
Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2495-2516 

ISSN 2723-6471 

2495 

 

 

 

Application of Convolutional Neural Networks for Automated Iris Edge 

Detection in Sleepiness Monitoring during Blended Learning 

Tukino1,*, , Yuhandri2, , Sumijan3,  

1Department. Information System, Faculty of Creative Industry, Media Nusantara Citra University, Jakarta, Indonesia 

2,3Department. Information Technology, Faculty of Computer Science, Putra Indonesia University YPTK Padang, Padang, Indonesia 

(Received: February 20, 2025; Revised: May 18, 2025; Accepted: August 07, 2025; Available online: September 11, 2025) 

Abstract 

This study introduces a novel lightweight Convolutional Neural Network (CNN) model, T-Net, designed for real-time drowsiness detection based 

on eye closure patterns. The model was developed to address the prevalent issue of student fatigue in resource-constrained environments, such 

as during prolonged online learning or blended learning sessions. Unlike traditional deep learning models, T-Net prioritizes efficiency while 

maintaining high accuracy, making it suitable for deployment on devices with limited computational resources. The model uses a 68-point facial 

landmark detection technique to extract the eye region and accurately classify eyelid states (open or closed). Evaluated on two benchmark datasets, 

Dataset-1 (342 eye images) and Dataset-2 (1,510 eye images), T-Net demonstrated superior performance, achieving classification accuracies of 

99.33% and 99.27%, respectively, outperforming other pre-trained models such as VGG19, ResNet50, and MobileNetV2. Usability testing 

revealed a high acceptance rate, with a System Usability Scale (SUS) score of 84.5, indicating the system’s practicality for real-world use. 

Additionally, statistical analysis showed a significant correlation (r = 0.67, p < 0.01) between prolonged screen time and the emergence of visual 

fatigue symptoms. This study highlights the effectiveness of a lightweight CNN approach for real-time fatigue monitoring, offering a balance 

between performance and computational efficiency. The results suggest that T-Net can be effectively integrated into student monitoring systems 

to ensure alertness during learning sessions. Future research will focus on expanding the dataset, integrating infrared imaging for low-light 

environments, and incorporating additional fatigue indicators such as yawning and head pose. 
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1. Introduction  

Drowsiness represents a state of diminished alertness where individuals experience overwhelming fatigue, often 

resulting in impaired cognitive function and involuntary sleep episodes. This condition poses significant risks in 

situations requiring sustained attention, particularly behind the wheel. Current detection methodologies fall into two 

distinct categories. The first approach monitors vehicle operation parameters including steering behavior, lane 

positioning, and braking frequency through contactless monitoring systems. These indicators however demonstrate 

variability contingent upon roadway characteristics [1]. The alternative methodology employs biosignal acquisition 

techniques such as cerebral activity monitoring (EEG) and cardiac rhythm analysis (ECG) to evaluate operator fatigue 

states [2]. While such physiological measurements yield highly accurate fatigue assessments [3], [4], their 

implementation necessitates physical sensor attachment to the student [5]. Although biosignal-based systems offer 

superior detection reliability, their practical deployment faces substantial implementation challenges compared to non-

contact alternatives. 

Road safety statistics reveal a troubling connection between student fatigue and traffic accidents, with numerous 

collisions, physical harm, and fatalities attributed to this cause. The implementation of fatigue detection systems that 

can alert drowsy students has become increasingly crucial for accident prevention. NHTSA research indicates the 

staggering consequences of drowsy driving, including annual economic damages exceeding $12 billion, approximately 

71,000 people suffering injuries, and nearly 1,550 lives lost each year. (NHTSA) statistics [6] show that in 2022, 
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crashes involving drowsy students resulted in 50,000 injuries and 795 deaths. Researchers believe that it is important 

to be able to recognize signs of fatigue based on behavioral indicators, such as changes in the lips, eyes, or other facial 

characteristics. 

By analyzing these indicators, researchers want to create tools to detect student fatigue and implement safety measures 

to prevent accidents [7]. Systems for identifying student impairment [8], Human-Computer Interaction (HCI) [9], 

Facial Expression Recognition (FER) [10], Brain-Computer Interface (BCI) [11], health [12], etc. can be designed and 

developed more easily by using eye status detection systems. Most applications utilize eye status data, either directly 

or indirectly. 

This study focuses on individuals aged 15–24 years, encompassing both older adolescents and young adults. This age 

range aligns with global classifications used by organizations such as WHO and UNESCO in educational and health 

research. The integration of Artificial Intelligence (AI) and User Experience (UX) design in this work follows a human-

centered approach. Usability heuristics—such as visibility of system status, user control, and error prevention—were 

mapped to the behavior of the AI system to enhance interpretability. This included the use of intuitive visual indicators 

to convey system feedback without requiring medical knowledge from the user. 

Several computer vision-based methods for sleepiness detection have been developed over the past few decades to 

monitor student alertness. Eye closure, nodding, and yawning are examples of facial expressions that can indicate 

sleepiness. The frequency and duration of students' eye closures increase and the frequency and duration of eye 

openings decrease when they feel tired [13]. 

Researchers have made significant progress in drowsiness detection technology. New deep learning techniques address 

pose variations and incorporate mouth and eye features to improve accuracy. Lightweight models and hierarchical 

frameworks are also being developed for real-time applications and specific environments such as suburban roads. To 

ensure real-world effectiveness, research focuses on evaluating robustness to challenges such as occlusions and 

generalization across different conditions and populations. Additionally, the field is expanding beyond car students by 

developing a drowsiness detection model for crane operators, highlighting its potential for diverse applications. While 

our study introduces the DrowsyDetectNet framework, there is still a gap in the literature regarding the development 

of lightweight models for this purpose. Current methods often rely on complex architectures that are not suitable for 

resource-constrained environments such as vehicular systems. The development of efficient drowsiness detection 

systems requires innovative solutions that balance performance with practicality. Current challenges call for optimized 

models that minimize computational demands without sacrificing detection accuracy. This research investigates a 

streamlined CNN framework featuring a simplified architecture with reduced layers, specifically designed to work 

effectively with smaller datasets. Such advancements could significantly enhance real-world student monitoring 

systems by making them more accessible and responsive while maintaining reliable performance. 

