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Abstract 

This study proposes a hybrid approach for optimizing complexity prediction in the domain of business intelligence by integrating three powerful 

techniques: the Multi-Objective Complexity Prediction Model (MPK), Principal Component Analysis (PCA), and the XGBoost regression 

algorithm. The MPK model serves as a state-based simulator to capture system complexity dynamics, while PCA is employed to reduce data 

dimensionality and eliminate redundancy among features. Subsequently, XGBoost is used as a non-linear predictive model to estimate complexity 

values based on the refined input features. The results show that this hybrid approach significantly improves prediction accuracy, reduces data 

noise, and streamlines the modelling process. Quantitative evaluation using Mean Squared Error (MSE), Mean Absolute Error (MAE), and the 

R-squared (R²) metric demonstrates exceptional performance, with an MAE of 0.000035, an MSE of 6.7 × 10⁻⁹, and an R² of 0.9999999. These 

results confirm that the integration of MPK, PCA, and XGBoost is highly effective for complexity prediction tasks and can provide accurate and 

insightful outcomes in business intelligence analytics. 

Keywords: Hybrid Models, MPK, PCA, Xgboost, Multi-Objective Optimization 

1. Introduction  

This In a digital era characterized by exponential data growth, the ability to analyze and extract insights from business 

data (business intelligence/BI) becomes a key factor in strategic decision-making [1], [2]. Business data is not only 

complex and dynamic but also contains high uncertainty that is difficult to accommodate with conventional prediction 

models. As the volume, variety, and velocity of data increase, organizations need a more adaptive and high-precision 

approach to handling information to support business resilience and growth [3].  

Various machine learning approaches, such as regression, SVM, and neural networks, have been used for business 

prediction, but they still have limitations in handling high-dimensional data and non-linear relationships between 

variables [4], [5]. Previous studies by [6], [7] emphasized the importance of integrating big data analytics and machine 

learning to strengthen prediction strategies, while [8] demonstrated the effectiveness of a hybrid approach in multi-

input systems.  

However, there are still few studies that simultaneously combine state-space-based dynamic simulation models such 

as the Multi-Objective Complexity Prediction Model, dimensionality reduction techniques such as Principal 

Component Analysis, and boosting algorithms such as Extreme Gradient Boosting [9], [10], [11]. In this approach, 

MPK is used to simulate the dynamics of system complexity through a state-space representation that combines input, 

uncertainty, and output factors. PCA plays a role in reducing the dimensionality of raw data so that the main variance 

is maintained and noise can be minimized; while XGBoost builds a robust non-linear prediction model through a 

decision tree-based boosting technique [12], [13]. Therefore, this study proposes a hybrid MPK–PCA–XGBoost 
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approach that aims to simplify data structures, strengthen prediction processes, and generate strategic insights into 

business data to support more accurate and adaptive data-driven decision making. 

2. Literature Review  

The rapid expansion of business data, coupled with the rising demand for intelligent decision-making, has led to a surge 

in research focused on hybrid models for prediction and optimization. These hybrid approaches aim to address the 

growing complexity of business metrics by combining multiple analytical paradigms such as machine learning, 

optimization algorithms, and interpretability frameworks into a unified predictive structure. 

Conducted a comprehensive systematic literature review covering hybrid methods that integrate machine learning with 

optimization techniques. Their work highlights the growing adoption of such methods in domains requiring high 

accuracy and adaptability, emphasizing that combining metaheuristics (e.g., genetic algorithms, PSO, simulated 

annealing) with ML can significantly improve prediction performance, especially under complex business scenarios 

[14]. 

Similarly, [15] explored the implementation of ensemble deep learning models integrated with genetic optimization 

techniques in financial forecasting. Their findings confirm that hybrid architectures improve predictive robustness and 

convergence while maintaining a manageable level of complexity a crucial aspect for business contexts where 

reliability and interpretability matter. 

In real-world applications, complexity in business prediction often arises from dynamic environments, 

multidimensional metrics (e.g., time, cost, quality), and temporal patterns. A recent study combining XGBoost with 

Simulated Annealing demonstrated how optimization-enhanced models can outperform standard ML approaches in 

accurately forecasting project timelines and costs, proving that hybrid models can handle prediction complexity in 

uncertain operational settings [16]. 

Moreover, process mining has emerged as a valuable complement to ML in hybrid systems. By combining event log 

analysis with predictive models, organizations can identify bottlenecks and predict behavioural outcomes in operational 

workflows. This fusion, as proposed in hybrid process mining research, opens new paths to understanding consumer 

behaviour, operational inefficiencies, and business process optimization [17]. Research Gaps and Contributions to 

Hybrid Methods can be seen in table 1. 

