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Abstract 

This study introduces a novel multimodal wearable sensor system for real-time monitoring and analysis of respiratory and cardiac activity. The 

primary objective is to facilitate the early detection of cardiopulmonary abnormalities by integrating electrical (ECG) and acoustic data. A total 

of 30 participants, aged 25 to 50 years, were involved in controlled breathing experiments, which included deep (1000 ml, 15 breaths/min), 

moderate (750 ml, 20 breaths/min), and shallow (500 ml, 30 breaths/min) breathing, as well as coughing simulations. Signal processing using a 

7th-order polynomial approximation yielded the lowest modeling error at 6.8%, ensuring precise waveform reconstruction. The system 

demonstrated a clear differentiation of respiratory patterns via Area Under the Curve (AUC) metrics, with average AUC values increasing from 

1200 µV·s during shallow breathing to 3200 µV·s during deep breathing. Further analysis of the first derivative of AUC values revealed a strong 

correlation (r = 0.89) between respiratory volume and ECG amplitude fluctuations, highlighting robust cardiorespiratory coupling. Notably, the 

system achieved a 92% accuracy in detecting abnormal breathing events, such as shallow breathing and coughing fits. By combining ECG-

derived heart rate variability with respiratory data, the system offers a comprehensive assessment of cardiopulmonary interaction. The key 

contribution of this work lies in its real-time, continuous monitoring capability using a compact wearable form factor, which distinguishes it from 

existing single-modality systems. This approach represents a significant advancement in non-invasive health monitoring, with strong potential 

for application in clinical diagnostics and home-based tracking of chronic conditions, such as asthma, COPD, and cardiac dysregulation. 

Keywords: Biomedical Signal Processing, Wearable Sensor Data Analytics, Multimodal Data Fusion, Respiratory Pattern Classification, ECG Signal Analysis, 

Time-Series Feature Extraction, Digital Health Monitoring, Real-Time Health Data Analysis, Cardiopulmonary Interaction Modeling, Machine Learning In 

Healthcare 

1. Introduction  

Research [1], [2] shows that recent advances in environmental monitoring sensors and physiological parameters, as 

well as signal processing and machine learning, open up new prospects for improving the quality of life of people with 

chronic diseases. These technologies not only improve health monitoring but also provide valuable information for the 

scientific community, contributing to the development of advanced diagnostic and monitoring methods. The study [1], 

[2] also shows that for effective analysis, treatment, and reduction of negative effects on health, it is necessary to use 

synchronized devices such as smartphones, tablets, and laptops, which allow combining data and devices into closed 

control systems, including the concept of "man in a cycle". The advantage of intelligent wearable devices is the ability 

to remotely monitor and diagnose without being tied to stationary laboratory equipment that requires an electrical 

connection. Modern health monitoring systems process multidimensional biomedical data in real-time with high 

resolution, and personalized monitoring models allow for taking into account individual user characteristics, which 

increases diagnostic accuracy. The work [3], [4] shows that before the COVID-19 pandemic, chronic respiratory 

diseases were the third leading cause of death in the United States. One of the most common conditions is asthma, 

which affects 18.7 million adults (8%) and 6.8 million children (9.3%). These indicators underscore the need to develop 

effective systems for monitoring and managing respiratory diseases, particularly in settings with an increased risk of 

infectious complications. Research [5] shows that traditional clinic visits remain a key method for assessing the 

 
*Corresponding author: Meruyert Sakypbekova (sakypbekova.meruyert@gmail.com)   

DOI: https://doi.org/10.47738/jads.v6i4.857 

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/). 

© Authors retain all copyrights 

https://orcid.org/0000-0002-4322-8983
https://orcid.org/0000-0002-5648-4476
https://orcid.org/0000-0003-3933-5476
https://orcid.org/0000-0002-6652-1357
https://orcid.org/0000-0003-1768-064X
https://orcid.org/0009-0000-6692-858X


Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2332-2350 

ISSN 2723-6471 

2333 

 

 

 

condition of patients with asthma, as well as identifying possible environmental triggers related to the disease. 

However, the effectiveness of treatment increases significantly with the use of complex therapeutic approaches, 

including individualized self-management and joint decision-making by doctors and patients. This approach helps to 

increase adherence to therapy and improve disease control. Personalized medicine requires effective methods to 

identify asthma triggers and factors that worsen the disease. Remote monitoring systems enable the development of 

individualized treatment plans, enhancing patient adherence to therapy and ultimately improving clinical outcomes [6]. 