The development and use of student fatigue detection technology are driven by several important factors. First and 

foremost, this technology enhances safety by providing real-time monitoring of drowsiness, alerting students when 

their alertness declines so they can take necessary precautions. Additionally, it contributes to accident reduction by 

identifying signs of fatigue early, thereby minimizing risks. Another key benefit is increased productivity, as these 

systems help maintain focus, reduce errors, and improve overall efficiency. From an economic perspective, fatigue 

detection devices offer cost savings by preventing accidents that could lead to financial losses for individuals and 

institutions. Lastly, advancements in sensor technology, machine learning, and artificial intelligence have made these 

systems more accurate and affordable, further accelerating their adoption. Together, these reasons highlight the value 

of fatigue detection in promoting safety, efficiency, and innovation in educational environments. 

This research introduces an innovative approach to drowsiness detection through a computationally efficient CNN 

model with a simplified architecture. The proposed solution differs significantly from conventional deep networks like 

VGG19, InceptionV3, MobileNetV2, and ResNet50 by employing a minimalistic design that requires fewer 

computational resources. Specifically designed to work with small datasets, our model prioritizes key facial indicators 

of fatigue, particularly eye closure patterns. This lean architecture demonstrates particular suitability for deployment 

in resource-constrained environments where real-time processing is essential, offering practical advantages over more 

complex alternatives. 
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The structure of this manuscript is as follows: The second section discusses the literature on drowsiness detection; the 

third section discusses the components and methods used in the proposed system; and the fourth section presents the 

experimental results along with details of each CNN design. The fifth section concludes with recommendations and 

findings for further research. 

2. Literature Review  

In this study, Phan et al. [14] for drowsiness detection involves testing and training phases. In the training phase, the 

footage captured by the vehicle safety system is processed to detect the face and head area using a specific network. 

The extracted images are then used to train deep neural networks, such as Inception-V3, DenseNet, LSTM, and VGG-

16, with improvements made to their layers for drowsiness detection. In the testing phase, the trained model is evaluated 

on a separate dataset to identify drowsiness with an accuracy rate of 98%. Previous research has developed several 

CNN-based approaches for student fatigue detection. Faisal and colleagues [15] introduced a real-time monitoring 

solution that begins with facial image acquisition, followed by precise eye region localization. Their framework 

assesses student alertness through predefined criteria and issues appropriate warnings. The CNN architecture 

incorporates image feature extraction, data preprocessing, and careful tuning of critical hyperparameters including 

kernel configuration, learning rate, pooling dimensions, and training cycles. Experimental results demonstrated 

exceptional performance with 99.33% training accuracy and 97.98% validation accuracy. In a separate study, Ganguly 

et al. [16] implemented a dual-network system combining conventional CNN with Faster R-CNN methodology. Their 

approach initially identifies ocular regions using a Faster R-CNN detector, which integrates convolutional operations 

with max-pooling layers. Subsequent stages employ region proposal networks for object detection probability 

estimation, culminating in eye state classification through a series of convolutional and pooling operations in a standard 

CNN architecture. 

In their study, Magan et al. [17] developed an innovative fatigue monitoring system that analyzes sequential facial 

images to assess student drowsiness levels. Integrated as a core component of Advanced Student Assistance Systems 

(ADAS), their solution employs sophisticated facial feature analysis while optimizing system performance through 

enhanced detection reliability and minimized false alerts. The framework specifically emphasizes timely identification 

of fatigue symptoms to improve road safety. The system uses 10 Frames Per Second (FPS) to capture 600 frames in a 

60-second period, which are then processed and analyzed to assess the level of drowsiness and trigger appropriate 

alarms if necessary. Florez et al. [18] proposed six steps in the student drowsiness identification process: data 

acquisition, pre-processing of video frames using facial landmark detection, building a dataset, testing the trained 

model, training a CNN architecture, and predicting student fatigue. The pre-processing step includes a methodology 

for selecting Regions of Interest (ROIs) around the eyes by calculating the distance between facial points, ensuring that 

the ROIs capture relevant information even during head movements. The trained models are evaluated, and the best 

performing models are used for student drowsiness prediction. Jahan et al. [19] proposed the use of a custom CNN 

model called 4D to identify drowsiness based on eye conditions. This model consists of several layers: convolution, 

activation, batch normalization, dropout, max-pooling, fully connected, and output. In addition, this paper mentions 

the use of transfer learning CNN models, specifically VGG19 and VGG16, for the image classification task. For model 

training, we employed the MRL Eye dataset containing 47,173 annotated images of both open and closed eye states, 

achieving a classification accuracy of 97.53%. In related work, Akrout and Fakhfakh [20] developed an advanced 

fatigue detection framework that combines multiple computer vision techniques. Their approach begins with facial 

landmark detection and head pose estimation using MediaPipe Face Mesh, followed by a novel iris detection and 

normalization process. The system leverages MobileNetV3's feature extraction capabilities to process ocular 

characteristics, supplemented by geometric measurements of facial point distances and head orientation angles. These 

multimodal features are then analyzed through an LSTM network for temporal fatigue pattern recognition. The 

methodology also includes detailed iris region analysis, incorporating segmentation and normalization procedures to 

enhance feature quality. 

