning and less effective with irregular data. In this study, an optimized 

XGBoost model is proposed to forecast maximum temperature, using Grid Search for hyperparameter tuning. 

Compared to ARIMA and Neural Prophet, the optimized XGBoost demonstrates superior accuracy and better handling 

of non-linear relationships, highlighting its suitability for complex environmental time series. 

3. Methodology  

The system design in this study is shown in figure 1, with the stages consisting of four main stages, namely data 

acquisition, data preprocessing, data modeling, and model evaluation. 

  

Figure 1. Flow of Key Stages in Research 

This study uses daily maximum temperature data obtained from the BMKG Juanda weather station in Surabaya, 

covering the period from 1981 to 2022. The dataset comprises 15,388 entries with two variables—date and Tmax 

(°C)—sourced directly from the official records without any modification. As publicly available meteorological data, 

it does not involve human participants, sampling strategies, or inclusion and exclusion criteria. Once the data was 

collected, it underwent a preprocessing stage that included cleaning, transformation, and arrangement to ensure 

suitability for modeling. This process involved handling missing values, applying data normalization, and selecting 

relevant features. Following preprocessing, the modeling phase was carried out by developing and training three 

predictive models: XGBoost, ARIMA, and Neural Prophet. Each model was configured through parameter adjustments 

and validated to achieve optimal performance. The final stage involved evaluating the model’s performance using 

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) as key metrics. The evaluation results served as 
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the basis for selecting the model with the highest accuracy in forecasting maximum temperatures in Surabaya. The 

system implementation stage in this research is shown in figure 2. 

 

Figure 2. Model Building Implementation Flowchart 

3.1. Data Acquisition  

Data acquisition is a process stage used to collect and display data using a particular system [41]. In this research, data 

is collected from the BMKG Juanda weather dataset, which is meteorological data collected by the Meteorology, 

Climatology, and Geophysics Agency (BMKG) from the weather observation station in Juanda, Surabaya, East Java 

Province, Indonesia. This study utilizes publicly available meteorological data and does not involve human subjects or 

personal information. Therefore, ethical risks such as privacy or misdiagnosis are not applicable. This data includes 

various routinely measured weather parameters, such as air temperature, rainfall, air pressure, wind speed, and wind 

direction. The characteristics of the dataset used in this study, obtained from the BMKG weather observation station at 

Juanda, Surabaya, are presented in table 1. 

Table 1. Juanda BMKG Dataset 

Taverage Tmax Tmin CH QFF ff average most directions dd ff max 

25.4 32.6 22.9 6.8 1009 2 B B 9 

26.6 32.0 23.4 3.6 1010 5 B B 10 

27.2 32.2 24 0.0 1009 7 B B 12 

24.7 28.6 22.9 43.0 1010 5 B B 14 

26.5 30.8 21.7 21.0 1009 8 B B 14 

3.2. Data Preprocessing 

Data preprocessing is a very important initial stage in data analysis and modeling. The data preprocessing stage includes 

data preparation and data transformation [42]. The goal is to prepare the data so that it can be used effectively in 

subsequent processes, such as modeling and analysis. The dataset consists of daily maximum temperature (Tmax) and 

date values. As a univariate time series, only Tmax was used as the predictive feature, no additional features were 

engineered. Hence, feature correlation analysis was not applicable in this context.  In the data preprocessing stage, 

several important steps are carried out, including importing datasets, feature selection, and handling missing values. 

The feature selection process on the dataset can improve the performance of the model. This process helps determine 

which variables have the most impact on the predictive model, so that only important variables are used. In addition, 

the feature selection stage or process can also improve the algorithm in processing data faster [43]. The data were then 

normalized using Min-Max scaling to ensure consistent input ranges across the models. 
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3.3. Algorithm Modeling 

This research uses three models, namely ARIMA, XGBoost, and Neural Prophet. The process of these three time series 

models is shown in figure 3 below. The purpose of using the various models is to assess the performance of each and 

find the model that has optimal accuracy on the maximum temperature data used. 

 

Figure 3. Modelling Stages 

3.4.  Extreme Gradient Boosting (XGBoost) 

XGBoost is an advanced implementation of the gradient tree boosting method, designed to efficiently address various 

tasks such as regression, classification, and ranking. Its core principle lies in iteratively optimizing the learning process 

to minimize the loss function, thereby improving model accuracy. By constructing a more structured regression tree, 

XGBoost enhances performance while reducing model complexity to mitigate overfitting. Additionally, it incorporates 

several computational optimizations that accelerate training and further decrease the risk of overfitting [44]. The 

schematic representation of the XGBoost algorithm is illustrated in figure 4. 

  

Figure 4. Schematic of XGBoost algorithm 

In the XGBoost algorithm, the weights in each tree are updated incrementally. After that, all the tree weights are 

summed up when making predictions, then the results are entered into the function [45].  The function can be expressed 

as follows. 

 ŷ𝑖 =  ∑ 𝑓𝑘  (𝑥𝑖 )

𝐾

 𝑘=1

 
(1) 

Where, 𝑦̂𝑖 is the output of tree 𝐾; 𝑓𝑘 s the kth decision tree function-k; 𝑥𝑖 is the function trained; 𝐾 is the tree created. 

The tree with summed weights aims to minimize the objective function. This objective function consists of two 

components, namely to measure the difference between the predicted value and the actual value, as well as the 

regularization term [46]. The objective function in XGBoost can be written as:  
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𝑜𝑏𝑗(𝑡) = ∑ [𝑔𝑖 𝑊𝑞 (𝑥𝑖) + 
1

2
 ℎ𝑖  𝑤𝑞

2 (𝑥𝑖)] + 𝛾 𝑇 + 
1

2
 𝜆 ∑ 𝑤𝑞

2

𝑇

𝑗=1

𝑗 

𝑛

 𝑖=1

 (2) 

With, T is the number of leaf nodes; W is the tree nodes; 𝛾 to control the number of nodes; 𝜆 to control the number of 

trees. In this method, an objective function is required to assess the quality of the model generated based on the training 

data. This objective function consists of two important components, namely training loss value and regularization 

value, as shown in the following equation.  

