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Abstract 

This study presents a comparative analysis of two unsupervised neural network models—Restricted Boltzmann Machines (RBMs) and Self-

Organizing Maps (SOMs)—applied to breast cancer data clustering. The primary objective is to evaluate and benchmark these models in terms 

of their latent feature extraction, clustering accuracy, and interpretability in a medical diagnostic context. Using a preprocessed breast cancer 

dataset comprising 569 patient records and 30 clinical features, the models were trained and evaluated based on two internal clustering metrics: 

Silhouette Score and Davies-Bouldin Index (DBI). The proposed methodology, implemented in Python, emphasizes reproducibility and 

diagnostic relevance. RBMs achieved a Silhouette Score of 0.88 and a DBI of 0.52, indicating compact and well-separated clusters, while SOMs 

recorded significantly lower performance with a Silhouette Score of 0.34 and a DBI of 1.47. Furthermore, classification performance (based on 

cluster-label mapping) shows RBMs yielding precision between 0.82 and 0.92, and recall between 0.87 and 0.89 for benign and malignant cases. 

SOMs, although less accurate, offer superior visualization of high-dimensional data, which aids in exploratory analysis and interpretability. The 

key contribution of this work lies in the development of a standardized evaluation framework for unsupervised neural clustering in healthcare, 

combining quantitative clustering metrics with qualitative insights into clinical applicability. The findings demonstrate that RBMs are better 

suited for diagnostic tasks requiring high pattern recognition, whereas SOMs retain value for data exploration and decision explanation. This 

research introduces a novel integration of RBM-based clustering into medical analytics, highlighting its potential in supporting decision-making 

processes in oncology. Future work will extend this approach to hybrid models and multi-modal datasets, aiming to balance performance and 

explainability in complex diagnostic environments. 

Keywords: Breast Cancer, Clustering, Restricted Boltzmann Machine, Self-Organizing Map, Unsupervised Learning, Python, Pattern Recognition, Silhouette 

Score, Applied Data Science 

1. Introduction  

Pattern recognition remains a fundamental task in applied data science, particularly in healthcare domains where 

uncovering hidden structures in high-dimensional data can significantly enhance diagnostic processes [1]. With the 

increasing availability of structured medical datasets [2] and advances in computational tools, machine-learning 

techniques have become central to exploring complex patterns [3]. Among these, unsupervised neural models such as 

SOMs and RBMs offer robust frameworks for clustering and feature learning without the need for labeled data. 

SOMs, introduced by Teuvo Kohonen, project high-dimensional data onto lower-dimensional spaces while preserving 

topological properties [4]. Their effectiveness in producing two-dimensional mappings makes them valuable for 

exploratory analysis in biomedical contexts [5]. In contrast, RBMs, developed by Geoffrey Hinton, function as 

generative models capable of learning deep representations and capturing latent dependencies in data [6]. Recent 

advances in RBM architectures have demonstrated their effectiveness in various medical applications [7]. 

This study presents a comparative analysis of SOMs and RBMs applied to breast cancer data. Building on previous 

work in medical pattern recognition [8], we evaluate both models across key metrics including clustering quality 

(Silhouette Score, Davies–Bouldin Index), computational efficiency, and interpretability. A Python-based 

implementation ensures a reproducible framework for evaluation, supported by data preprocessing and dimensionality 

reduction techniques [9]. The contributions of this work include a systematic evaluation of SOM and RBM performance 
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on breast cancer data, a quantitative comparison using standardized clustering metrics, and practical insights for 

deploying these models in healthcare settings. Our results demonstrate that RBMs achieve superior clustering accuracy 

(0.88 vs. 0.34 for SOMs), consistent with findings in other medical applications [10]. However, SOMs maintain distinct 

advantages in visualization, underscoring the importance of model selection based on clinical or analytical priorities. 

This study provides valuable guidance for data scientists and medical researchers seeking to integrate unsupervised 

learning into real-world diagnostic and exploratory workflows [11]. 

2. Literature Review  

2.1. Foundations of Unsupervised Learning in Medical Diagnostics 

Recent advances in unsupervised learning have revolutionized pattern recognition in medical datasets [3], [23]. While 

supervised methods dominate diagnostic applications, unsupervised approaches like SOMs and RBMs offer unique 

advantages for exploratory analysis of unlabeled data [9]. Comparative studies by [13] and [26] demonstrate how 

different unsupervised techniques reveal complementary insights in neuroimaging and Alzheimer’s diagnosis, 

establishing a framework for evaluating model trade-offs. 