Kumar et al. [21] proposed an approach that leverages a hybrid deep learning approach, combining InceptionV3 and 

LSTM, to analyze the mouth and eye areas for spatial feature extraction. The modified InceptionV3 incorporates a 

global average-pooling layer and a dropout layer to improve adaptability and prevent overfitting, respectively. The 
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modified InceptionV3 output is then fed into an LSTM to determine whether the student is drowsy or not, with an 

accuracy of 93.69%. Liu et al. [22] proposed a hybrid deep neural network workflow and design for fatigue detection 

in crane operators. The workflow involves capturing videos, detecting the operator’s face, extracting facial landmarks, 

and extracting fatigue features to train a fatigue classifier. The three main modules of the architecture—Face Detector, 

Spatial Feature Extractor using MobileNet, and Time-Based Characteristic Modeling using LSTM—are connected by 

a learning network to determine the level of fatigue and, if necessary, initiate an alert. Mu et al. [23] proposed a 

technique used to remove nuisance factors such as noise and uneven lighting in the collected images. Common image 

noises include Gaussian noise and impulsive noise, and filtering techniques such as Gaussian filter, median, and 

average are used to reduce their effects. In addition, human eye state recognition methods, such as the Hough transform, 

are useful for determining the human eye state based on the detection of the presence or absence of a circle, indicating 

the eye is open or closed. 

Recent studies have demonstrated various innovative approaches to student drowsiness detection. Phan et al. [24] 

introduced a dual-method framework combining adaptive thresholding of facial landmarks (EAR and LIP metrics) 

with a customizable deep neural network architecture. Their system incorporates advanced models like SSD-ResNet-

10, benefiting from transfer learning to enhance efficiency. Zhu et al. [25] developed a multi-task TCDCN algorithm 

capable of simultaneous facial attribute analysis, showing robustness against common challenges like occlusions. 

Abbas et al. [26] presented ReSVM, a hybrid architecture combining ResNet-50's feature extraction with SVM 

classification, demonstrating effectiveness across varied imaging conditions. 

Jia et al. [27] enhanced traditional MTCNN through SPP layers and batch normalization, improving facial cue detection 

accuracy. Mohamed et al. [28] provided a comprehensive evaluation of deep learning approaches, including detailed 

performance metrics and dataset characteristics. Dua et al. [29] implemented an ensemble system integrating four 

specialized models (FlowImageNet, AlexNet, VGGFaceNet, ResNet) for multi-modal drowsiness analysis. 

Jamshidi et al. [30] established a hierarchical visual processing pipeline addressing challenges like illumination 

variations. Saurav et al. [31] developed DCNNE, an ensemble classifier combining two pre-trained CNNs for enhanced 

eye-state recognition. Bajaj et al. [32] reviewed implementation trends, particularly in developing nations, including 

hardware configurations using Raspberry Pi platforms. 

Figure 1. Proposed DrowsyDetectNet framework 

Flores-Monroy et al. [33] proposed a real-time technique to identify student fatigue consisting of several stages, 

including face identification using the Viola & Jones formula, face analysis using a custom-designed T-Net (SS-CNN), 
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and successive result analysis. SS-CNN was designed to categorize facial regions into open and closed eyes. The 

selected configuration of SS-CNN had approximately 600K trainable parameters, enabling real-time operation using a 

compact GPU system. Chirra et al. [34] proposed a deep CNN-based technique to identify drowsiness that extracts eye 

areas and detects faces using the Viola-Jones face detection method. After feeding these eye areas into a CNN with 

four convolutional layers for feature extraction, the images were classified as drowsy or not using a Softmax layer. 

Using a test data sample with an accuracy of 96.42%, the proposed approach was shown to be successful in identifying 

student fatigue based on eye states. 

3. Methodology  

3.1. Proposed Drowsydetectnet Framework 

This study aims to develop a DrowsyDetectNet framework to detect whether a student is drowsy or not. Figure 1 

illustrates the proposed system architecture. To determine the location of the student's face in the input image or video, 

a 68-point facial landmark detection algorithm is used. Next, the eye area is extracted from the face. To identify "eyes 

open" or "eyes closed," the extracted eye images are fed into the proposed T-Net model. 

  

Figure 2. Extraction Of Regions of Interest (ROI) 

3.2. Facial Recognition and Eye Area Extraction 

The Region of Interest (ROI) extraction process involves separating and analyzing specific areas in an image that 

contain relevant information about the eyes, as shown in figure 2. To identify a student’s drowsiness, it is not necessary 

to use the entire face, but only the eye area. The 68 (x, y) positions corresponding to the facial structures are estimated 

using the facial landmark detector from the Dlib library. In figure 3, the following are the 68 coordinates in question: 

jaw ranging from 1 to 17, right and left eyebrows ranging from 18 to 22 and 23 to 27, nose ranging from 28 to 36, right 

and left eyes ranging from 37 to 42 and 43 to 48, mouth ranging from 49 to 60, and lips from 61 to 68. 

This process involves detecting and cropping eyes from the image using the Dlib library for face and landmark 

detection. The process described in Algorithm 1, from detecting facial landmarks to identifying the eye area, is mainly 

performed by a 68-point facial landmark detector algorithm. The user provides an image of a human face, which is 

used by a pre-trained detector to identify 68 different landmarks that define key facial features, such as the mouth, 

nose, eyes, and facial contours. The algorithm determines the indices corresponding to the left (index 37 to 42) and 

right (index 43 to 48) eyes, calculating bounding box coordinates to define the eye area. While the identification step 

is, cropping the eye area from the image is done manually using the calculated coordinates. These manually cropped 

eye areas are then fed into a T-Net model, which processes the eye area to detect signs of drowsiness, with a special 

focus on eyelid closure. This approach combines detection for accuracy with manual intervention for proper input data 

preparation for the drowsiness detection model. The image you uploaded seems to be a scatter plot, displaying points 

that form a figure. It is labeled with numbers corresponding to coordinates along the x and y axes, and these points 

appear to be arranged in a way that forms a recognizable shape. 
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Figure 3. The-Face-Shape-With-68-Landmarks 

The image depicts a diagram consisting of black dots distributed within a coordinate plane. The horizontal (x) and 

vertical (y) axes are marked, with numbers surrounding the dots indicating the position of each point within the 

coordinate system. The dots appear to be scattered randomly, although some clusters of points are denser, potentially 

forming patterns that suggest specific relationships or structures. The numbering of the points allows for easier 

identification and may serve purposes for further analysis, such as in statistical or geometric contexts. This image can 

be utilized for various purposes, including data visualization or analyzing point distribution in a two-dimensional space. 