This study has developed a wearable multimodal wireless sensor device designed for continuous real-time breath 

analysis. A sensor placed in the chest area records respiratory episodes (for example, cough) and physiological 

parameters (heart rate and respiration). Additionally, machine learning algorithms are employed to detect respiratory 

disorders and categorize the severity of respiratory symptoms. The results of this study complement the existing work 

in the field of remote respiratory monitoring, previously presented by various research groups. In [7], [8], it is 

demonstrated that inertial measuring devices mounted on the chest and abdomen make it possible to analyze respiratory 

cycles and patterns. This approach ensures continuous monitoring of respiratory activity and can be useful for 

diagnosing respiratory disorders. Studies have shown that low-power nanosensors, such as humidity sensors, can 

effectively monitor respiratory processes [9]. Soft electronics applied to the skin enable the recognition of human 

movements related to breathing [10]. Accurate measurement of respiratory volume plays a crucial role in diagnosing 

respiratory diseases, and bioimpedance measurement is widely used to assess lung volume [11]. In [12], a combined 

method was proposed, incorporating the analysis of breathing sounds and an Electromyogram (EMG) recorded from 

the diaphragm muscles, which enables the estimation of respiratory volume. However, this method is effective only 

for measurements near the respiratory muscles. One of the most common methods of early detection of respiratory 

disorders is the analysis of breathing sounds, which are closely related to the cycles of heartbeat and respiration [13], 

[14]. Studies [15], [16], [17], [18], [19], [20] have shown that the respiratory signal can be extracted from an ECG 

using various methods. One approach involves analyzing ECG variations to quantify respiratory movements. Another 

common method is based on measuring the heart rate through the analysis of RR intervals, which are affected by 

respiratory sinus arrhythmia (RSA). This method is most effective for young and healthy people, in whom RSA is more 

pronounced. In addition, the heart rate increases during inspiration and decreases during exhalation [21]. This study 

proposes a novel approach to remotely monitoring lung conditions using a wearable sensor device that integrates ECG 

measurements and breathing sounds. This method enables the detection of changes in lung function by analyzing both 

signals. The combination of breathing sounds and their physiological effects on the cardiovascular system can 

significantly improve the accuracy of modeling respiratory episodes such as shortness of breath and cough. Modern 

advances in materials, structures, and integration technologies offer improved sensor-wearing comfort. However, to 

develop truly effective and clinically relevant wearable devices, several technical problems must be addressed, 

including long-term respiratory monitoring, energy consumption optimization, data storage, wireless information 

transmission, and automated diagnostics [1]. 

2. Methods 

The developed lung health monitoring system is designed for continuous monitoring of respiratory function based on 

the analysis of acoustic and electrophysiological signals. As part of the study, experimental measurements were 

conducted to evaluate the accuracy and effectiveness of the proposed system in comparison with traditional methods 

for diagnosing respiratory diseases. 

As part of the study, a lung health monitoring system was developed, including a piezoelectric sensor, a MEMS 

microphone, and a differential ECG sensor for recording acoustic and electrophysiological respiratory signals. The data 

was processed using an STM32 microcontroller and transmitted via Bluetooth Low Energy (BLE) to a personal 

computer for analysis in MATLAB. Experiments were conducted using different breathing modes, including deep, 

moderate, shallow, and asthmatic cough. The recorded signals were filtered and analyzed to identify respiratory 

patterns, assess respiratory rate, and amplitude characteristics. The results were compared with standard diagnostic 

methods such as spirometry. 

The scientific novelty of this study is the creation of a lung health monitoring system that integrates a piezoelectric 

sensor with an integrated amplifier and a multichannel differential ECG sensor for accurate and comprehensive 

collection of physiological data. The transmitted signals are processed and analyzed using the STM32 microcontroller, 
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which provides detailed diagnostics and real-time data processing. The sound recording module is equipped with a 

microelectromechanical system for capturing acoustic characteristics of breathing and other sound phenomena, which 

significantly expands the diagnostic capabilities of the system. An integrated chip featuring an amplifier and an analog-

to-digital converter is utilized for signal processing, enabling the conversion and encoding of analog signals into digital 

form with minimal loss. Bluetooth Low Energy technology is used for wireless data transmission, which provides low 

power consumption and reliable data transmission to a personal computer for further analysis and interpretation. This 

technology enables the system to automatically upload patient status data to medical information systems, enhancing 

the interaction between medical institutions and healthcare providers. Two textile electrodes are used for ECG 

recording, which have been adapted and integrated into a system designed to improve diagnostic efficiency and enhance 

interaction between medical institutions and patients. The result of signal processing in an external computer system is 

the classification of signs for making clinical diagnostic decisions, such as respiratory volume during normal breathing 

and abnormal cough. 

The system utilizes BLE for wireless communication between the wearable device and the host computer. The average 

data transmission latency was measured at 25–40 ms, which is sufficient for quasi-real-time monitoring of respiratory 

parameters. The effective data rate ranged from 200 to 400 kbps, depending on the BLE stack and buffer configuration. 

For data integrity and security, AES-128 encryption was enabled during pairing, and the Generic Attribute Profile 

(GATT) protocol was used with custom UUIDs for ECG and acoustic signal characteristics. All BLE transmissions 

were authenticated using secure pairing with passkey exchange. In low-activity states, the system enters a power-saving 

mode, reducing current consumption to <1.5 mA, thus extending battery life to over 12 hours. 