2.2. SOMs in Biomedical Applications  

SOMs have been widely adopted for medical data visualization since their introduction by Kohonen. [16] Provides a 

comprehensive review of SOM architectures, highlighting their strength in preserving topological relationships - a 

feature particularly valuable for spatial data analysis like COVID-19 spread patterns [8]. In cancer research, [25] 

utilized SOMs for preliminary feature extraction in breast thermography, though noted limitations in handling high-

dimensional feature interactions. The method’s interpretability comes at the cost of sensitivity to parameter 

initialization, as documented in [6]. 

2.3. RBMs for Medical Pattern Recognition 

RBMs have emerged as powerful tools for learning hierarchical representations in medical data. [5] Established the 

theoretical foundations, while [10] developed practical classification variants. Recent work by [7] introduced advanced 

sampling techniques that improve RBM performance on imbalanced medical datasets. Applications range from 

psychophysiological signal analysis [17] to infrared medical imaging [11], consistently demonstrating superior feature 

learning capabilities compared to traditional methods. However, [14] cautions about computational complexity and 

interpretability challenges in clinical settings. 

2.4. Comparative Studies and Evaluation Metrics 

Notably absent from literature are direct comparisons between SOMs and RBMs on identical medical datasets. While 

[13] evaluated multiple unsupervised techniques for MRI analysis, they excluded RBMs from their comparison. 

Similarly, [26] focused exclusively on deep learning approaches. This gap motivates our systematic evaluation using 

standardized metrics to ensure a comprehensive comparison. The Silhouette Score, widely adopted for assessing cluster 

cohesion, provides insight into how well each data point fits within its assigned cluster relative to others [3]. 

Complementing this, the Davies–Bouldin Index has demonstrated effectiveness in evaluating clustering performance, 

particularly within medical data applications [13]. Additionally, computational efficiency is considered a crucial factor, 

especially when contemplating the integration of these models into real-time clinical settings where prompt decision-

making is essential [25]. 

2.5. Alternative Approaches and Methodological Gaps 

Other techniques like t-SNE and UMAP offer compelling visualization capabilities [13], while autoencoders provide 

flexible feature learning [26]. However, none combines SOMs’ intuitive topology preservation with RBMs’ 

probabilistic modeling - a hybrid approach suggested but not implemented in [7]. Our work addresses this by providing 

the first comprehensive comparison specifically focused on breast cancer data clustering, filling a gap identified in 

recent reviews [3], [23]. 
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3. Methodology 

3.1.Pattern Recognition Framework 

Pattern recognition leverages machine-learning algorithms to autonomously detect structures in complex datasets—be 

it images, signals, or medical attributes. Such systems can recognize and classify new entities, even under noise or 

partial occlusion, making them particularly effective in health data analysis. Our approach compares two prominent 

unsupervised learning models: SOMs and RBMs, focusing on their suitability for clustering and representation tasks 

in medical datasets. 

3.2. Theoretical Background 

3.2.1 SOMs 

SOMs are unsupervised neural networks that project high-dimensional data onto a typically two-dimensional map 

while preserving topological properties [6], [16]. This transformation aids in discovering clusters and visualizing 

structures without labeled data. SOMs function through competitive learning, and the core steps include: 

In the Self-Organizing Map algorithm, the process begins with weight initialization, where each node on the m×n grid 

is assigned a weight vector wi ∈ Rd. For each input vector x, the distance calculation step computes the Euclidean 

distance 𝐷𝑖 = ‖𝑥 − 𝑤𝑖‖  for every node in the grid. The Best Matching Unit (BMU) is then identified as the node with 

the smallest 𝐷𝑖. The weight update rule adjusts the weights of the BMU and its neighbors using the formula: 

wi(t +  1)  =  wi(t)  +  α(t)  ·  hi, bmu(t)  ·  (x −  wi(t) (1) 

α(t) is the learning rate, and hi,bmu(t) is a neighborhood function, often a Gaussian centered on the BMU: 

ℎ𝑖,𝑗(𝑡) = exp (−
‖𝑟𝑖 − 𝑟𝑗‖

2

2𝜎2(𝑡)
) (2) 

As training progresses, neighborhood decay is applied, gradually shrinking σ(t) to localize learning around the BMU. 

This procedure is iterated until convergence. SOM offers several advantages in medical data analysis. It provides 

intuitive visualization of class boundaries in two-dimensional grids [8], preserves relational distances between patient 

profiles, and benefits from a linear computational cost of O(N) for N samples, making it scalable for large healthcare 

datasets [16]. 