3.3. Proposed T-Net Model Design 

The convolution process starts at the top left corner of the given image, scans horizontally until it covers the entire row, 

then moves down to repeat the process. The output values of this operation will create a feature map, which is defined 

by equation (1): 

X(m, n) = (I × K )[m, n] = I [a, b] × K [i − a, j − b] (1) 

𝐾 is the kernel, 𝐼 is the input image, 𝑋 is the feature map, m is the row index of the convolved matrix, and 𝑛 is the 

column index. The facial landmark detection process begins with a shape predictor identifying 68 distinct facial points. 

Specific point clusters (indices 37-42 for the right eye and 43-48 for the left eye) are isolated to derive ocular region 

coordinates. These coordinates enable precise cropping of both eye regions from the original image frame. The 

extracted eye images serve as input to our optimized CNN architecture specifically designed for drowsiness detection 

through direct eyelid movement analysis. Our proposed CNN framework features a simplified architecture designed 

for efficiency and effectiveness. It consists of four convolutional processing blocks, each followed by a max-pooling 

layer to progressively reduce the spatial dimensions of the data. To prevent overfitting and ensure robust learning, we 

incorporate two dropout regularization layers with a dropout rate of 0.2. The framework culminates in two fully-

connected classification layers that enable accurate decision-making based on the extracted features. This streamlined 

design allows for efficient feature extraction and classification while maintaining regularization to improve model 

generalization. 

The initial convolutional layer applies thirty-two 3×3 filters to the 128×128pixel input, generating thirty-two feature 

maps of equal dimension. Subsequent 2×2 max-pooling reduces these to 64×64 resolution while preserving critical 

spatial features. After dropout regularization, the second convolutional layer expands processing depth with sixty-four 

filters, producing sixty-four 64×64 feature maps. Further max-pooling compresses these to 32×32 resolution before 

final dropout application. 

Algorithm 1. Region of Interest (ROI) Extraction 

Input: 

Image, I containing a human face. 

68-point facial landmark vector L. 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2495-2516 

ISSN 2723-6471 

2501 

 

 

 

Output: 

ROILeftEye, ROIRightEye 

1. Facial Landmark Detection: 

Use a robust facial landmark detector to obtain a 68-point landmark vector L from image I: 

2. Define the facial region in the image. 

For each detected face, use a landmark detector to predict 68 landmark locations within that face region. 

3. Eye Area Extraction: 

Extract the Rleft and Rright eye areas from face and landmark images: 

4. Define key landmark indexes: 

Left eye landmark: lefteyeindices = [37, 38, 39, 40, 41, 42} 

Right eye landmark: righteyeindices = [43, 44, 45, 46, 47, 48] 

5. For the left eye: 

minxleft = min(landmark_x[37:42]) 

maxxleft = max(landmark_x[37:42]) 

minykiri = min(landmark_y[37:42]) 

maxyleft = max(landmark_y[37:42]) 

6. For the right eye: 

minxright = min(landmark_x[43:48]) 

maxxright = max(landmark_x[43:48]) 

minyright = min(landmark_y[43:48]) 

maxyright = max(landmark_y[43:48]) 

7. For the left eye area: 

Rkiri = image[minykiri:maxykiri, minxkiri:maxx_kiri] 

8. For the right eye area: 

9. Rright = image[minyright:maxyright, minxright:maxx_right] 

This layer is fed to the third convolutional layer with one hundred and twenty-eight 3 × 3 filters, resulting in one 

hundred and twenty-eight 32 × 32 feature maps. A third 2 × 2 max-pooling operation reduces the size of the resulting 

feature maps to one hundred and twenty-eight 16 × 16 feature maps. A final convolutional layer of one hundred and 

twenty-eight 1 × 1 filters (with unit stride) produces one hundred and twenty-eight 16 × 16 feature maps, which are 

then reduced to one hundred and twenty-eight 8 × 8 feature maps using a final max-pooling operation with a size of 2 

× 2. The ReLU activation function is applied throughout the convolution block to perform the nonlinear process. When 

the input value is negative, it outputs a value of zero, which is represented by equation (2): 

𝐻(𝑧) = {
0  𝑧 < 0
𝑧  𝑧 ≥ 0

 (2) 

Here 𝑧 is the function input. The last two layers of a T-Net consist of fully-connected layers. Sigmoid and Softmax are 

the two most commonly used activation functions, in the last fully-connected layer. The output of the fully-connected 

layer, denoted as 𝑦, is calculated by equation (3): 

y= f (W × x + b) (3) 
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The weighted total of the inputs is denoted by 𝑊 ×  𝑥, where the weights assigned to each input are multiplied. The 

sigmoid activation function, known as the logistic function, is widely used in convolutional neural networks. When 

solving binary classification problems, where the goal is to reach a binary conclusion, it is commonly used. Here is the 

mathematical representation of the sigmoid function in equation (4): 

𝜎(𝑦) =  
1

1 +  𝑒 − 𝑦 
 (4) 

𝑦 represents the input of the sigmoid function, which can be any real number and the base of the natural logarithm is 

𝑒. As seen in figure 4, the 12th layer of the proposed system demonstrates the above procedure. The feature map of the 

tenth layer is flattened and then passed through two fully connected layers with 128 nodes. Finally, the Sigmoid 

activation function in the output layer controls whether the eyelids are closed or open. 

 

Figure 4. T-Net Model 

3.4. Transfer Learning Model for Drowsiness Detection 

3.4.1.  VGG Network 

The VGG-19 architecture has emerged as a benchmark model in computer vision applications due to its straightforward 

yet powerful design. This 19-layer network comprises five primary convolutional blocks, each containing multiple 

convolutional layers for hierarchical feature extraction, followed by max-pooling operations that progressively reduce 

spatial dimensions while expanding filter depth (see figure 5). This systematic approach enables the model to learn 

increasingly sophisticated visual patterns while maintaining computational efficiency. 