𝑜𝑏𝑗 (𝜃) = 𝐿 (𝜃) +  𝛺 (𝜃) (3) 

L is the missing training function, and Ω is the regularization function, dan θ is the corresponding model parameter.  

The missing training function can be generally written as in the following equation. 

𝐿 (𝜃) =  ∑ 𝑙 (𝑦𝑖 ,  ŷ𝑖)

𝑛

 𝑖=1

 (4) 

𝑦𝑖  is the true value of the data and  ŷ𝑖 is the predicted value of the model, while n is the number of iterations of the 

model. 

3.5. Model Testing Graph  

The dataset was partitioned using a time-based split to preserve chronological order and prevent data leakage. An initial 

70:30 train-validation split was used to assess the model’s baseline performance, followed by an 80:20 train-test split 

for final evaluation to reflect realistic forecasting on unseen data. The XGBoost model was trained on these subsets, 

with hyperparameter tuning conducted via GridSearch to optimize predictive performance. Model evaluation was 

carried out using both numerical metrics and graphical analysis of the forecasting results. This process is essential to 

identify each model's strengths and weaknesses prior to hyperparameter tuning  [47].  The primary evaluation metrics 

included RMSE, MAE, and MAPE, with RMSE serving as a widely used indicator of prediction error [48]. However, 

in this study, only RMSE and MAE were utilized to evaluate model performance, as both provide robust and 

interpretable measures of error in continuous temperature prediction. The RMSE formula is presented as follows [49]. 

𝑅𝑀𝑆𝐸 = √
1

𝑛 
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛−1

𝑖=1

 (5) 

MAE calculates the average absolute value of the difference between the prediction and the actual value [48]. Here is 

the MAE formula. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 
(6) 

3.6. Hyperparameter Tuning Model Equations 

After an initial evaluation of the models used to predict maximum temperature, this study proceeds with model 

development through hyperparameter tuning. Hyperparameter tuning is a critical process in machine learning that aims 

to optimize model performance by finding the best combination of hyperparameters [50]. Hyperparameters are used to 

manage various aspects of machine learning that have a significant impact on performance and the resulting model 

[51]. 

3.7. Forecasting  

The final stage of this study involves forecasting maximum temperature in Surabaya for the year 2025 using the best-

performing model from previous evaluations. The prediction process uses the predict method to generate future values 
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(yhat) based on historical data, producing a forecast data frame that includes predicted values, components, and 

uncertainty intervals [52]. Forecasting is carried out using the most optimal model selected through comparative 

analysis and hyperparameter tuning. The model's accuracy was evaluated by comparing predicted values with actual 

observed temperatures to minimize error and validate its performance [53].  

4. Results and Discussion 

4.1. Predictive Model Testing  

In this study, tests were conducted using several machine learning algorithms with model evaluation results with MAE 

and RMSE scores then compared to determine the best model [54]. The evaluation involved splitting the dataset into 

training and testing sets, followed by a comparative analysis of the algorithms. From the three models tested, the best-

performing model was selected based on the evaluation metrics, as summarized in table 2. 

Table 2. Testing Results of Selected Models 

Model Split Data Train MAE RMSE 

ARIMA 80% 0.98 1.48 

ARIMA 70% 0.98 1.40 

Neural Prophet 80% 1.43 1.90 

Neural Prophet 70% 1.43 1.91 

XGBoost 80% 1.06 0.79 

XGBoost 70% 0.92 0.70 

The algorithm model evaluation results presented in table 2 demonstrate the performance of the three models used to 

predict high temperatures in Surabaya. Each model yields different test results due to variations in the proportion of 

training and test data. The ARIMA model performed quite well, with an MAE of 0.98 and an RMSE of 1.48 using 80% 

of the data for training, and an MAE of 0.98 and an RMSE of 1.40 using 70% of the data. These results indicate that 

the ARIMA model can predict heat with relatively high accuracy. 

The XGBoost model also demonstrated good performance, even slightly outperforming the ARIMA model. Test results 

show that the highest prediction accuracy was achieved by the XGBoost model, with an MAE of 0.92 and an RMSE 

of 0.70 when using 70% of the data for training. These values are lower than those of the ARIMA model, indicating 

more accurate predictions. Meanwhile, the Neural Prophet model showed relatively lower performance compared to 

the other two models. With 80% training data, Neural Prophet recorded an MAE of 1.43 and an RMSE of 1.90, while 

with 70% training data, its MAE remained at 1.43 and RMSE slightly increased to 1.91. These values are higher than 

those of both the ARIMA and XGBoost models, indicating lower prediction accuracy. 

The XGBoost model with 70% training data shows the best performance, with an RMSE value of only about 0.70. The 

ARIMA model with 70% and 80% training data also has a relatively low RMSE value, which is around 1.40-1.48. This 

means that the XGBoost and ARIMA models have better prediction accuracy than the Neural Prophet model. These 

results can be taken into consideration in choosing the best model to be used in predicting hot temperatures in Surabaya 

City. 