The proposed system for monitoring lung health works as follows. The lung health monitoring system integrates a 

piezoelectric sensor with an integrated amplifier and a multi-channel differential ECG sensor for the accurate and 

comprehensive collection of physiological data. The transmitted signals are processed and analyzed using the STM32 

3 microcontroller, which provides detailed diagnostics and real-time data processing. The sound recording module 4 is 

equipped with a microelectromechanical system 5 for capturing the acoustic characteristics of breathing and other 

sound phenomena, which significantly expands the system's diagnostic capabilities. For signal processing, an integrated 

chip 6 with an amplifier and an analog-to-digital converter 7 is utilized, enabling the conversion and encoding of analog 

signals into digital form with minimal loss. Bluetooth Low Energy 8 technology is used for wireless data transmission, 

which provides low power consumption and reliable data transmission to a personal computer 9 for further analysis 

and interpretation. This technology enables the system to automatically upload patient status data to medical 

information systems, improving the interaction between medical institutions and doctors. For ECG registration, two 

textile electrodes 11 are used, which have been adapted and integrated into a system capable of improving diagnostic 

efficiency and interaction between medical institutions and patients 

2.1. System Design Concept  

This subsection describes the conceptual structure of the lung health monitoring system, outlining key functional 

modules. The signal acquisition stage involves capturing both respiratory sounds and biopotential signals, such as ECG, 

using integrated wearable sensors. These raw signals are then passed through the preprocessing stage, which includes 

amplification to enhance signal strength, filtering to remove noise and irrelevant frequencies, and digitization to convert 

the analog signals into digital form suitable for further processing. Once preprocessed, the data moves into the 

processing and transmission module, where a microcontroller performs initial signal handling and transmits the data 

wirelessly via BLE to an external device for further evaluation. Finally, in the data analysis and classification stage, 

advanced algorithms interpret the incoming data streams, extract relevant features, and classify respiratory patterns and 

cardiac responses in real time, enabling accurate monitoring and early detection of abnormalities. 

2.2. Hardware Implementation 

This subsection describes the concrete implementation of the prototype, detailing the hardware and software 

components used. Acoustic signals were acquired using a MEMS microphone (Knowles SPH0645), selected for its 

compact size and high sensitivity. To capture cardiac activity, a differential ECG sensor with textile electrodes was 

integrated into the wearable system, ensuring user comfort and signal reliability. The core processing unit of the 

prototype was an STM32F103 microcontroller, which managed real-time signal processing and facilitated wireless 

data transmission via BLE. The collected signal data was transmitted to a PC, where it underwent further post-

processing and analysis using MATLAB and Python libraries, allowing for detailed evaluation and visualization of 

respiratory and cardiac patterns. 
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2.3. Mathematical Formulation of 7th-Order Polynomial Approximation 

To smooth the ECG and acoustic signals and extract physiologically relevant patterns, we applied a 7th-order 

polynomial approximation. The signal y(t) over a sliding window was fitted using the polynomial model: 

𝑦(𝑡) ≈ 𝑝7(𝑇) ≈ 𝑎0 + 𝑎1 ∗ 𝑡 + 𝑎2 ∗ 𝑡+. . . +𝑎7 ∗ 𝑡
7 (1) 

𝑡 is the time index and a₀, ..., a₇ are the polynomial coefficients determined by minimizing the sum of squared residuals: 

𝑚𝑖𝑛∑(𝑦𝑖 − 𝑃7(𝑡𝑖))
2 (2) 

The optimization was performed using least squares regression. The residual error for each segment was calculated as: 

𝜀𝑖 = 𝑦𝑖 − 𝑃7(𝑡𝑖) (3) 

and the total approximation error was assessed via Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 =𝑠𝑞𝑟𝑡( 1/𝑁 ∗∑𝜀𝑖
2

) (4) 

3. Experimental Setup 

The system integrates a piezoelectric sensor with a built-in amplifier and a multichannel differential ECG sensor to 

collect physiological data. Signals are processed through the STM32 microcontroller. The sound module features a 

MEMS microphone that captures the acoustic characteristics of breathing. The integrated chip features an amplifier 

and ADC to digitize the signals. BLE ensures wireless, low-energy data transmission. Two textile electrodes are used 

for ECG recording. The system automatically uploads data to medical platforms for further diagnostics. The wearable 

wireless system uses acoustics and biopotentials to simultaneously monitor heart valve murmurs, lung movements, and 

ECG [22]. Figure 1 illustrates the developed prototype of a lung health monitoring system, which utilizes a piezoelectric 

sensor, a differential ECG sensor, and an STM32 microcontroller to collect and process physiological data in real-time. 

 

Figure 1. Diagram of a System for Monitoring Lung Health 

The sound recording module is equipped with a MEMS microphone, which records the acoustic characteristics of 

breathing. The processed data is transmitted via BLE to a personal computer, where it is analyzed using MATLAB. 