The network's classification capability stems from its three fully-connected layers (two with 4096 units and a final 

layer with 1000 units), originally designed for ImageNet's extensive 1000-category classification task. For our specific 

application, we modified the final layer to accommodate binary classification, demonstrating the architecture's 

adaptability to diverse recognition tasks. This flexibility, combined with its proven performance in feature extraction, 

solidifies VGG-19's position as a versatile foundation for various computer vision implementations beyond its original 

design scope. 

The deployment of VGG-19 in real-world systems requires careful consideration of its computational demands. 

Although the model's depth provides strong feature representation capabilities, its fully-connected layers contribute 

significantly to parameter count. We addressed this through layer pruning and quantization techniques, reducing 

memory footprint while maintaining classification accuracy. These optimizations make the architecture more suitable 

for embedded systems and mobile applications, where our drowsiness detection system might be deployed in vehicular 

environments. The balance between model complexity and practical performance constraints remains a crucial factor 

in adapting such architectures for specialized tasks [35]. 

To further enhance the efficiency of VGG-19 in resource-constrained environments, we also implemented knowledge 

distillation, a technique that transfers the learned knowledge from a large, complex model (the teacher) to a smaller, 

more efficient model (the student). This process helps in maintaining the core functionality of the original model while 

significantly reducing its computational overhead. By distilling the knowledge into a lighter model, we were able to 
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retain the essential features needed for drowsiness detection, ensuring that the system operates smoothly without 

sacrificing performance in real-time applications. 

 

Figure 5. VGG-19 Architecture [35]  

3.4.2.  MobileNetV2 Model 

New CNN layers called inverted residual and linear bottleneck layers are included in MobileNetV2, enabling excellent 

performance in embedded and mobile vision applications. These new layers form the basis of the MobileNetV2 

network, which can be customized to perform semantic segmentation, object classification, and detection. There are 

19 remaining bottleneck layers placed after the first fully convolutional layer, which has 32 filters in the overall design 

of MobileNetV2. The basis of MobileNetV2 is the inverted residual structure, which consists of three layers arranged 

in the following order [36]: first, a 1×1 convolution is applied to expand multiple channels. Next, a depthwise separable 

convolution is performed to process the data more efficiently. Finally, another 1×1 convolution is used to return the 

multiple channels to their initial values. This structure allows for a balance between efficiency and performance, 

making MobileNetV2 suitable for resource-constrained environments like mobile devices. MobileNetV2 also uses a 

technique called linear bottleneck convolutions. This involves using 1×1 convolutions without nonlinearity at the end 

of the bottleneck layer. This reduces the total parameters and computation required while maintaining network 

accuracy. The construction of MobileNet-V2 is depicted in figure 6. 
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Figure 6. MobileNetV2 Architecture [36] 

3.4.3.  ResNet50 Model 

The ResNet-50 architecture is shown in figure 7. It has one max-pool layer, one average pool layer, and forty-eight 

convolutional layers. An Artificial Neural Network (ANN) that builds a network by stacking remaining blocks is called 

a residual neural network. The building blocks of ResNet 50 have a bottleneck-like architecture. The bottleneck residual 

block reduces matrix multiplication and the number of parameters by using 1 × 1 convolutions, which are often referred 

to as bottlenecks. It trains each layer fairly quickly [37]. 

 

Figure 7. ResNet 50 architecture [37]  

Skip connections in residual neural networks, which run parallel to the convolutional layers, help the network 

understand global features. After several levels of weights, a shortcut connection is connected to the output to add the 

input x (figure 8). 

 

Figure 8. Skip Connection [37]  

The network can optimize many layers for faster training through these shortcut connections by eliminating training at 

unnecessary levels. In mathematical terms, the output H(x) is defined as equation (5): 

H(X) = F(X) + X (5) 
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The weight layer is designed to obtain a certain type of residual mapping, denoted by equation (6): 

F(X) = H(X) − X (6) 

and the stacked non-linear weight layer is denoted by F(x). 

3.4.4.  InceptionV3 Model 

The InceptionV3 model represents a significant advancement in deep neural network design for visual recognition 

tasks. Its core innovation lies in the strategic use of multi-scale Inception modules, which enable simultaneous feature 

extraction at varying spatial resolutions. This hierarchical processing capability allows the network to robustly interpret 

images containing objects with diverse scales and orientations, making it particularly effective for complex visual 

understanding tasks. 

A key strength of InceptionV3 stems from its sophisticated feature extraction methodology. Each Inception module 

integrates parallel convolutional pathways with kernels of different dimensions (1×1, 3×3, and 5×5), complemented by 

a pooling branch. This multi-scale approach enables comprehensive pattern recognition while maintaining 

computational efficiency. By processing visual information through these parallel streams, the architecture achieves 

superior feature discrimination while preserving critical spatial relationships within the input data. 

The architecture incorporates advanced regularization techniques, including batch normalization and dropout layers, 

to enhance model generalization. These components work synergistically to prevent overfitting and improve 

performance on unseen data. The combination of these techniques with the network's inherent structural advantages 

has established InceptionV3 as a benchmark model in computer vision, demonstrating exceptional performance in 

large-scale visual recognition challenges like ImageNet. Its adaptable framework continues to serve as a foundation for 

numerous contemporary vision applications [38]. The InceptionV3 architecture depicted in figure 9 is based on a series 

of Inception modules. This allows the network to learn characteristics at different spatial resolutions and scales. 

 

Figure 9. Inception-V3 Architecture [38]  

The InceptionV3 architecture is composed of several key components designed to optimize image classification. It 

begins with the stem block, which uses multiple convolution and pooling layers to shrink the input image to 32×32 

pixels. Following the stem, the architecture includes nine Inception blocks arranged sequentially. Each Inception block 

consists of four parallel convolutional layers with different kernel sizes: 1×1, 3×3, 5×5, and one pooling layer, which 

helps in capturing features at various scales. The InceptionV3 model also incorporates two reduction blocks that reduce 

the spatial resolution of feature maps, enhancing computational efficiency. In addition to these, the architecture contains 

additional classifiers, which are trained to predict image labels from intermediate layer feature maps. To consolidate 

the extracted features, InceptionV3 uses Global Average Pooling (GAP), which combines feature maps into a single 

vector representation. GAP is particularly useful for generating fixed-size outputs that can be fed into fully connected 

layers or classifiers. Finally, the fully-connected layer, which is the last layer of the architecture, categorizes the images 

based on the extracted features. 