The comparatively weaker performance of the Neural Prophet model may be attributed to its sensitivity to irregular or 

weak seasonal patterns within the dataset. Neural Prophet is optimized for structured time series with strong and 

periodic seasonality, which may not be dominant in Surabaya's maximum temperature data. Meanwhile, the ARIMA 

model, while effective in modeling linear relationships, has limited ability to capture complex nonlinear trends present 

in long-term climate datasets. These limitations result in lower accuracy compared to XGBoost, which is capable of 

learning intricate data patterns through ensemble-based tree structures and hyperparameter tuning. 
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4.2. Prediction Model Testing with Hyperparameter Tuning  

After going through the parameter hypertuning process using 70% of the training data, the authors were able to obtain 

evaluation results that showed a significant improvement in the performance of the maximum temperature prediction 

model. The results of the model testing after the parameter hypertuning process can be seen in table 3. The evaluated 

models include ARIMA, Neural Prophet, and XGBoost. 

Table 3. Parameter Hypertuning of each Model 

Model Boosting Adventage 

ARIMA 

model = ARIMA(order=(p,d,q)), param_distributions={'order': [(p,d,q)], 

'seasonal_order': [(P,D,Q,s)]}, n_iter=100, scoring='neg_mean_squared_error', 

cv=3, verbose=1, n_jobs=-1, random_state=42 

Captures linear trends and 

seasonality well in time 

series data 

Neural 

Prophet 

model=NeuralProphet(), param_distributions={'seasonality_mode': ['additive', 

'multiplicative'], 'learning_rate': [0.01, 0.1]}, n_iter=100, 

scoring='neg_mean_squared_error', cv=3, verbose=1, n_jobs=-1, 

random_state=42) 

Effective for time series 

forecasting with irregular 

patterns and long-term trends 

XGboost 

estimator=XGBRegressor(random_state=42), 

param_distributions=param_distributions, n_iter=100, 

scoring='neg_mean_squared_error', cv=3, verbose=1, n_jobs=-1, 

random_state=42) 

Interesting for big data 

application and selects 

optimal model parameters 

automatically 

The results of model testing after the parameter hypertuning process can be seen in table 4. The models evaluated 

include ARIMA, Neural Prophet, and XGBoost. 

Table 4. Model Testing Results with Parameter Hypertuning 

Model MAE RMSE 

ARIMA 0.85 1.2 

Neural Prophet 0.70 0.98 

XGboost 0.32 0.65 

Based on table 4, it can be seen that each model has increased accuracy after hyperparameter tuning, which is indicated 

by a decrease in error values such as MAE and RMSE compared to the results before hyperparameter tuning contained 

in table 2. For the ARIMA model, MAE initially amounted to 0.98 down to 0.85, while RMSE decreased from 1.48 to 

1.2 after hyperparameter tuning. The Neural Prophet model also showed improved performance with MAE dropping 

from 1.43 to 0.70 and RMSE from 1.90 to 0.98. Meanwhile, the XGBoost model experienced a significant decrease in 

error with MAE from 0.92 to 0.32 and RMSE from 0.70 to 0.65 after hyperparameter tuning. 

These results show that the parameter optimization successfully improved the prediction accuracy of each model. Thus, 

the models become more capable of providing more accurate estimates of future maximum temperatures based on the 

training data used. From the graphs shown, it can be concluded that the XGBoost model provides the best prediction 

results, with lower RMSE and MAE values compared to the Neural Prophet and ARIMA models. Such parameter 

hypertuning process is important to optimize the performance of the prediction model, so that it can provide significant 

added value in practical applications that require temperature prediction with a high degree of accuracy. 

4.3. Optimization of XGBoost Model Prediction Model Testing  

Hyperparameter tuning is performed to maximize the prediction of the XGBoost model. GridSearchCV 

hyperparameters systematically search for the best combination of hyperparameters, such as learning rate, max depth, 

min_child_weight, subsample, and n_estimators that greatly affect prediction accuracy. This process uses cross-

validation to evaluate each hyperparameter combination on multiple subsets of data, resulting in a more stable and 

reliable evaluation compared to methods that only use one set of training and testing data. The following are the results 

of parameter experiments on GridSearchCV hyperparameters. 
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The results shown in the table are from a series of tests of different XGBoost model parameters. The parameters tested 

include n_estimators, max_depth, learning_rate, subsample, and colsample bytree. Each combination of these 

parameters was tested to determine its effect on the model's performance in predicting weather parameters. Table 5 

shows the results of three different experiments, with the evaluation metrics being RMSE and MAE. In Experiment 1, 

the RMSE value is 1.12 and the MAE is 0.67. In Experiment 2, the RMSE value is 1.05 and MAE is 0.78. While in 

Experiment 3, the best RMSE and MAE values were obtained, namely 0.65 and 0.32. These results demonstrate the 

variation in model performance across different parameter combinations and provide useful insights for determining 

the optimal configuration for weather parameter prediction. The detailed outcomes of the parameter tuning process 

using GridSearchCV are presented in table 5. 

Table 5. GridSearhCV Experiment Table 

 RMSE MAE 

Experiment 1 1.12 0.67 

Experiment 2 1.05 0.78 

Experiment 3 0.65 0.32 

Based on the results in table 5, it can be concluded that the three experiments produced different results. The threshold 

parameters used are 0.5 and 0.8, showing that the higher the RMSE and MAE values, the lower the accuracy. If the 

values are below the green threshold, then the accuracy can be categorized as excellent. It can be concluded that the 

third hyperparameter tuning experiment shows the most optimal accuracy in the prediction model, with an RMSE value 

of 0.65 and MAE of 0.32. The visualization of prediction graph of Maximum Heat Temperature in 2025 is shown in 

figure 5. 

 

Figure 5. Prediction Graph of Maximum Heat Temperature in 2025 

The heat trend graph in figure 5 above is the result of predicting the heat temperature in 2025 every month for 1 year. 