The system enables monitoring of respiratory function, detecting anomalies (such as abnormal coughs), and integrates 

with medical information systems for remote patient monitoring. Figure 2 illustrates a block diagram of the structure 

of a lung monitoring system utilizing multimodal sensors.  
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Figure 2. Lung Health Monitoring System Based on Multimodal Sensors 

At the initial stage, data is collected from a piezoelectric sensor, a MEMS microphone, and an ECG sensor. After 

preprocessing (amplification, filtering, and digitization), the signals are sent to the STM32 microcontroller for real-

time analysis. The information is then transmitted via Bluetooth Low Energy to a personal computer, where MATLAB 

is used to perform an analysis, including calculating the AUC and classifying states. The results obtained can be 

integrated into medical information systems for remote monitoring of patients. Figure 3 illustrates a block diagram of 

the device's architecture, clearly distinguishing between the functions of the two microcontrollers.  

 

Figure 3.  Block Diagram of the Device Architecture with a Clear Distinction Between the Functions of the Two 

Microcontrollers 

The STM32 microcontroller is responsible for processing signals from piezoelectric and ECG sensors, including pre-

filtering and digital processing. At the same time, the ESP 32 microcontroller controls the acoustic recording module 

and Bluetooth Low Energy data transmission. Both branches are integrated into the general medical software for further 

analysis of the patient's physiological parameters. This architecture increases reliability and distributes the computing 

load between subsystems. 

4. Results  

The wearable system simultaneously tracks heart valve sounds, lung motion, and ECG signals. The acoustic and ECG 

data are processed in real time and classified to detect specific respiratory states. A 7th-order polynomial approximation 

was found optimal, balancing accuracy and noise resistance. It enables the estimation of respiratory volume and the 
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detection of anomalies like asthma-related cough. Figure 4 shows a multimodal wearable sensor system designed to 

analyze respiratory and cardiac activity. 

 
Figure 4. Multimodal Wearable Sensor System for Analyzing Respiratory and Cardiac Activity 

The device combines two microcontrollers — ESP32 LilyGo T-Display S3 and STM32 Nucleo-F103RB, each of which 

controls separate functional modules. The system features EMG (electromyography) sensors with surface electrodes, 

a microphone module for capturing respiratory sounds, and two OLED displays for displaying data. The design also 

provides independent power supplies for the EMG modules, ensuring signal stability. This solution enables real-time 

monitoring of biophysiological parameters, making the system promising for use in medicine, sports diagnostics, and 

early warning systems for respiratory or cardiac arrhythmias. 

A polynomial approximation was used to smooth and analyze the signals. The optimal order of the polynomial was 

chosen experimentally: approximations of the 3rd and 5th orders smoothed out essential features, while the 8th and 

higher orders led to overfitting with noise. The best results in terms of accuracy and stability were achieved using a 

7th-order polynomial approximation, which enabled minimizing the approximation error and preserving 

physiologically significant signal fluctuations. 

The 7th-order polynomial approximation was chosen as the optimal compromise between accuracy and noise tolerance. 

Lower-order polynomials (3rd and 5th) could not accurately describe the signal fluctuations, smoothing out essential 

features of respiratory cycles. Higher-order polynomials (8th and higher) were retrained to adjust to random noise. It 

has been experimentally confirmed that the 7th order gives the smallest approximation error, which is especially 

important for calculating the AUC and detecting anomalies in respiratory signals. 

A polynomial approximation was used for signal processing. When testing different orders of polynomials, it was found 

that the 3rd and 5th order polynomials could not accurately simulate the key fluctuations of the signal, smoothing out 

essential details. At the same time, the 8th and higher polynomials began to retrain, adapting to noise, which worsened 

the accuracy of the analysis. The 7th order proved to be optimal, providing a balance between accuracy and noise 

resistance. 

The experiment involved N subjects aged from X to Y years. All participants were free from acute respiratory diseases 

at the time of the study. The measurements were carried out under controlled laboratory conditions using a wearable 

sensor system. Table 1 illustrates the various types of breathing used to assess respiratory function. Deep breathing 

(1000 ml) is used to analyze maximum ventilation, while moderate breathing (750 ml) serves as a reference value 

reflecting a regular respiratory pattern.  

Table 1. The Specifications of the Wireless Wearable Health Sensor 

Experiment Air volume Respiratory rate The purpose of the study 

Experiment I – Deep 

breathing 
1000 ml 

slow rhythm (inhale for 2 seconds, exhale 

for 2 seconds). 

Assessment of lung function 

during deep breathing 
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Experiment II – 

Moderate breathing 

750 ml (average 

volume of air) 

Normal frequency (inhale 1.5 seconds, 

exhale 1.5 seconds, 20 breaths per minute) 

Study of the normal respiratory 

pattern 

Experiment III – 

Shallow breathing 
500 ml 

Accelerated frequency (inhale 1 sec, 

exhale 1 sec, 30 breaths per minute) 

Identifying patterns of shallow 

breathing 

Experiment IV – 

Cough 

variable air 

volume 
irregular frequency 

Abnormal respiratory signals are 

detected to diagnose asthma. 

Shallow breathing (500 ml) helps to identify signs of hyperventilation and respiratory disorders. Cough is examined to 

diagnose abnormal respiratory signals associated with lung diseases such as asthma. These experiments enable the 

development of methods for automated respiratory monitoring and predictive models for disease diagnosis. 