3.5. Dataset 

In this study, we use two datasets to evaluate the proposed methodology. The first dataset, Dataset-1, was created by 

the authors Chirra et al. [34]. This dataset consists of 342 images categorized into open and closed eyes. These images 

were collected specifically to detect drowsiness based on eye status. This dataset is used to evaluate the performance 
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of our proposed approach, as illustrated in figure 10. On the other hand, Dataset-2 is obtained from Kaggle and named 

“yawneyedataset_new” [40]. This dataset consists of 1,510 images categorized into open and closed eyes. Dataset-2 is 

structured to handle drowsiness detection based on eye status, as illustrated in figure 11. This dataset provides a diverse 

set of eye images, allowing for thorough evaluation and validation of our proposed methodology. 

The current dataset, consisting of well-lit RGB images, only partially represents the night driving scenario. The main 

feasibility of this model is its potential integration into student monitoring systems for commercial and private vehicle 

students, providing timely warnings to prevent accidents. The dataset is divided into training, validation, and testing 

sets as shown in table 1. 

Table 1. Dataset Splitting 

No Dataset Classification Training 48% Validation 12% Testing 40% Total 

1 Dataset-1 

Closed 84 23 72 179 

Open 76 21 66 163 

Total 160 44 138 342 

2 Dataset-2 

Closed 357 97 301 755 

Open 357 97 301 755 

Total 714 194 602 1,510 

A mixed-methods approach was employed to align technological development with user needs. Qualitative input was 

gathered through interviews with students experiencing fatigue during online learning. These insights informed the 

application’s feature set, including journaling and visual fatigue alerts. Quantitative methods were used to train and 

validate the AI models using two annotated datasets of eye images. Ethical approval for the study was obtained from 

the Ethics Committee of Universitas Putra Indonesia YPTK (Ref: UPIY/ETIK/2024/211). All participants gave 

informed consent; for participants under 18 years old, parental consent was obtained in accordance with ethical research 

standards. 

4. Results and Discussion 

In this study, two datasets were taken to conduct the experiments. One dataset contains only eye images, while the 

other dataset contains face images. From the face images, the face is first identified and then the eye area is detected, 

with both eyes cropped separately using a 68-point facial landmark detection algorithm. There are training and testing 

categories in this dataset. 40% of the images are taken for testing, while the remaining 60% are training samples. The 

dataset is available in two categories: eyes closed and eyes open. In figure 10, sample images are shown. 

 

Figure 10. Dataset-1 and Dataset-2 Sample Images 

4.1. Proposed T-Net Hyperparameter Selection   

CNN settings need to be tuned to achieve optimal performance. Some important parameters include batch size, which 

affects generalization and training speed; convergence behavior influenced by optimizers such as Adam, SGD, 
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Adagrad, etc.; number of epochs, which indicates that the neural network is trained by running through the complete 

dataset multiple times; and learning rate, which determines the optimization step size. The proposed T-Net model needs 

to be tuned, which requires experimentation with these settings. 

4.1.1. Learning Rate Effect   

One of the significant elements that affect the efficiency of a CNN model is the learning rate. While the loss function 

gradually decreases with lower learning rates, higher learning rates accelerate the learning process and increase the 

value. To minimize the cost function in a drowsiness detection classification problem, an ideal learning rate must be 

selected. The training of the proposed model was carried out with varying learning rates of 0.1, 0.01, 0.001, and 0.0001. 

figure 11 shows the accuracy levels for different learning rates. Based on the findings, setting the learning rate at 0.001 

yields results with higher classification accuracy. Lower learning rates in the model prevent overfitting by gradually 

decreasing the error. 

 

Figure 11. Variations in Accuracy Based on Learning Rates 

Statistical analysis revealed a significant correlation between extended learning screen time and visual fatigue 

symptoms (r = 0.67, p < 0.01). The application prototype was evaluated for usability by 20 participants. The System 

Usability Scale (SUS) yielded an average score of 84.5, considered excellent by industry standards. In addition, task 

completion rates averaged 92.3%, with an error rate below 5%, confirming the system’s effectiveness and ease of use 

in a simulated real-world setting. 

4.1.2. Epoch Effect   

It was determined how many epochs yield the best results in classification accuracy. Training was performed on the 

proposed T-Net model for 10, 25, 50, and 100 epochs. Figure 12 illustrates that the categorization accuracy for both 

datasets is high at 100 epochs. The accuracy performance increases with a larger number of epochs. Therefore, 100 is 

chosen as the ideal number of epochs. 

 

Figure 12. Variations In Accuracy Based On Epochs 
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4.1.3. Batch Size Effect   

One of the significant factors that affect the classification accuracy of a model is the batch size. Due to the longer 

processing time and constant weights due to larger batch sizes, the model tends to perform worse overall and consumes 

more memory. Therefore, to improve the quality of the model, an appropriate batch size should be selected. The 

evaluation of the proposed model was performed with batch sizes of 4, 8, 16, and 32. Figure 13 compares the 

performance of the model for two datasets with varying batch sizes. At a learning rate of 0.0001, the model was trained 

for 100 epochs. Based on the experimental results, a batch size of 32 was used to train the model to improve the final 

accuracy. 

 

Figure 13. Variations in Accuracy Based on Batch Size 

4.1.4. Optimizer Effect   

In deep learning, the optimizer’s task is to derive the cost function by updating the bias and weight parameters. By 

changing the bias and weight values of the model, the appropriate optimizer for the problem is selected, leading to 

faster and better results. The proposed model is evaluated using RMSprop, Adam, Adagrad, Adadelta, and Stochastic 

Gradient Descent (SGD) optimizers. Figure 14 shows the performance of the model using different optimizer 

techniques on two datasets. When compared to other optimizer techniques, the accuracy of the T-Net model is improved 

when using the Adam optimizer. 