With a model that has very low RMSE and MAE values, the results of the trend are quite accurate and can be tested 

for validation. in the trend graph, the maximum heat prediction occurs in the January, October to November period. 

5. Discussion 

The visualization of temperature prediction with XGBoost is shown in figure 6. 

 

Figure 6. Temperature Prediction with XGBoost 
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This study makes a significant contribution to weather prediction and machine learning in Surabaya. After 

hyperparameter tuning, the XGBoost model outperformed ARIMA and Neural Prophet in forecasting maximum 

temperature, and the results closely align with actual 2021 data, as illustrated in figure 6. This demonstrates its 

effectiveness as a reliable model for weather forecasting, particularly for Surabaya, a city increasingly affected by 

global warming. Accurate temperature predictions support the city in multiple sectors, providing essential guidance for 

sustainable development and risk management. In the area of city planning, such forecasts aid in designing green spaces 

and heat-resilient infrastructure to mitigate the effects of extreme temperatures [9]. For resource management, they 

help optimize the use of water and energy, particularly during periods of peak demand. In the public health sector, 

accurate predictions enable early responses to heat-related illnesses through preventive measures and public awareness 

campaigns [55]. In agriculture, they assist farmers in improving planting and harvesting schedules, thereby increasing 

productivity and reducing losses [56]. Furthermore, reliable temperature forecasts play a crucial role in disaster risk 

mitigation by enhancing preparedness and response to extreme events such as heatwaves. 

6. Declarations 

6.1. Author Contributions 

Conceptualization: S., I.G.S.M.D., D.S.A., R.L.A., A.R.F.S., H.S., D.A.D.; Methodology: I.G.S.M.D.; Software: S.; 

Validation: S., I.G.S.M.D., and D.A.D.; Formal Analysis: S., I.G.S.M.D., and D.A.D.; Investigation: S.; Resources: 

I.G.S.M.D.; Data Curation: I.G.S.M.D.; Writing Original Draft Preparation: S., I.G.S.M.D., and D.A.D.; Writing 

Review and Editing: I.G.S.M.D., S., and D.A.D.; Visualization: S. All authors have read and agreed to the published 

version of the manuscript. 

6.2. Data Availability Statement 

The data presented in this study are available on request from the corresponding author. 

6.3. Funding 

The authors received no financial support for the research, authorship, and/or publication of this article. 

6.4. Institutional Review Board Statement 

Not applicable. 

6.5. Informed Consent Statement 

Not applicable. 

6.6. Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

References 

[1] S. Fischer., “Emerging Effects of Temperature on Human Cognition, Affect, and Behaviour,” Biol. Psychol., vol. 189, no. 1, 

pp. 1-21, May 2024, doi: 10.1016/j.biopsycho.2024.108791. 

[2] G. Sullivan and M. Spencer, “Heat and temperature,” BJA Educ., vol. 22, no. 9, pp. 350–356, Sep. 2022, doi: 

10.1016/j.bjae.2022.06.002. 

[3] C. Song, H. Ikei, and Y. Miyazaki, “Physiological Effects of Forest-Related Visual, Olfactory, and Combined Stimuli on 

Humans: An Additive Combined Effect,” Urban For. Urban Green., vol. 44, no. 1, pp. 12-37, Aug. 2019, doi: 

10.1016/j.ufug.2019.126437. 

[4] D. S. Bari, M. N. S. Rammoo, H. Y. Y. Aldosky, M. K. Jaqsi, and Ø. G. Martinsen, “The Five Basic Human Senses Evoke 

Electrodermal Activity,” Sensors, vol. 23, no. 19, pp. 8181-8192, Sep. 2023, doi: 10.3390/s23198181. 

[5] G. Zheng, K. Li, and Y. Wang, “The Effects of High-Temperature Weather on Human Sleep Quality and Appetite,” Int. J. 

Environ. Res. Public. Health, vol. 16, no. 2, pp. 270-282, Jan. 2019, doi: 10.3390/ijerph16020270 

https://doi.org/10.1016/j.biopsycho.2024.108791
https://doi.org/10.1016/j.biopsycho.2024.108791
https://doi.org/10.1016/j.bjae.2022.06.002
https://doi.org/10.1016/j.bjae.2022.06.002
https://doi.org/2010.1016/j.ufug.2019.126437
https://doi.org/2010.1016/j.ufug.2019.126437
https://doi.org/2010.1016/j.ufug.2019.126437
https://doi.org/10.3390/s23198181.
https://doi.org/10.3390/s23198181.
https://doi.org/10.3390/ijerph16020270
https://doi.org/10.3390/ijerph16020270


Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2517-2529 

ISSN 2723-6471 

2527 

 

 

 

[6] F. Barbosa Escobar, C. Velasco, K. Motoki, D. V. Byrne, and Q. J. Wang, “The Temperature of Emotions,” PLOS ONE, vol. 

16, no. 6, pp. 1-21, Jun. 2021, doi: 10.1371/journal.pone.0252408. 

[7] A. Albatayneh, D. Alterman, A. Page, and B. Moghtaderi, “The Impact of the Thermal Comfort Models on the Prediction of 

Building Energy Consumption,” Sustainability, vol. 10, no. 10, pp. 3609-3618, Oct. 2018, doi: 10.3390/su10103609. 

[8] A. Ospino, C. Robles, and I. Tovar, “Strategies to Improve Thermal Comfort and Energy Efficiency of Social Interest Housing 

in Tropical Areas,” J. Sustain. Dev. Energy Water Environ. Syst., vol. 12, no. 4, pp. 1–18, Dec. 2024, doi: 

10.13044/j.sdewes.d12.0526. 

[9] S. Bolan et al., “Impacts of Climate Change on the Fate of Contaminants Through Extreme Weather Events,” Sci. Total 

Environ., vol. 909, no. 1, pp. 1-18, Jan. 2024, doi: 10.1016/j.scitotenv.2023.168388. 