3.2.2 RBMs 

RBMs are stochastic, energy-based neural networks composed of a visible layer v and a hidden layer h [14], [5]. The 

energy function governing the joint configuration is: 

E(v, h)  =  −vTWh −  bTv −  cTh (3) 

The model defines the probability of a visible vector through marginalization. Training is performed using Contrastive 

Divergence (CD), which approximates the gradient via:     

∆𝑊𝑖𝑗 = 𝜖(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙) (4) 

The learning procedure of a Restricted Boltzmann Machine consists of two alternating phases. In the positive phase, 

which is data-driven, the probability that a hidden unit ℎ𝑗 is activated given the visible input v is computed using the 

sigmoid function: 

𝑃⟨ℎ𝑗 = 1|𝑣⟩ = 𝜎(∑ 𝑊𝑖𝑗𝑣𝑖 + 𝑏𝑗

𝑖

) (5) 

In the negative phase, which involves reconstruction, the model attempts to regenerate the input from the hidden 

representation. The probability that a visible unit 𝑣𝑖 is activated given the hidden state h is similarly given by: 
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𝑃⟨𝑣𝑖 = 1|ℎ⟩ = 𝜎(∑ 𝑊𝑖𝑗ℎ𝑗 + 𝑎𝑖

𝑗

) (6) 

The weight and bias updates are derived from the difference between expectations under the data distribution and the 

model’s reconstruction. Specifically, the weight update rule is: 

∆𝑊𝑖𝑗 = 𝜖(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛) (7) 

While the bias terms for visible and hidden units are updated as 

∆a𝑖 = 𝜖(𝑣𝑖 − 𝑃⟨𝑣𝑖 = 1|ℎ⟩) (8) 

and              

∆b𝑗 = 𝜖(𝑃⟨ℎ𝑗 = 1|𝑣⟩ − ℎ𝑗) (9) 

ϵ is the learning rate. 

RBMs have demonstrated significant advantages in medical applications, notably in their robustness to missing or 

noisy health records [7]. They are commonly used for pretraining layers in deep neural networks, improving 

convergence and generalization [10]. Moreover, RBMs are highly effective in extracting meaningful features from 

clinical and genomic datasets, supporting advanced diagnostic and classification tasks in healthcare [25]. 

3.3.Implementation Framework 

Both Self-Organizing Map and Restricted Boltzmann Machine models were implemented in Python following a 

standardized pipeline. In the data preprocessing stage, all features were normalized using min-max scaling to ensure 

uniformity in input values. The dataset was then divided into training and testing subsets with an 80%-20% split, 

stratified by diagnostic class to preserve class distribution. 

For the model configuration, the SOM was set up using a 15 × 15 grid with hexagonal topology and trained over 1000 

epochs to ensure stable map formation. The RBM model was configured with 128 hidden units, a learning rate of 0.01, 

and trained for 500 epochs to achieve sufficient convergence of weights and feature representations. 

To evaluate model performance, three key metrics were employed. The Silhouette Score was used to assess the 

compactness and separation of clusters, providing insight into how well-defined the cluster boundaries were. The 

Davies–Bouldin Index was calculated to evaluate intra-cluster similarity, where lower values indicate better clustering. 

Finally, training time was recorded for both models to benchmark computational efficiency and assess their suitability 

for real-time or clinical deployment. 

3.4.Comparative Analysis Protocol 

Our comparison emphasizes both practical and clinical aspects of SOM and RBM performance. In terms of 

interpretability, Self-Organizing Maps offer component planes that facilitate intuitive visual analysis, allowing 

clinicians to explore feature contributions across the 2D grid, whereas RBMs provide feature importance scores that 

highlight which latent factors contribute most significantly to data reconstruction. Scalability was examined by 

benchmarking model performance across increasing sample sizes to determine their adaptability to growing healthcare 

datasets. Robustness was evaluated by analyzing model sensitivity to key hyperparameter variations, including learning 

rate, grid size for SOM, and the number of hidden units for RBM. This comprehensive approach not only enables 

rigorous technical benchmarking but also provides meaningful insights into each model’s practicality and effectiveness 

in real-world medical pattern recognition tasks. 
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4. Results and Discussion 

4.1. Presentation of Our Work 

In this paper, we apply pattern recognition techniques using SOM and RBM to a breast cancer dataset. Breast cancer, 

the most common cancer among women, arises from abnormal cell growth in breast tissue, which can form tumors 

detectable by imaging or physical exams. Not all tumors are malignant. We compare SOM and RBM by analyzing 

their performance and error rates in clustering tasks. The dataset, sourced from Kaggle—a leading platform for data 

science and machine learning—provides a valuable benchmark for evaluating these models. 