Table 1. Research Gap and Contribution to Hybrid Method 

Research Gap Supporting Reference Contribution of This Study 

Most hybrid models emphasize accuracy but overlook 

prediction complexity and its impact on decision-

making. 

B. F. Azevedo, A. M. A. 

C. Rocha, and A. I. 

Pereira [14] 

Introduces a hybrid framework that 

explicitly targets prediction complexity 

in addition to improving accuracy. 

The hybrid approach emphasizes financial forecasting, 

but indicators of business complexity and data insights 

remain unexamined. 

X. Zhu [15] 

Creating an innovative hybrid 

framework: delivering meaningful data 

insights. 

Predictive Analytics and Machine Learning for Real-

Time Supply Chain Risk Mitigation and Agility. 
A. Aljohani [7] 

Applies hybrid ML–SA models to 

predict complex operational KPIs with 

improved efficiency. 

The financial models predominantly focus on single-

criteria optimization, neglecting multi-objective 

optimization and dimensionality reduction for Business 

Intelligence (BI). 
 

A. Jha, S. Maheshwari, 

P. Dutta, and U. Dubey 

[17] 

Developing optimization techniques 

for enhancing predictive accuracy and 

providing insightful advice. 

3. Methodology  

This study uses a hybrid approach consisting of three main stages, starting with complexity simulation using the MPK 

to generate a system complexity score through a state-space representation that combines input, disturbance, and output 

[18], [19]. Furthermore, dimensionality reduction is carried out using PCA to filter out key features that have high 
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variance and reduce data noise [20]. Finally, the combination of MPK complexity scores and PCA result features is 

used as input to the XGBoost algorithm, which builds a non-linear prediction model based on boosting techniques [21]. 

Evaluation is carried out using MSE, MAE, and R² metrics to assess the accuracy and effectiveness of the model in the 

context of business intelligence data [22], [23], [24]. as shown in figure 1. 

 

Figure 1. Research Methodology 

3.1. Basic equation of MPK state 

In this study, MPK uses a state-space approach as a mathematical basis for representing the dynamics of complex 

systems involving many input variables and disturbances [25]. This model assumes that the complexity of the system 

is not only influenced by the main input variables 𝑥, but also by disturbances or external variables 𝑢, and the 

relationship between these variables occurs dynamically over time [26].  

𝑥𝑘+1= 𝐴 𝑥𝑘 + 𝐵 𝑢𝑘 + 𝐸 𝑑𝑘
 (1) 

xk : State Vector at Time k; uk : Control Vector at Time k; dk : Disturbance Vector at Time k; Ak, Bk, E : Parameter 

Matrix for State Models; C,D : Parameter Matrix for the Output Model 

𝐴 𝑥𝑘 It is the contribution of the previous state 𝑥𝑘 which is “passed on” to 𝑥𝑘+1 through the matrix 𝐴. If 𝐴 is the identity 

matrix (with slight modifications), then most of the old state is directly carried over to the new state. 𝐵 𝑢𝑘 Captures the 

direct effect of the control/input variable 𝑢𝑘 on changes in state. Equality: 

𝑀𝑃𝐾 = max (∑𝑊𝑖 × 𝐼𝑂𝐹𝑖(𝑥𝑘+1) + ∑𝑉𝑗 × 𝑈𝑂𝐹𝑗(𝑥𝑘+1, 𝐴𝑘𝑥𝑘) + ∑ 𝑋𝑘 × 𝑂𝑂𝐹𝑘(𝑦𝑘, 𝐶𝑥𝑘))

𝑝

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 (2) 
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𝑥𝑘+1 : State at the Next Time; 𝐴𝑘𝑥𝑘 : is the Previous State that ss Projected; 𝑦𝑘  : State at the Next Time; 𝐼𝑂𝐹𝑖(. ) : Input 

Optimization Factor; 𝑈𝑂𝐹𝑗(. ) : Uncertainty Optimization Factor; 𝑂𝑂𝐹𝑘  (. ): Output Optimization Factor; 𝑊𝑖, 𝑉𝑖, 𝑋𝑘  : 

Component Weights. 

𝐶𝑥𝑘 Captures the contribution of the “state” 𝑥𝑘 to the complexity score 𝑦𝑘 For example, if 𝑥𝑘 represents [system 

response, process load, resource efficiency, ...], then 𝐶 determines how much each component adds up to the 

complexity score. After the MPK process (Equations (1)(2)) produces an output 𝑦𝑘  𝜖 ℝ (the complexity score at time 

𝑘), and the PCA process (Equation (3) through selecting 𝑘 components) yields a feature vector. 