 

Figure 14. Variations in Accuracy Based on Optimizer 

4.2. Total Performance of the Proposed T-Net Model 

In binary classification, the output layer usually uses the Sigmoid activation operation, while the cost function used is 

binary cross-entropy. Equation (7) gives the formula for the binary cross-entropy cost function: 

L(a, aˆ) = -[a × log(aˆ) + (1 - a) × log(1 - ˆ a)] (7) 

In this study, the evaluation of the proposed T-Net model on Dataset-1 and Dataset-2 is presented. Figure 15(a) and 

figure 15(b) show the loss and accuracy graphs of the proposed model for Dataset-1, while figure 16(a) and figure 

16(b) provide the same visualization specifically for Dataset-2. 
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Figure 15. Dataset-1 Training and Validation Graph 

 

Figure 16. Dataset-2 Training and Validation Graphs 

4.3. Total Performance of the Proposed T-Net Model 

Here is the table summarizing the precision, recall, F1 score, and accuracy for the eye state classification across two 

datasets. Table 2 presents the performance metrics for the binary classification task involving eye state detection, 

categorized into “Closed” and “Open” states, in two different datasets (Dataset-1 and Dataset-2). These measures, 

expressed in percentages, include recall, precision, F1-score, and total accuracy. The classifier achieved high recall 

(1.0), F1-score (0.99), and precision (0.99) for the “Closed” condition, resulting in an accuracy of 99.33%. Similarly, 

the classifier showed perfect precision (1.0), good recall (0.98), and F1-score of 0.99 for the “Open” condition, resulting 

in an accuracy of 99.33%. 

Table 2. Evaluation Table For Test Data 

No Dataset Eye State Precision Recall F1 Score Accuracy % 

1 Dataset-1 
Closed 0.99 1.0 0.99 

99.33 
Open 1.00 0.98 0.99 

2 Dataset-2 
Closed 0.99 0.99 0.99 

99.27 
Open 0.99 0.99 0.99 

For both “Closed” and “Open” states, the classifier maintained high recall (0.99) and precision (0.99), with an F1-score 

of 0.99 for both classes. On Dataset-2, the combined accuracy for both classes was 99.27%. These findings show that 

the proposed T-Net model performs very well on both datasets, achieving high precision, recall, and F1 score, which 

ultimately translates into impressive accuracy rates. The robustness of the classifier across multiple datasets 

demonstrates its effectiveness in accurately detecting eye states, making it a good tool for drowsiness detection. 

Here is the table showing the performance of various models, including the number of epochs, batch size, learning rate, 

optimizer, and the accuracy achieved on both Dataset-1 and Dataset-2. The comparative analysis presented in table 3 

evaluates five CNN models on two distinct datasets for student drowsiness identification. All models were trained 

using consistent hyperparameters (100 epochs, batch size=32, Adam optimizer, learning rate=0.001) to ensure fair 

comparison. Among the pre-trained architectures, ResNet-50 and VGG19 demonstrated strong performance, achieving 
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98.79%/98.780% and 98.89%/98.89% accuracy on Dataset-1/Dataset-2 respectively. MobileNet-V2 showed notable 

dataset dependency with 97.76% (Dataset-1) versus 92.18% (Dataset-2), while Inception-V3 maintained consistent 

performance at 96.78% and 94.22%. 

Table 3. Accuracy (%) Comparison: T-Net vs. Deep Learning Algorithms on Both Datasets 

No Model Epochs Batch Size Learning Rate Optimizer Dataset-1 Accuracy Dataset-2 Accuracy 

1 Inception-V3 100 32 0.001 Adam 96.78 94.22 

2 MobileNet-V2 100 32 0.001 Adam 97.76 92.18 

3 ResNet-50 100 32 0.001 Adam 98.89 98.78 

4 VGG19 100 32 0.001 Adam 98.79 98.89 

5 T-Net 100 32 0.001 Adam 99.33 99.27 

The exceptional performance of T-Net can be attributed to its optimized architecture design, which strategically 

balances model depth with computational efficiency. Unlike conventional deep networks that may suffer from 

information redundancy, T-Net employs carefully designed convolutional blocks with targeted receptive fields 

specifically optimized for eye-state recognition. The architecture incorporates progressive feature refinement through 

its shallow layers while avoiding unnecessary complexity that could lead to overfitting - a critical advantage given the 

relatively limited size of drowsiness detection datasets compared to large-scale image classification benchmarks. This 

design philosophy enables T-Net to maintain high accuracy while being more resource-efficient than deeper 

architectures like VGG19 or ResNet-50. 

The consistent performance across both datasets suggests strong generalization capability, a crucial requirement for 

real-world student monitoring systems that must operate under varying conditions. The marginal 0.09 percentage point 

difference between Dataset-1 (99.33%) and Dataset-2 (99.27%) indicates remarkable stability, unlike other models that 

showed significant performance variations. This reliability, combined with the architecture's computational efficiency, 

makes T-Net particularly suitable for embedded deployment in vehicular systems where both accuracy and resource 

constraints must be carefully balanced. Future work could explore the architecture's adaptability to other fatigue-related 

features beyond eyelid movements, potentially further enhancing its practical utility. 

Figure 17 shows a comparison of the accuracy between five different deep learning models: VGG-19, ResNet-50, 

Inception-V3, MobileNet-V2, and T-Net, on two different datasets. The bar chart displays the accuracy of each model 

on Dataset-1 (marked in orange) and Dataset-2 (marked in light blue). From the results, T-Net shows the highest 

accuracy on both datasets, with an accuracy of 99.33% on Dataset-1 and 99.27% on Dataset-2, indicating its superior 

ability to make more accurate predictions compared to other models. 