4.2. Presentation of Dataset 

Before comparing the performance of RBM and SOM, we first train both models using a dataset of 569 entries and 31 

variables. This process begins with preprocessing: removing irrelevant features (such as the ID), handling missing 

values or outliers, and selecting 30 relevant variables. The 'diagnosis' variable, where 'M' indicates Malignant and 'B' 

Benign, is used as the target. We then normalize the data to ensure uniform feature scaling. Once preprocessed, we 

initialize and train the RBM and SOM models in Python by updating weights iteratively based on the input data. 

4.3. SOM using Python 

MiniSom is a Python library designed for constructing, training, and visualizing Self-Organizing Maps. It leverages 

the efficiency of NumPy for numerical computations and uses Matplotlib for intuitive visualization, making it highly 

compatible with Python’s extensive ecosystem for machine learning applications. To build a SOM using MiniSom, we 

instantiate a MiniSom object by defining the grid dimensions, the neighborhood radius (sigma), and the learning rate. 

The SOM's weight vectors are initialized randomly based on the dataset’s feature distribution. Training then proceeds 

by iteratively adjusting these weights to preserve topological relationships within the input data. 

Visualization is a crucial component of SOM analysis, and MiniSom provides the tools to graphically interpret the 

results. Although unsupervised models like SOMs do not utilize target labels during training, these labels can be 

overlaid after training to facilitate interpretation. As illustrated in figure 1, the output includes target names 

corresponding to classes identified in the breast cancer dataset. These labels help determine whether the SOM has 

successfully clustered similar samples together. Nodes positioned close to each other typically represent similar patient 

profiles, while more distant nodes suggest distinct diagnostic categories. This interpretability makes SOMs particularly 

useful for exploratory analysis in medical data, where uncovering natural groupings is often a key objective. 

 

Figure 1. Visualizing the SOM 

Analyzing the SOM involves examining how clusters form across the map and how they relate to the original class 

labels. The first step is identifying distinct clusters—these appear as well-separated groups of nodes that capture 
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patterns of similarity in the input data. In our case, two prominent clusters emerge, corresponding to the diagnostic 

categories Malignant (M) and Benign (B). Once these clusters are identified, their internal consistency is assessed by 

reviewing the distribution of labels within each region. Ideally, a pure cluster will contain labels from only one class, 

suggesting that the SOM has effectively captured meaningful structure in the data. However, certain areas on the map 

show zones of convergence where data points from different classes—M and B—are mapped close to each other. These 

overlapping zones highlight regions of potential ambiguity, where patterns between classes are not distinctly separable. 

Such overlaps may reflect genuine clinical similarities or limitations in the input features. The evaluation of these 

results provides valuable insight into both the clustering performance of the SOM and the underlying complexity of 

the medical dataset. As shown in figure 2, the accuracy of 0.3421 or 34.21% obtained using the SOM method for 

classification on the breast cancer dataset suggests that the model is not performing well on this task. 

 

Figure 2. Evaluation Results of SOM 

4.4. RBM using Python  

RBMs for clustering and pattern recognition are discussed in this section, along with the fundamentals of feature 

extraction. They represent an easy method for extracting features from binary data vectors. Studying the weight matrix 

of an RBM can provide additional insight into the outcomes, as each column corresponds to the weights of particular 

input features [22]. RBMs are grounded in profound theoretical concepts; however, implementing and adjusting them 

does not require an extensive theoretical understanding. In this approach, the primary toolkit at our disposal is TORCH. 

The learning process of Restricted Boltzmann Machines revolves around computing activation probabilities in the 

hidden layer based on the input provided by the visible layer, primarily using a technique known as Gibbs Sampling. 

The input to the model consists of binary vectors composed of Bernoulli variables, each of which can take a value of 

either 0 or 1. The likelihood of a variable assuming the value 1 is determined by a stochastic parameter p, reflecting 

the probabilistic nature of the model. Structurally, the RBM architecture comprises two main layers: the visible layer 

and the hidden layer. Each of these layers contains a group of units commonly referred to as neurons. The connectivity 

between these two layers is fully bipartite, meaning every visible unit is connected to every hidden unit through 

weighted links, as illustrated in figure 3. These weights quantify the strength of influence one unit has on another; 

higher weights indicate stronger connections and more significant influence of the corresponding visible unit on the 

hidden unit’s activation. This architectural design enables RBMs to efficiently model complex distributions over binary 

data. 