Currently, a wearable sensor system has been developed for the diagnosis and monitoring of bronchial asthma, 

integrating a piezoelectric sensor, a differential ECG sensor, and a MEMS microphone. This system provides 

continuous monitoring of respiratory and cardiac activity in real-time, allowing you to identify symptoms and control 

the disease quickly. 

Before polynomial approximation, ECG signals underwent a preprocessing stage to improve signal quality and 

physiological interpretability. First, baseline wander was corrected using a high-pass filter with a cutoff frequency of 

0.5 Hz. Power line interference and high-frequency noise were suppressed using a low-pass filter with a cutoff 

frequency of 40 Hz. Subsequently, R-peaks were detected using a Pan-Tompkins-inspired algorithm to segment cardiac 

cycles. This segmentation was crucial for calculating respiratory-induced changes in heart rate and amplitude 

modulation throughout the breathing cycle. Algorithm 1 is an algorithmic structure of signal processing in the 

developed system. 

Algorithm 1 shows the pseudocode in the image, which represents the algorithmic structure of signal processing in the 

developed system. The algorithm comprises the following steps: filtering and normalizing sensor signals, 

approximating the ECG using a 7th-order polynomial, calculating the AUC, and calculating the derivative of the signal. 

This enables you to assess the physiological parameters of respiration and cardiac activity accurately. The presented 

structure facilitates reproducibility and can be easily implemented in a data analysis software environment. 

Algorithm 1. Signal Processing Pipeline for AUC and ECG Derivative 

Input: 

S_ac(t) — raw acoustic signal, sampled at f_s^ac Hz 

S_ecg(t) — raw ECG signal, sampled at f_s^ecg Hz 

Output: 

AUC_i — area under the curve for each segment (µV·s) 

dS_ecg/dt — derivative of ECG polynomial fit for each segment 

Preprocessing: 

Apply band-pass filter to S_ac(t) and S_ecg(t) 

Normalize signals to the range [0, 1] 

Segment both signals into fixed-size windows W_i (e.g., 5 s) 

Polynomial Approximation (per window W_i): 

Fit a 7th-order polynomial P7(t) to S_ecg(t) 

Compute residual error: ε(t) = S_ecg(t) − P7(t) 

AUC Calculation (per window W_i): 

Compute AUC_i = ∫ P7(t) dt over W_i using the trapezoidal rule 

ECG Derivative (per window W_i): 

Compute analytical derivative: dP7/dt = a₁ + 2a₂·t + 3a₃·t² + ... + 7a₇·t⁶ 

Return: AUC_i and dP7/dt for each window 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2332-2350 

ISSN 2723-6471 

2339 

 

 

 

To validate the physiological relevance of the respiratory patterns detected by the system, reference spirometry values 

were used for comparison. According to ATS/ERS guidelines, the typical tidal volume (TV) during quiet breathing 

ranges from 400 to 600 mL, with a respiratory rate of 12 to 20 breaths per minute in healthy adults. Table 2 compares 

the average estimated respiratory volumes obtained from the proposed wearable system to the corresponding standard 

spirometry measurements. 

Table 2. Сompares the Average Estimated Volumes from the Wearable System to Standard Spirometry 

Measurements 

Parameter Reference Range 

(spirometry) 

Wearable System Output Deviation (%) 

Tidal Volume (TV) 500 mL ± 100 mL 485 mL –3.0% 

Respiratory Rate 12–20 breaths/min 19.4 breaths/min within range 

Deep Breath Volume >1000 mL 980 mL –2.0% 

Cough Peak Flow Proxy >4.5 L/s Not measured — 

To evaluate the classification performance of the proposed system, a labeled dataset of 1200 signal windows was used, 

including deep, moderate, shallow breathing, and cough events. A supervised machine learning model was trained 

using a 5-fold cross-validation approach. Table 3 presents the results of a supervised machine learning model used to 

classify respiratory patterns based on multimodal sensor data. The following performance metrics were obtained: 

Table 3.  A Supervised Machine Learning Model 

Metric Value 

Accuracy 91.7% 

Sensitivity (Recall) 89.2% 

Specificity 94.1% 

Precision 90.8% 

F1-Score 90.0% 

These metrics demonstrate that the wearable system is capable of reliably classifying abnormal respiratory patterns and 

may be used to support clinical respiratory diagnostics. The study included 30 healthy adult volunteers. The table below 

provides a summary of their demographic characteristics, including sex, age distribution, and basic physiological 

parameters. Table 4 provides an overview of the participants’ demographic characteristics included in the study. 