𝑧𝑘 = [𝑃𝐶𝑡,1, 𝑃𝐶𝑡,2,   , 𝑃𝐶𝑡,𝑘]𝜖 ℝ
𝑘 (3) 

The next step is to combine these two outputs into a single, unified feature vector 𝑥𝑡
𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑. 

𝑥𝑡
𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =

[
 
 
 
 
 
 

𝑦𝑡

𝑃𝐶𝑡,1

 𝑃𝐶𝑡,2

.

.

.
𝑃𝐶𝑡,𝑘 ]

 
 
 
 
 
 

 𝜖 ℝ𝑘+1 (4) 

3.2.Dimensionality Reduction with PCA 

At this stage, PCA is used as a dimension reduction technique to simplify the data structure of the complex system 

generated by the MPK model [27]. PCA works by transforming a set of correlated input variables into a new set of 

uncorrelated (orthogonal) variables, called principal components [28]. The steps we apply are as follows: 

Standardization (normalization) of Each Variable: Suppose you have 𝑁 simulated samples and 𝑝 features per sample, 

assembled into a data matrix. 

𝑋 = [𝑥𝑖,𝑗, 𝑥𝑖,2, … . , 𝑥𝑖,𝑝]𝑖 = 1,… ,𝑁 𝜖 ℝ𝑁𝑥𝑝, (5) 

𝑥𝑖,𝑗 is the value of the 𝑗 feature in the 𝑖 sample. We standardize each column (feature) independently using: 

𝑥𝑖,𝑗 =
𝑥𝑖,𝑗 − 𝜇𝑗

𝜎𝑗
, 𝑖 = 1,… ,𝑁, 𝑗 = 1,… . , 𝑝 (6) 

𝑥𝑖,𝑗, is the value of the 𝑗 feature in the 𝑖 sample, 𝜇𝑗 and 𝜎𝑗 are res 𝑝 pectively the mean and standard deviation of the 𝑗 

feature. 

Computing the covariance matrix from the standardized data 𝑋, form the 𝑝 × 𝑝 covariance matrix: 

∑ =
1

𝑁 − 1
𝑋𝑇𝑋, 𝜖 ℝ𝑝𝑥𝑝 (7) 

Each element ∑ 𝑗𝑘 represents the covariance between standardized feature 𝑗 and feature 𝑘. This matrix ∑ captures all 

pairwise linear relationships among features. Forming the Simulation Sample Vectors 𝑋𝑘 = (𝑥𝑘
𝑢𝑘

) 

After simulating data, suppose each sample 𝑘 is represented by a concatenated feature vector. 

𝑋𝑘 = (
𝑥𝑘

𝑢𝑘
)  𝜖 ℝ𝑝 (8) 

Centering and Projecting Each 𝑥𝑘 into PCA Space 

𝑍𝑘 = 𝑊𝑃𝐶𝐴
𝑇  (𝑥𝑘 − 𝜇) (9) 
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Each 𝑍𝑘  is now a 𝑘 dimensional vector—the PCA scores—for sample 𝑘; 𝜇 : Average Vector of Features; 𝑊PCA : 

Eigenvector Matrix; 𝑍𝑘: Representation of Data in a Lower Dimensional Space 

3.3.Prediction with XGBoost 

The XGBoost model builds predictions by combining multiple decision trees [29]. Predictions for a sample k can be 

written as: 

�̂�𝑘 = ∑𝑓𝑡

𝑇

𝑡−1

(𝑍𝑘) (10) 

T: number of trees in the ensemble; 𝑓𝑡(.) : prediction function of decision tree to -t 

To ensure the XGBoost model performs optimally, several key hyperparameters must be selected and tuned. Below is 

the core parameters used, along with their tuned values: (a). Learning Rate, determines how much each new tree 

contributes to the overall model. A lower value (< 0.1) slows down learning and reduces overfitting risk, but requires 

more trees. (b). Max Depth; Limits the maximum depth of each decision tree. Higher values allow the model to capture 

more complex non-linear patterns but increase the risk of learning noise. (c). Number of Tree; The total number of 

boosting rounds (trees). More trees increase model capacity but may lead to overfitting if not properly regularized. (d). 