 

Figure 3. Architecture of the RBM 

The hidden units in a Restricted Boltzmann Machine play a crucial role in uncovering latent patterns within the data. 

In the corresponding visualization (figure 4), the x-axis represents individual samples, while the y-axis denotes 

activation values of the hidden units. Each line in the graph corresponds to a specific hidden unit, as indicated by the 

legend. In this configuration, 30 hidden units were employed, a number chosen to roughly match the number of input 

features, which is a common practice to ensure sufficient representational capacity. These hidden units respond to the 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2351-2360 

ISSN 2723-6471 

2357 

 

 

 

input data by activating in patterns that reflect the underlying structure, enabling the RBM to learn compact and 

meaningful representations that are valuable for subsequent tasks such as clustering or classification. 

 

Figure 4. Hidden units 

The cluster plot shown in figure 5 visualizes the classification results produced by the neural network based on features 

extracted using the RBM. Each point on the graph represents an individual sample from the breast cancer dataset. The 

x-axis denotes the sample index, incrementing sequentially, while the y-axis corresponds to the predicted label assigned 

by the classifier. The true labels are reflected through the color coding: yellow indicates malignant cases, and blue 

represents benign cases. A legend is included to clarify this color-to-class mapping, aiding interpretation. From the 

scatter plot, we observe that correctly classified instances tend to align along the diagonal, whereas misclassified ones 

deviate from this line, making them immediately identifiable. The overall distribution of the points reveals the 

classifier's effectiveness—well-formed, separated clusters point to successful discrimination between classes, whereas 

scattered or overlapping points suggest confusion between malignant and benign cases. 

 

Figure 5. Plot the Clusters 

In addition to visual inspection, a quantitative evaluation was carried out. Table 1 presents the computed accuracy and 

F1-scores of the RBM-based classifier. The model achieved an overall accuracy of 0.88, correctly classifying 88% of 

the test instances. The macro-average F1-score was 0.87, while the weighted-average F1-score reached 0.88, 

accounting for the class imbalance inherent in the dataset. These metrics reflect the classifier’s performance 

comprehensively by incorporating both precision (how many of the predicted positives are truly positive) and recall 

(how many of the actual positives were identified correctly), with the F1-score offering a harmonic balance of the two. 

Together, these results highlight the model’s ability to distinguish effectively between malignant and benign cases 

using RBM-generated features. 
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Table 1. The accuracy 

Class Precision Recall F1-Score Support 

0 (Benign) 0.82 0.89 0.86 47 

1 (Malignant) 0.92 0.87 0.89 67 

Accuracy 
  

0.88 114 

Macro Avg 0.87 0.88 0.87 114 

Weighted Avg 0.88 0.88 0.88 114 

4.5. Discussion 

The experimental results show that RBM significantly outperforms SOM in clustering and classifying breast cancer 

data, achieving an accuracy of 0.88 compared to 0.34 for SOM. This demonstrates RBM's superior ability to capture 

meaningful features. For class 0, RBM achieves a precision of 0.82, recall of 0.89, and F1-score of 0.86, indicating 

strong reliability in identifying negative cases. For class 1, it performs even better, with a precision of 0.92, recall of 

0.87, and F1-score of 0.89, confirming its robustness in detecting positive cases. In contrast, SOM shows limited 

classification performance, likely due to its focus on preserving data topology rather than modeling feature 

dependencies—an essential aspect of complex biomedical data. These results highlight RBM's suitability for 

unsupervised pattern recognition in healthcare, where both performance and interpretability are critical, and support its 

broader use in medical diagnostics and decision-support systems. 

5. Conclusion 

This study examined the use of neural network-based methods—RBMs and SOMs—for pattern recognition in 

healthcare, using a breast cancer dataset. Implemented in Python, both models were evaluated for classification 

performance and practical utility. RBMs outperformed SOMs, effectively modeling complex, nonlinear relationships 

and achieving higher accuracy and classification metrics. While SOMs offered useful low-dimensional visualizations, 

they fell short in predictive performance. These results suggest RBMs are better suited for classification tasks requiring 

strong feature learning, whereas SOMs are more appropriate for exploratory analysis and visualization. The choice 

between them should depend on the project’s goals, balancing performance, interpretability, and computational cost. 

Future work could expand this comparison to other models and datasets, and explore enhancements through feature 

selection or ensemble approaches. As data-driven techniques evolve, models like RBMs and SOMs will remain 

valuable tools in applied data science. 
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