Table 4.  Brief Information About Demographic Characteristics 

Participant ID Sex Age (years) Height (cm) Weight (kg) 

P01 Male 27 178 72 

P02 Female 34 165 60 

P03 Male 41 182 85 

P04 Female 29 170 68 

P05 Male 36 175 79 

P06 Female 45 160 62 

P07 Male 39 180 77 

P08 Female 31 168 65 

P09 Male 50 176 81 

P10 Female 25 162 59 

Calibration and sensor reliability are critical factors in wearable biomedical systems. Before data acquisition, all sensors 

(ECG, piezoelectric, and MEMS microphone) were calibrated using a reference signal generator and standard 

spirometry device to ensure measurement accuracy. During the study, periodic checks were performed to confirm 

signal stability, and no significant drift was observed. 
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However, physiological signal variability between subjects was noted due to skin-electrode contact impedance, chest 

morphology, and breathing patterns. To reduce this effect, textile electrodes with conductive gel and elastic fixation 

were used. Future versions of the device may incorporate adaptive calibration algorithms and machine learning-based 

baseline correction to improve reliability across diverse users further. 

To evaluate the contribution of each sensor modality to the detection of respiratory anomalies, an ablation study was 

conducted by selectively removing signal inputs during the classification process. The machine learning model was 

retrained under three distinct input conditions to evaluate the contribution of each signal modality. In the first scenario, 

the model was trained using only the ECG signal to assess the effectiveness of cardiac data in classifying respiratory 

patterns. In the second condition, only the MEMS microphone signal was used, focusing solely on acoustic respiratory 

information. Finally, a combined input approach was applied, integrating both ECG and MEMS microphone signals to 

explore the potential improvements offered by multimodal data fusion. Table 5 shows the effect of each sensor modality 

on classification accuracy. 

Table 5. The Effect of Each Sensor Modality on Classification Accuracy 

Input Modality Accuracy (%) 

ECG only 84.1 

MEMS microphone only 87.6 

ECG + MEMS (combined) 91.7 

These results demonstrate that the combination of both ECG and MEMS microphone signals yields the highest 

classification accuracy, indicating that each modality captures complementary information. A supervised machine 

learning pipeline was implemented to classify respiratory states. The input dataset consisted of 1,200 labeled windows 

(each 5 seconds long) extracted from ECG and MEMS signals. Features included signal energy, AUC values, 

polynomial coefficients (order 7), and frequency-domain descriptors. A decision tree classifier was trained using 5-

fold cross-validation to ensure robust evaluation of model performance. The resulting metrics, including classification 

accuracy and other relevant indicators, are summarized in table 6, which presents the outcomes of the artificial 

intelligence and machine learning analysis. 

Table 6. Artificial intelligence/machine learning 

Metric Value 

Accuracy 91.7% 

Recall (sensitivity) 89.2% 

Specificity 94.1% 

F1-Score 90.0% 

The model demonstrated robust generalization, indicating that feature extraction and signal fusion facilitate effective 

discrimination of respiratory patterns. Future work may explore deep learning architectures and larger datasets for 

enhanced accuracy. Although extensive visualizations of ECG and respiratory signals are presented, quantitative 

summaries are crucial for empirical analysis. The following table presents average AUC values and ECG variability 

for each respiratory state detected by the system. Table 7 presents the average AUC values calculated for each 

experimental condition, highlighting the relationship between respiratory patterns and ECG signal variability. 

Table 7. The Average AUC for Each Condition, ECG Variability 

Respiratory State Avg. AUC (a.u.) ECG RMS Variability (mV) Signal Window Count 

Deep Breathing 220.5 ± 18.3 0.34 ± 0.05 300 

Moderate Breathing 178.2 ± 15.7 0.29 ± 0.04 300 

Shallow Breathing 142.6 ± 13.1 0.23 ± 0.03 300 

Cough Events 305.8 ± 22.0 0.41 ± 0.06 300 

Unlike traditional spirometry, which requires bulky equipment and controlled conditions, the developed system is 

compact, convenient, and can be used at home. The sensor is attached to the skin, like a small patch, and registers 
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physiological parameters, transmitting them via BLE to a personal computer. The data is processed in MATLAB, 

where respiratory cycles and heart rate are analyzed. 

Based on acoustic and electrophysiological data, the system detects respiratory abnormalities, including shallow 

breathing, shortness of breath, and attacks of asthmatic cough. Figure 5, obtained during the experiments, clearly show 

the synchronization between respiratory cycles and changes in heart rate. ECG signal analysis reveals a decrease in the 

amplitude of heartbeats during inspiration, consistent with known physiological effects. 

 

a) 
 

b) 

 

c) 

 

d) 

 

e)  

f) 

Figure 5. Tracking Synchronization between Respiratory Cycles and Changes in Heart Rate 

Figure 5 illustrate the synchronization between respiratory cycles and changes in heart rate across various breathing 

volumes. SubFigure (a–c) correspond to deep, moderate, and shallow breathing, respectively, while (d–f) illustrate 

ECG changes during simulated coughing. The signal amplitude varies with respiratory phase: a decrease in ECG peak 

amplitude is observed during inhalation and an increase during exhalation, indicating RSA. 
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Thus, the developed system is a promising tool for remotely monitoring patients with asthma and other respiratory 

diseases, providing accurate diagnoses and early detection of deterioration. 