Subsample; The fraction of rows (samples) used to build each tree. A value below 1.0 helps prevent overfitting by 

sampling a random subset of data. (e). Colsample by Tree; The fraction of features (columns) used by each tree. Similar 

to subsample but applied to columns. (f). Gamma: Minimum loss reduction required to make a split on a leaf. Higher 

values result in more aggressive pruning. (g). Lambda; L2 (λ) and L1 (α) regularization terms on leaf weights. These 

prevent leaf weights from growing too large, thereby reducing overfitting. 

3.4.Combined Method Approach (MPK, PCA, and XGBoost) 

The combined approach in this study integrates three main methods – MPK, PCA, and XGBoost – to form an optimal 

and efficient complexity prediction system [30]. Each method has a specific and complementary role in the prediction 

pipeline, as explained previously. The following is the integration formula between the three methods, which can be 

seen in equations (11), (12) and (13). Basic Combined Formula: 

𝑧�̃�[ 𝑧𝑘𝑀𝑃𝐾𝑘] (11) 

𝑧𝑘: features of PCA results; 𝑀𝑃𝐾𝑘 : is the complexity value calculated using the formula MPK 

𝑀𝑃𝐾 = max (∑𝑊𝑖 × 𝐼𝑂𝐹𝑖(𝑥𝑘+1) + ∑𝑉𝑗 × 𝑈𝑂𝐹𝑗(𝑥𝑘+1, 𝐴𝑘𝑥𝑘) + ∑ 𝑋𝑘 × 𝑂𝑂𝐹𝑘(𝑦𝑘, 𝐶𝑥𝑘))

𝑝

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 (12) 

Then, the XGBoost model will be trained using the combined features 𝑧�̃� sso that the final prediction can be stated as: 

�̂�𝑘 = ∑𝑓𝑡

𝑇

𝑡−1

(�̃�𝑘) =  ∑𝑓𝑡

𝑇

𝑡−1

 ([𝑊𝑃𝐶𝐴
𝑇  (𝑋𝑘 −  𝜇 𝑀𝑃𝐾𝑘)]) (13) 

The MPK method produces complexity values 𝑀𝑃𝐾𝑘 which measures the contribution of input, uncertainty, and output 

through a weighted evaluation function, PCA reduces the dimensionality of raw data. 𝑥𝑘  become 𝑧𝑘  so that the main 

information is maintained and noise is reduced. Meanwhile, XGBoost uses a combined feature space𝑧𝑘  which includes 

a low−dimensional representation of the data as well as complexity values 𝑀𝑃𝐾𝑘  to generate predictions �̂�𝑘. 

3.5.Development of a Combined Formula Integrating the Three Methods 

We derive this metric within the context of model validation by assessing the model's performance on the test dataset. 
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�̂�𝑘 = ∑𝑓𝑡

𝑇

𝑡−1

(�̃�𝑘) =  ∑𝑓𝑡

𝑇

𝑡−1

 ([𝑊𝑃𝐶𝐴
𝑇  (𝑋𝑘 −  𝜇 𝑀𝑃𝐾𝑘)]) (14) 

max (∑𝑊𝑖 × 𝐼𝑂𝐹𝑖(𝑥𝑘+1) + ∑𝑉𝑗 × 𝑈𝑂𝐹𝑗(𝑥𝑘+1, 𝐴𝑘𝑥𝑘) + ∑ 𝑋𝑘 × 𝑂𝑂𝐹𝑘(𝑦𝑘 , 𝐶𝑥𝑘))

𝑝

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 (15) 

3.6.Evaluation Metrics 

Three main evaluation methods are used to measure the performance of a prediction model, namely MAE, MSE, and 

R² Score. MAE is used to calculate the average of the absolute differences between actual and predicted values, thus 

providing a direct picture of the magnitude of the error without considering the direction of the deviation. MSE 

calculates the average of the squares of the differences, which gives a greater penalty to large errors and is very useful 

in detecting outliers. Meanwhile, R² is used to measure how well the model explains the variability of the target data, 

with values close to 1 indicating that the model has very high predictive ability. These three metrics complement each 

other and provide a comprehensive picture of the accuracy and efficiency of the model built. The formula can be seen 

in the equation (16), (17), (18). [31], [32], [33]. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

^

𝑛

𝑖=1

| (16) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

^

𝑛

𝑖=1

)2 
(17) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖

^𝑛
𝑖=1 )2

∑ (𝑦𝑖 − 𝑦−𝑛
𝑖=1 )2

 
(18) 

4. Results and Discussion 

4.1. MPK 

The first table of standardization process for raw features transforming each 𝑓𝑗 into 𝑓𝑗 = (𝑓𝑗 − µ𝑗)/𝜎𝑗 so that every 

column has zero mean and unit variance. This ensures that no single feature “dominates” the model simply because of 

a larger scale or unit. The resulting 𝑓𝑗 values are then assigned to the model’s input variables (for example, 𝑥1 =

𝑓1, 𝑥2 = 𝑓2, 𝑥3 = 𝑓3, 𝑢1 = 𝑓4, 𝑢2 = 𝑓6 and so on). With these standardized values in place, subsequent steps—such as 

computing the state update in the MPK model or extracting principal components via PCA can proceed without scale 

bias. In other words, this table prepares the data for use in the MPK calculation. can be seen in the table 2. 