[10] A. Pandey, “Global Warming and Increase of Global Temperature: Model Based Study,” J. Nonlinear Anal. Optim., vol. 15, 

no. 4, pp. 117–127, 2024, doi: 10.2139/ssrn.4880990. 

[11] L. Wang, L. Wang, Y. Li, and J. Wang, “A Century-Long Analysis of Global Warming and Earth Temperature Using a 

Random Walk with Drift Approach,” Decis. Anal. J., vol. 7, no. 1, pp. 1-17, Jun. 2023, doi: 10.1016/j.dajour.2023.100237. 

[12] K. Furtak and A. Wolińska, “The Impact of Extreme Weather Events as a Consequence of Climate Change on the Soil 

Moisture and on the Quality of the Soil Environment and Agriculture – a Review,” CATENA, vol. 231, no. 1, pp. 1-18, Oct. 

2023, doi: 10.1016/j.catena.2023.107378. 

[13] K. Abbass, M. Z. Qasim, H. Song, M. Murshed, H. Mahmood, and I. Younis, “A Review of the Global Climate Change 

Impacts, Adaptation, and Sustainable Mitigation Measures,” Environ. Sci. Pollut. Res., vol. 29, no. 28, pp. 42539–42559, 

Jun. 2022, doi: 10.1007/s11356-022-19718-6. 

[14] J. Ekawati, H. Sofari, W. Rahmawati, S. I. Permata, and E. Setiawan, “Mitigating Climate Change Towards Livable City 

(Case: Bandung City, West Java),” J. Archit. Des. Urban., vol. 6, no. 1, pp. 36–50, Jan. 2024, doi: 10.14710/jadu.v6i1.21612. 

[15] B. S. S. Wibawa et al., “Effects of Ambient Temperature, Relative Humidity, and Precipitation on Diarrhea Incidence in 

Surabaya,” Int. J. Environ. Res. Public. Health, vol. 20, no. 3, pp. 2313-2325, Jan. 2023, doi: 10.3390/ijerph20032313. 

[16] A. M. Dary, M. A. Mardyanto, J. Hermana, and C. Imron, “Climate Change and Its Effect on Temperature and Precipitation 

Trends: Case Study in Surabaya Using RegCM5,” Int. J. Comput. Sci. Appl. Math., vol. 11, no. 1, pp. 33–37, 2025 

[17] Y. D. Anggraini, S. J. Sukmana, D. Sulistyowaty, F. Rohmiah, and H. Rasidi, “The Urban Planning of Surabaya City with 

The Aim of Creating a Green City,” J. Civ. Eng. Plan. Des., vol. 3, no. 1, pp. 1–5, Jul. 2024, doi: 

10.31284/j.jcepd.2024.v3i1.5277. 

[18] A. A. Assayuti, N. Ani, Y. Pujowati, A. T. Abeng, and D. M. Kamal, “Impact of Air Pollution, Population Density, Land 

Use, and Transportation on Public Health in Jakarta,” J. Geosains West Sci., vol. 1, no. 02, pp. 35–43, Jun. 2023, doi: 

10.58812/jgws.v1i02.391. 

[19] M. L. Williams, “Global Warming, Heat-Related Illnesses, and the Dermatologist,” Int. J. Womens Dermatol., vol. 7, no. 1, 

pp. 70–84, Jan. 2021, doi: 10.1016/j.ijwd.2020.08.007. 

[20] T. Mifsud, C. Modestini, A. Mizzi, O. Falzon, K. Cassar, and S. Mizzi, “The Effects of Skin Temperature Changes on the 

Integrity of Skin Tissue: A Systematic Review,” Adv. Skin Wound Care, vol. 35, no. 10, pp. 555–565, Oct. 2022, doi: 

10.1097/01.ASW.0000833612.84272.da. 

[21] K. J. J. K. Jetly et al., “Risk Factors For Scabies In School Children: A Systematic Review,” Vopr. Prakt. Pediatr., vol. 17, 

no. 2, pp. 117–125, 2022, doi: 10.20953/1817-7646-2022-2-117-125. 

[22] M. Amoadu, E. W. Ansah, J. O. Sarfo, and T. Hormenu, “Impact of Climate Change and Heat Stress on Workers’ Health and 

Productivity: A Scoping Review,” J. Clim. Change Health, vol. 12, no. 1, pp. 1-19, Jul. 2023, doi: 

10.1016/j.joclim.2023.100249. 

[23] F. S. Arsad ,“The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic 

Review,” Int. J. Environ. Res. Public. Health, vol. 19, no. 23, pp. 1-16, Dec. 2022, doi: 10.3390/ijerph192316356. 

[24] B. Yin, W. Fang, L. Liu, Y. Guo, X. Ma, and Q. Di, “Effect of Extreme High Temperature on Cognitive Function at Different 

Time Scales: A National Difference-in-Differences Analysis,” Ecotoxicol. Environ. Saf., vol. 275, no. 1, pp. 1-18, Apr. 2024, 

doi: 10.1016/j.ecoenv.2024.116238. 