There are various methods of acoustic monitoring of the patient's breathing. For example, sometimes aberrant sounds 

in the lungs, such as wheezing or stridor, can be detected at frequencies above 2000 Hz [23], [24], [25], [26]. Building 

upon prior developments in wearable monitoring systems [27], [28], [29], this work introduces a multimodal sensor 

system specifically designed for respiratory health assessment. 

The developed respiratory monitoring system uses a piezoelectric sensor and a MEMS microphone to register acoustic 

signals from the lungs and heart. In the process of analyzing audio data, the system filters signals in various frequency 

ranges, which makes it possible to identify characteristic respiratory anomalies. In particular, low-frequency (<2 Hz) 

and high-frequency (>150 Hz) signal components are analyzed to detect wheezing, coughing, and stridor.  

Filtering of sound data and analysis of time characteristics enable the identification of key breathing patterns. The low-

frequency components of the signal register the amplitude of inspiration, which helps to estimate the volume of 

respiration. In contrast, the high-frequency signals record the intensity of sound phenomena in the lungs. To improve 

the accuracy of the analysis, high-order polynomial approximations are used to smooth out noise and identify cyclic 

breathing patterns. Additionally, to quantify respiratory function, the AUC and its derivative are calculated, which 

correlate with the volume of the lungs upon inhalation and can be used to approximate respiratory volume without the 

need for a spirometer. 

The algorithms used enable the automatic classification of respiratory signals and the real-time monitoring of changes 

in respiratory function. This makes the system a valuable tool for diagnosing respiratory diseases such as asthma and 

Chronic Obstructive Pulmonary Disease (COPD), providing a more convenient and accurate alternative to traditional 

spirometry. 

5. Signal Processing 

Polynomial approximation enabled smoothing and extraction of physiological features. Lower-order polynomials (3rd, 

5th) missed details; higher orders (8+) overfit noise. 7th-order provided the best approximation, enabling accurate AUC 

and derivative calculations. Respiratory volume was estimated without spirometry. Figure 6 show changes in breathing 

sounds at different volumes (1000, 750, and 500 mL). Low-frequency and high-frequency components are presented 

for each volume. The larger the breathing volume, the higher the amplitude of the sounds. Low-frequency signals 

always have a larger amplitude than high-frequency ones, since they reflect the main fluctuations in the air flow. With 

a decrease in breathing volume, sounds become less pronounced, and air turbulence reduces the intensity of high-

frequency vibrations. 

 

a) 

 

b) 
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Figure 6. Changes in Breathing Sounds at Different Volumes (1000, 750, And 500 Ml). 

Figure 7 show the high-frequency components of breathing sounds at different air volumes: 1000 mL, 750 mL, and 

500 mL. The larger the breathing volume, the higher the amplitude of the signal, as the turbulence of the air flow 

increases. At 1000 mL, the amplitude reaches 2.5 µV, and the fluctuations are most pronounced. For 750 mL, the 

amplitude decreases slightly to 2.2 µV, and the respiratory cycles remain noticeable, but less intense. At 500 mL, the 

amplitude drops to 1.5 µV, and the noise becomes more pronounced, indicating a decrease in airflow. 

 
a) 

 
b) 

 
c) 

Figure 7. High-Frequency Components of Breathing Sounds at Different Air Volumes: 1000 Ml, 750 Ml, And 500 

Ml 
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Figure 8 display filtered ECG signals, indicating that the peak heights vary from stroke to stroke. The amplitude of the 

signal decreases during inhalation and increases during exhalation, which corresponds to the physiological mechanisms 

of heart rate regulation. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 8. Filtered ECG signals 

Figure 9 presents low-frequency ECG signals at different respiration levels (a–c: 1000, 750, 500 mL; d–f: repeat 

patterns for validation), overlaid with 7th-order polynomial approximations. These helps detect cyclic patterns in 

cardiorespiratory interactions, which are crucial for evaluating ventilator response and identifying anomalies. 
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a) 
 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

Figure 9. Low-frequency ECG signals and their polynomial approximation of the 7th order 

To assess the accuracy of the approximation, residual error graphs were constructed showing the difference between 

the original signal and the reconstructed function. The analysis showed that the 3rd and 5th order polynomials could 

not accurately simulate the oscillations, and the 8th and higher ones were retrained on noise. The polynomial of the 7th 

order demonstrated the smallest residual error, which confirms its optimality for this problem. 

Figure 10 show the low-frequency components of the ECG signal at different breathing volumes: 1000 mL, 750 mL, 

and 500 mL. The blue line represents the original ECG signal, and the orange curve is its 7th-order polynomial 

approximation, smoothing out the changes. The larger the breathing volume, the higher the amplitude of the ECG 

signal, indicating the effect of breathing on heart rate. At 1000 mL, the changes are more pronounced, whereas at 500 

mL, the fluctuations become less noticeable. This confirms the physiological connection between the respiratory and 

cardiovascular systems. 
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a) 

 

b) 

 

c) 

Figure 10. show the low-frequency components of the ECG signal at different breathing volumes: 1000 mL, 750 mL, 

and 500 mL 

The analysis showed that the 7th-order polynomial approximation most accurately models changes in respiratory and 

cardiac signals. Unlike low-order models, which smooth out important features, and higher-order models, which are 

prone to overfitting, the 7th order best reflects trends in changes in breathing and heart rate. This is especially important 

for detecting abnormalities such as irregular breathing, shallow breathing, or abnormal heart rhythms. 