 

Figure 17. Accuracy Comparison of Various Deep Learning Models And T-Net Model of Both Datasets 

This comparison also shows that other models, such as VGG-19 and ResNet-50, perform very well on both datasets 

with accuracies above 98%. However, although MobileNet-V2 and Inception-V3 yield good results on Dataset-1, both 

experience a decrease in performance when tested on Dataset-2, with accuracies reaching 92.18% and 94.22%, 
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respectively. This indicates that a model's performance can be influenced by the characteristics of the dataset used, and 

the choice of the right model heavily depends on the type of data used for training and testing. 

The confusion matrix of the proposed T-Net is depicted in figure 18(a) and figure 18(b). The confusion matrix of the 

pre-trained model is shown in figure 19 and figure 20. For both Dataset-1 and Dataset-2, the ROC curves are shown 

for the proposed T-Net in figure 21. Meanwhile, the PR curves for both datasets can be found in figure 22. 

 

Figure 18. Confusion Matrices Of Two Datasets For Proposed Model 

 

 

Figure 19. Confusion Matrices For Dataset-1 

A comprehensive comparison of facial techniques applied in Regions of Interest (ROIs) for sleepiness recognition in 

other relevant publications is shown in table 4. The proposed approach achieves an accuracy of more than 99% in this 

study, while the accuracy of other approaches varies from 87.19% to 98.4%. Some methods [20], [21], [27], and [30] 

focus on both the eyes and the mouth, while one approach [26] focuses on the entire face to identify sleepiness. The 

methods used by [15], [16], [19], [31], and [34] concentrate on the eyes. 
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Figure 20. Confusion Matrices for Dataset-2 

 

Figure 21. Receiver Operating Characteristic (ROC) Curves 
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Figure 22. Precision-Recall Curves (PRC) 

Table 4 presents a comparison of various methods and models used for eye, mouth, and face detection across different 

datasets. The accuracy percentages for each method are listed, showcasing the performance of different approaches in 

this field of research. 

Table 4. Comparing different approaches for detecting drowsiness 

Source Method ROI Dataset Accuracy (%) 

[15] CNN Model Eyes Own dataset 97.98 

[16] f-RCNN Eye 
Blink analysis and angular views (60 degrees right- left) of 

eyes dataset 
97.60 

[19] Custom CNN 4D Eye MRL Eye dataset 97.53 

[20] 

MobileNet-V2, 

LSTM 

Eyes and 

Mouth 
MiraclHB, YawDD, and DEAP 98.40 

[21] 

Inception-V3 

+LSTM 
Eyes & Mouth NTHU-DDD 93.69 

[26] ReSVM Face 
State Farm Distracted Student Detection, Boston University, 

DrivFace, and FT-UMT. 
95.50 

[27] MTCNN 
Mouth and 

Eyes 
WIDER FACE and MTFL datasets 97.50 

[30] HDDD+LSTM Mouth & Eyes NTHU-DDD 87.19 

[31] DCNNE Eye ZJU, CEW, and MRL 97.99 

[34] Haar Cascade Eyes Own dataset 96.42 

proposed 

Model 
T-Net Eyes Dataset-1 [34] and Dataset-2 [40] 99.33, 99.27 

Although models such as Inception V3 and MobileNet V2 are well-established and widely used, the novelty of this 

study lies in the proposed T-Net model, which uses 68-point facial landmarks from Dlib to locate the eye area and 

determine whether the eyes are open or closed. The T-Net model uses fewer layers compared to pre-trained models. 

However, the T-Net model achieves high accuracy and computational efficiency. 

4.4. Discussion 

This study compares the drowsiness detection results of pre-trained models such as VGG-19, ResNet50, MobileNetV2, 

and InceptionV3 with T-Net architecture. With fewer layers, T-Net focuses on extracting key visual information such 

as eyelid closure. This model offers speed, simplicity, and lower risk of overfitting, making it effective with limited 

training data. It ensures excellent accuracy and fast processing of drowsiness-related characteristics recognized from 

facial landmarks. 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2495-2516 

ISSN 2723-6471 

2514 

 

 

 

However, the generalizability of our results is limited due to the small size and lack of diversity in the dataset used. 

The accuracy of this study, while commendable, raises concerns about its robustness in real-world scenarios. Future 

studies need to address these significant limitations by incorporating larger and more diverse datasets that take into 

account variations in lighting conditions, ethnicity, and head position. This will help validate the model’s performance 

across different environments and populations. This discussion will highlight these limitations as well as potential 

biases to provide a clearer understanding of the limitations of this study. 

While the model demonstrates high accuracy, generalizability remains a key limitation. The datasets used lack diversity 

in terms of lighting, ethnicity, and facial variation, which may reduce real-world robustness. Additionally, due to the 

relatively small training size, there is a risk of overfitting. The psychological feedback referenced in this study consists 

of non-clinical responses such as self-alert prompts or visual indicators suggesting rest, which were derived from 

behavioral fatigue cues commonly found in sleepiness monitoring literature. 

The inference time of our T-Net model is compared with several pre-trained models. For Dataset-1, the inference time 

is: CNN shallow (1430.141 ms), VGG19 (1851.106 ms), ResNet50 (2494.112 ms), MobileNetV2 (2897.924 ms), and 

InceptionV3 (3233.497 ms). For Dataset-2, the recorded times are: CNN shallow (164.497 ms), VGG19 (390.445 ms), 

ResNet50 (3794.743 ms), MobileNetV2 (1547.561 ms), and InceptionV3 (7229.007 ms). These results indicate that 

the proposed T-Net model has significantly lower inference time, making it more suitable for real-time student 

drowsiness detection compared to more complex pre-trained models. 

5. Conclusion 

In conclusion, this study demonstrates the effectiveness of a lightweight T-Net CNN model for detecting drowsiness 

in educational settings. The model achieves high accuracy on two benchmark datasets while maintaining computational 

efficiency, making it suitable for real-time deployment on limited hardware. Compared to heavier architectures, T-Net 

balances performance with speed, which is essential for continuous monitoring systems. Future work will focus on 

training with more diverse datasets, incorporating NIR imaging for low-light detection, and expanding the feature set 

to include yawning detection, head pose analysis, and physiological signals. Integrating personalized learning models 

may further improve system adaptability and safety outcomes. 
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