[25] S. D. S. Pramesti, H. M. Denny, and Y. Setyaningsih, “The Relationship Between Fluid Intake and Heat Sress with the 

Hydration Status of Workers: A Scooping Review,” Indones. J. Glob. Health Res., vol. 6, no. 5, pp. 2737–2746, 2024 

[26] S. Shrestha, J. Mahat, J. Shrestha, M. K.C., and K. Paudel, “Influence of High-Temperature Stress on Rice Growth and 

Development: A Review,” Heliyon, vol. 8, no. 12, p. e12651, Dec. 2022, doi: 10.1016/j.heliyon.2022.e12651. 

https://doi.org/10.1371/journal.pone.0252408
https://doi.org/10.1371/journal.pone.0252408
https://doi.org/%2010.3390/su10103609
https://doi.org/%2010.3390/su10103609
https://doi.org/10.13044/j.sdewes.d12.0526
https://doi.org/10.13044/j.sdewes.d12.0526
https://doi.org/10.13044/j.sdewes.d12.0526
https://doi.org/%2010.1016/j.scitotenv.2023.168388
https://doi.org/%2010.1016/j.scitotenv.2023.168388
https://doi.org/10.2139/ssrn.4880990
https://doi.org/10.2139/ssrn.4880990
https://doi.org/10.1016/j.dajour.2023.100237
https://doi.org/10.1016/j.dajour.2023.100237
https://doi.org/10.1016/j.catena.2023.107378
https://doi.org/10.1016/j.catena.2023.107378
https://doi.org/10.1016/j.catena.2023.107378
https://doi.org/10.1007/s11356-022-19718-6
https://doi.org/10.1007/s11356-022-19718-6
https://doi.org/10.1007/s11356-022-19718-6
https://doi.org/10.14710/jadu.v6i1.21612
https://doi.org/10.14710/jadu.v6i1.21612
https://doi.org/10.3390/ijerph20032313
https://doi.org/10.3390/ijerph20032313
http://dx.doi.org/10.12962%2Fj24775401.v11i1.22566
http://dx.doi.org/10.12962%2Fj24775401.v11i1.22566
http://doi.org/10.31284/j.jcepd.2024.v3i1.5277
http://doi.org/10.31284/j.jcepd.2024.v3i1.5277
http://doi.org/10.31284/j.jcepd.2024.v3i1.5277
http://doi.org/10.58812/jgws.v1i02.391
http://doi.org/10.58812/jgws.v1i02.391
http://doi.org/10.58812/jgws.v1i02.391
http://doi.org/10.1016/j.ijwd.2020.08.007
http://doi.org/10.1016/j.ijwd.2020.08.007
http://doi.org/10.1097/01.ASW.0000833612.84272.da
http://doi.org/10.1097/01.ASW.0000833612.84272.da
http://doi.org/10.1097/01.ASW.0000833612.84272.da
http://doi.org/10.20953/1817-7646-2022-2-117-125
http://doi.org/10.20953/1817-7646-2022-2-117-125
http://doi.org/10.1016/j.joclim.2023.100249
http://doi.org/10.1016/j.joclim.2023.100249
http://doi.org/10.1016/j.joclim.2023.100249
http://doi.org/10.3390/ijerph192316356
http://doi.org/10.3390/ijerph192316356
http://doi.org/10.1016/j.ecoenv.2024.116238
http://doi.org/10.1016/j.ecoenv.2024.116238
http://doi.org/10.1016/j.ecoenv.2024.116238
https://doi.org/10.37287/ijghr.v6i5.3304
https://doi.org/10.37287/ijghr.v6i5.3304
https://doi.org/10.1016/j.heliyon.2022.e12651
https://doi.org/10.1016/j.heliyon.2022.e12651


Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2517-2529 

ISSN 2723-6471 

2528 

 

 

 

[27] M. Li, H. Y. Wang, A. A. K. Najm, B. A. Othman, and D. Law, “Effects of Molybdenum on Growth and Fruit Quality of 

Small Fruit Melon (cucumis Melo L.) Cultivated Under High-Temperature Stress,” Acta Sci. Pol. Hortorum Cultus, vol. 23, 

no. 4, pp. 41–54, Sep. 2024, doi: 10.24326/asphc.2024.5345. 

[28] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou, “Environmental and Health Impacts of Air Pollution: 

A Review,” Front. Public Health, vol. 8, p. 14, Feb. 2020, doi: 10.3389/fpubh.2020.00014. 

[29] J. D. Périard, T. M. H. Eijsvogels, and H. A. M. Daanen, “Exercise Under Heat Stress: Thermoregulation, Hydration, 

Performance Implications, and Mitigation Strategies,” Physiol. Rev., vol. 101, no. 4, pp. 1873–1979, Oct. 2021, doi: 

10.1152/physrev.00038.2020. 

[30] M. Özdamar and F. Umaroğullari, “Thermal Comfort and Indoor Air Quality,” Int. J. Sci. Res. Innov. Technol., vol. 5, no. 3, 

pp. 90–109, 2018. 

[31] M. Levi, T. Kjellstrom, and A. Baldasseroni, “Impact of Climate Change on Occupational Health and Productivity: A 

Systematic Literature Review Focusing on Workplace Heat,” Med. Lav., vol. 109, no. 3, pp. 163–179, Apr. 2018, doi: 

10.23749/mdl.v109i3.6851. 

[32] P. Shafigh, M. A. Hafez, Z. Che Muda, S. Beddu, A. Zakaria, and Z. Almkahal, “Influence of Different Ambient 

Temperatures on the Thermal Properties of Fiber-Reinforced Structural Lightweight Aggregate Concrete,” Buildings, vol. 

12, no. 6, p. 771, Jun. 2022, doi: 10.3390/buildings12060771. 

[33] P. Wargocki, J. A. Porras-Salazar, and S. Contreras-Espinoza, “The Relationship Between Classroom Temperature and 

Children’s Performance in School,” Build. Environ., vol. 157, no. 1, pp. 197–204, 2019. 

[34] L. Zhang, W. Bian, W. Qu, L. Tuo, and Y. Wang, “Time Series Forecast of Sales Volume Based on Xgboost,” J. Phys. Conf. 