Figure 11 shows the AUCS values calculated from low-frequency ECG signals using a 7th-order polynomial 

approximation. Similar to acoustic breathing signals, AUCS values obtained from ECG data can be used to approximate 

respiratory volume. Total AUC derivatives have a direct relationship with lung volume during inspiration, which makes 

this valuable method for detecting abnormal breathing patterns and diagnosing respiratory diseases. 
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Figure 11. AUC values calculated from low-frequency ECG signals using a 7th-order polynomial approximation 

Figure 11 shows the low-frequency components of ECG signals and their cumulative characteristics at different 

breathing volumes: 1000 mL, 750 mL, and 500 mL. The polynomial approximation helps to identify cyclical changes 

associated with breathing. The cumulative AUC increases with increasing respiratory volume, reflecting the effect of 

ventilation on heart rate. The AUC derivative illustrates how changes in the ECG signal correlate with respiratory 

volume, enabling noninvasive monitoring of respiratory function. 

A 7th-order polynomial approximation was employed to analyze the signals, striking a balance between model accuracy 

and stability. The accuracy of the approximation is critically essential for subsequent calculations: the AUC and 

derivatives (gradients of signal changes) directly depend on the correct restoration of the waveform. Approximation 

errors can lead to significant deviations in the calculations of respiratory parameters, which chooses a model as a key 

factor in data analysis. To compute the area AUC of the 7th-order polynomial approximation, we applied the composite 

trapezoidal rule over the signal segment. Given the discrete sampling interval Δt, the AUC was approximated as: 

𝐴𝑈𝐶 ≈∑(𝑃7(𝑡𝑖) + 𝑃7(𝑡𝑖+1))/2 ∗ 𝛥𝑡 (5) 

P₇(t) is the fitted polynomial, and N is the number of data points in the window. This method was selected for its 

simplicity and adequacy for smooth curves. Simpson’s rule was also tested, but did not show a significant improvement 

in approximation accuracy for short intervals. 

6. Discussion 

The combination of ECG and acoustic signals enabled accurate classification of respiratory patterns. Compared to 

spirometry, this wearable system is compact, non-invasive, and suitable for use at home. It detects abnormal respiratory 

events, correlates respiratory and cardiovascular changes, and integrates with medical data systems. The signal fusion 

architecture increases diagnostic performance and supports future AI applications for the early prediction of disorders. 

This study presented a multimodal wearable sensor system capable of detecting abnormal sounds in the lungs and 

analyzing respiratory functions based on respiratory data and ECG signals. This opens up new opportunities for non-

invasive health monitoring and diagnosis of diseases of the respiratory and cardiovascular systems. One of the key 

aspects of the work is the integration of sensory data and the use of machine learning methods to process large amounts 

of information. This approach enables the identification of specific patterns characteristic of various diseases, as well 

as the development of forecasting algorithms that can enhance diagnosis and real-time patient monitoring. Additionally, 

it has been demonstrated that traditional spirometry is often underutilized, despite its potential for monitoring 

respiratory symptoms. This study proposes an alternative solution – utilizing ECG signals to assess respiratory function, 

which can enhance diagnostic accuracy and simplify the monitoring process. The developed method of combining 

different types of sensory data using a signature matrix demonstrates high efficiency. This approach can be applied not 
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only to integrate multimodal data but also to train machine learning models capable of classifying sensory signals and 

identifying specific symptoms of diseases. Thus, this study confirms the importance of having access to biometric data 

and its use in developing new diagnostic methods. The future of medical technology relies on the effective integration 

of wearable sensors, cloud data, and intelligent algorithms, which will enable the creation of personalized health 

monitoring systems accessible to both patients and medical professionals 

7. Conclusion 

This study demonstrates the potential of multimodal wearable sensing for advancing respiratory healthcare. By 

combining ECG and acoustic signals with efficient signal analysis, the system moves beyond simple monitoring toward 

early detection of clinically relevant events such as shallow breathing and coughing. These findings contribute to the 

growing field of intelligent, non-invasive respiratory diagnostics and highlight how integrated wearable platforms can 

bridge the gap between daily health monitoring and medical decision-making. Beyond technical feasibility, this work 

underscores the importance of scalable, low-power designs for long-term use and personalized healthcare applications. 

Future research should prioritize large-scale clinical validation across diverse patient groups, integration with 

telemedicine ecosystems, and the development of machine learning models for predictive and adaptive diagnostics. 

These directions will help translate wearable sensing systems from experimental prototypes into impactful healthcare 

tools that can improve outcomes, reduce hospitalizations, and empower patients in self-care. 
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