Ser., vol. 1873, no. 1, pp. 1-12, Apr. 2021, doi: 10.1088/1742-6596/1873/1/012067. 

[35] Y. Lai and D. A. Dzombak, “Use of the Autoregressive Integrated Moving Average (ARIMA) Model to Forecast Near-Term 

Regional Temperature and Precipitation,” Weather Forecast., vol. 35, no. 3, pp. 959–976, Jun. 2020, doi: 10.1175/WAF-D-

19-0158.1. 

[36] T. R. Noviandy, “Deep Learning-Based Bitcoin Price Forecasting Using Neural Prophet,” Ekon. J. Econ., vol. 1, no. 1, pp. 

19–25, Jul. 2023, doi: 10.60084/eje.v1i1.51. 

[37] D. Hindarto, F. Hendrata, and M. Hariadi, “The Application of Neural Prophet Time Series in Predicting Rice Stock at Rice 

Stores,” J. Comput. Netw. Archit. High Perform. Comput., vol. 5, no. 2, pp. 668–681, Aug. 2023, doi: 

10.47709/cnahpc.v5i2.2725. 

[38] A. J. F. Zamelina, D. Adytia, and A. W. Ramadhan, “Forecasting of Maximum Temperature by using ANFIS and GRU 

Algorithms: Case Study in Jakarta, Indonesia,” 3rd Int. Conf. Intell. Cybern. Technol. Appl. ICICyTA, vol. 2023, no. 1, pp. 

49–54, 2023, doi: 10.1109/ICoICT55009.2022.9914885. 

[39] Md. M. H. Khan, N. S. Muhammad, and A. El-Shafie, “Wavelet Based Hybrid ANN-ARIMA Models for Meteorological 

Drought Forecasting,” J. Hydrol., vol. 590, no. 1, pp. 1-20, Nov. 2020, doi: 10.1016/j.jhydrol.2020.125380. 

[40] S. S. Kumar, A. Kumar, S. Agarwal, M. Syafrullah, and K. Adiyarta, “Forecasting Indoor Temperature for Smart Buildings 

with ARIMA, SARIMAX, and LSTM: A Fusion Approach,” 9th Int. Conf. Electr. Eng. Comput. Sci. Inform. EECSI, vol. 

2022, no. 1, pp. 186–192, 2022, doi: 10.23919/EECSI56542.2022.9946498. 

[41] D. A. Devi, T. Satya, and S. Sugun.L, “Design and Implementation of Real Time Data Acquisition System using 

Reconfigurable SoC,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 9, pp. 1-12, 2020, doi: 10.14569/IJACSA.2020.0110938. 

[42] S. A. Alasadi and W. S. Bhaya, “Review of Data Preprocessing Techniques in Data Mining,” J. Eng. Appl. Sci., vol. 12, no. 

16, pp. 4102–4107, 2017  

[43] N. Pudjihartono, T. Fadason, A. W. Kempa-Liehr, and J. M. O’Sullivan, “A Review of Feature Selection Methods for 

Machine Learning-Based Disease Risk Prediction,” Front. Bioinforma., vol. 2, no. 1, pp. 1-20, Jun. 2022, doi: 

10.3389/fbinf.2022.927312. 

[44] Z. Arif Ali, Z. H. Abduljabbar, H. A. Tahir, A. Bibo Sallow, and S. M. Almufti, “eXtreme Gradient Boosting Algorithm with 

Machine Learning: a Review,” Acad. J. Nawroz Univ., vol. 12, no. 2, pp. 320–334, May 2023, doi: 

10.25007/ajnu.v12n2a1612. 

[45] Y. Zou, M. Xia, and X. Lan, “Interpretable Credit Scoring Based on an Additive Extreme Gradient Boosting,” Chaos Solitons 

Fractals, vol. 194, no. 116216, pp. 1-12, 2025  

https://doi.org/10.24326/asphc.2024.5345
https://doi.org/10.24326/asphc.2024.5345
https://doi.org/10.24326/asphc.2024.5345
https://doi.org/10.3389/fpubh.2020.00014
https://doi.org/10.3389/fpubh.2020.00014
https://doi.org/10.1152/physrev.00038.2020
https://doi.org/10.1152/physrev.00038.2020
https://doi.org/10.1152/physrev.00038.2020
https://doi.org/10.1007/978-1-4471-2336-1_1
https://doi.org/10.1007/978-1-4471-2336-1_1
https://doi.org/10.23749/mdl.v109i3.6851
https://doi.org/10.23749/mdl.v109i3.6851
https://doi.org/10.23749/mdl.v109i3.6851
https://doi.org/10.3390/buildings12060771
https://doi.org/10.3390/buildings12060771
https://doi.org/10.3390/buildings12060771
https://doi.org/10.1016/j.buildenv.2019.04.046
https://doi.org/10.1016/j.buildenv.2019.04.046
https://doi.org/10.1088/1742-6596/1873/1/012067
https://doi.org/10.1088/1742-6596/1873/1/012067
https://doi.org/10.1175/WAF-D-19-0158.1
https://doi.org/10.1175/WAF-D-19-0158.1
https://doi.org/10.1175/WAF-D-19-0158.1
https://doi.org/10.60084/eje.v1i1.51
https://doi.org/10.60084/eje.v1i1.51
https://doi.org/10.47709/cnahpc.v5i2.2725
https://doi.org/10.47709/cnahpc.v5i2.2725
https://doi.org/10.47709/cnahpc.v5i2.2725
https://doi.org/10.1109/ICoICT55009.2022.9914885
https://doi.org/10.1109/ICoICT55009.2022.9914885
https://doi.org/10.1109/ICoICT55009.2022.9914885
https://doi.org/10.1016/j.jhydrol.2020.125380
https://doi.org/10.1016/j.jhydrol.2020.125380
https://doi.org/10.23919/EECSI56542.2022.9946498
https://doi.org/10.23919/EECSI56542.2022.9946498
https://doi.org/10.23919/EECSI56542.2022.9946498
https://doi.org/10.14569/IJACSA.2020.0110938
https://doi.org/10.14569/IJACSA.2020.0110938
https://doi.org/10.36478/jeasci.2017.4102.4107
https://doi.org/10.36478/jeasci.2017.4102.4107
https://doi.org/10.3389/fbinf.2022.927312
https://doi.org/10.3389/fbinf.2022.927312
https://doi.org/10.3389/fbinf.2022.927312
https://doi.org/10.25007/ajnu.v12n2a1612
https://doi.org/10.25007/ajnu.v12n2a1612
https://doi.org/10.25007/ajnu.v12n2a1612
https://doi.org/10.1016/j.chaos.2025.116216
https://doi.org/10.1016/j.chaos.2025.116216


Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2517-2529 

ISSN 2723-6471 

2529 

 

 

 

[46] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, San Francisco California USA: ACM, Aug. vol. 2016, 

no. 1, pp. 785–794, 2016. doi: 10.1145/2939672.2939785. 

[47] B. Azari, K. Hassan, J. Pierce, and S. Ebrahimi, “Evaluation of Machine Learning Methods Application in Temperature 

Prediction,” Comput. Res. Prog. Appl. Sci. Eng., vol. 8, no. 1, pp. 1–12, 2022, doi: 10.52547/crpase.8.1.2747. 

[48] N. W. Azizah, E. Y. Puspaningrum, and I. G. S. S. Mas Diyasa, “Analyzing the Relationship Between Meteorological 

Parameters and Electric Energy Consumption Using Support Vector Machine and Cooling Degree Days Algorithm,” J. Inf. 

Syst. Inform., vol. 6, no. 2, pp. 729–750, Jun. 2024, doi: 10.51519/journalisi.v6i2.719. 

[49] T. O. Hodson, “Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not,” Geosci. 

Model Dev., vol. 15, no. 14, pp. 5481–5487, Jul. 2022, doi: 10.5194/gmd-15-5481-2022. 

[50] W. Nugraha and A. Sasongko, “Hyperparameter Tuning on Classification Algorithm with Grid Search,” SISTEMASI, vol. 

11, no. 2, pp. 391-409, May 2022, doi: 10.32520/stmsi.v11i2.1750. 

[51] C. M. Liyew, E. Di Nardo, S. Ferraris, and R. Meo, “Hyperparameter Optimization of Machine Learning Models for 

Predicting Actual Evapotranspiration,” Mach. Learn. Appl., vol. 20, p. 100661, Jun. 2025, doi: 10.1016/j.mlwa.2025.100661. 

[52] P. Yuvarani, P. Bharani, B. Dharun, and P. Dinesh, “Time Series Forecasting of Ethereum Price by FB-Prophet,” 2023 4th 

Int. Conf. Signal Process. Commun. ICSPC, pp. 272–277, 2023, doi: 10.1109/ICSPC57692.2023.10125661. 

[53] R. Widiono, B. Z. Cirgon, S. N. Aji, Subhiyanto, and A.Riyadi, “Prediction of Students Passedon Time with Classification 

Technique Using Have Naïve Bayes Algorithm,” Int. J. Comput. Tech., vol. 6, no. 6, pp. 1–7, 2019. 

[54] R. M. X. Wu., “Comparative Study of Ten Machine Learning Algorithms for Short-Term Forecasting in Gas Warning 

Systems,” Sci. Rep., vol. 14, no. 1, pp. 21-39, Sep. 2024, doi: 10.1038/s41598-024-67283-4. 

[55] T. B. W. Hartono, “Physiological Responses of Workers’ Vital Signs in High Temperature Environments at The Tofu Home 

Industry Kedung Tarukan Surabaya,” J. Kesehat. Lingkung., vol. 11, no. 3, pp. 242-256, Jul. 2019, doi: 

10.20473/jkl.v11i3.2019.242-251. 

[56] S. Mishra, K. Spaccarotella, J. Gido, I. Samanta, and G. Chowdhary, “Effects of Heat Stress on Plant-Nutrient Relations: An 

Update on Nutrient Uptake, Transport, and Assimilation,” Int. J. Mol. Sci., vol. 24, no. 21, pp. 1-20, Oct. 2023, doi: 

10.3390/ijms242115670. 

 

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.52547/crpase.8.1.2747
https://doi.org/10.52547/crpase.8.1.2747
https://doi.org/10.51519/journalisi.v6i2.719
https://doi.org/10.51519/journalisi.v6i2.719
https://doi.org/10.51519/journalisi.v6i2.719
https://doi.org/%2010.5194/gmd-15-5481-2022
https://doi.org/%2010.5194/gmd-15-5481-2022
https://doi.org/10.32520/stmsi.v11i2.1750
https://doi.org/10.32520/stmsi.v11i2.1750
https://doi.org/10.1016/j.mlwa.2025.100661
https://doi.org/10.1016/j.mlwa.2025.100661
https://doi.org/10.1109/ICSPC57692.2023.10125661
https://doi.org/10.1109/ICSPC57692.2023.10125661
https://doi.org/10.1038/s41598-024-67283-4
https://doi.org/10.1038/s41598-024-67283-4
https://doi.org/10.20473/jkl.v11i3.2019.242-251
https://doi.org/10.20473/jkl.v11i3.2019.242-251
https://doi.org/10.20473/jkl.v11i3.2019.242-251
https://doi.org/10.3390/ijms242115670
https://doi.org/10.3390/ijms242115670
https://doi.org/10.3390/ijms242115670