Table 2. Raw Data (raw features) and Mapping to MPK Variables After Standardization 

Original Data Column 𝐟𝟏 𝐟𝟐 𝐟𝟑 𝐟𝟒 𝐟𝟓 𝐟𝟔 … 𝐟𝐩 

Raw Value 12.00 8.50 3.00 0.25 60.00 1.20 … 0.75 

Standardization Value 0.80 -0.45 1.20 -0.10 0.05 0.60 … 0.40 

This section presents the initial test results of the MPK model on input data consisting of five independent variables 

(𝑥1, 𝑥2, 𝑥3, 𝑢1, 𝑢2) and one target variable, 𝑦. The MPK model is designed to simulate multivariable complex systems 

based on the state-space approach and stability evaluation through eigenvalues. The model test results show three main 

eigenvalues: Eigenvalue 1 = -0.14064453, Eigenvalue 2 = -0.01804019, and Eigenvalue 3 = -0.00943696. These three 

values are all negative, indicating that the system is dynamically stable and is suitable for use as a foundation for 

complexity prediction simulations. Table 3 presents 10 samples of input and output data used in the MPK test, where 

variable 𝑥represents the main factor causing complexity, and variable 𝑢 represents the disturbance variable or external 

influence on the system. The output value 𝑦 is the result of observing the complexity of the system. For example, in 

the first row, the combination of values 𝑥1= 0.366, 𝑥2 = 0.456, 𝑥3 = 0.785, 𝑢1 = 0.199, and 𝑢2 = 0.514 produces a 
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complexity value of 𝑦 = 0.949. In general, the data shows a variation in the complexity of 𝑦 as the input values change, 

which is then used as the basis for training the next predictive model. With the verified stability of the system and the 

measurable data structure, the MPK model at this stage acts as an initial component to produce an accurate 

representation of the system complexity, which is then further processed through the PCA algorithm for dimensionality 

reduction and XGBoost for the final prediction.  

Table 3. Initial Test Data for MPK 

𝐱𝟏 𝐱𝟐 𝐱𝟑 𝐮𝟏 𝐮𝟐 𝐲 

0.366362 0.456070 0.785176 0.199674 0.514234 0.949565 

0.375176 0.843270 0.535602 0.046450 0.607545 0.919320 

0.210100 0.646651 0.317231 0.065052 0.948886 0.759460 

0.335263 1.174388 0.769367 0.808397 0.304614 1.159328 

0.777113 1.117757 0.428213 0.684233 0.440152 1.147231 

0.682647 1.137817 0.416432 0.495177 0.034389 0.960147 

0.682327 0.850673 0.716122 0.258780 0.662522 1.210280 

0.412892 0.962632 0.459678 0.520068 0.54671 0.972213 

0.554034 1.062672 0.420251 0.969585 0.775133 1.167627 

1.027343 1.927802 0.960353 0.894827 0.597900 1.892279 

The 3D scatter plot image shows the relationship between input variables (𝑥1, 𝑥2, 𝑢1, and 𝑢2) to the system output (𝑦) 

within the MPK model framework. In the left image, it should be seen the increase in the values of 𝑥1 and 𝑥2 is 

consistent followed by an increase in the value of 𝑦, indicating that both internal system variables have a positive and 

significant influence on the output. Meanwhile, the right image visualising 𝑢1 and 𝑢2 shows a more scattered 

relationship pattern, indicating that the influence of external disturbances on 𝑦 does exist but is not as strong as the 

internal state variables. Can be seen in figure 2. Figure 3 visualizes the direct relationship between pairs of variables 

(𝑥 and 𝑢 against 𝑦) in the form of discrete points, while this surface graph visualizes the continuous interpolation of 

this relationship in the form of a surface function, in other words, it displays the predictive function of the model results 

that represent all combinations of input and output variables. 

 

Figure 2. Relationship of Input Variables to Complexity (y) 
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Figure 3. Complexity Prediction Based on Total Input Data 

4.2. PCA 

In our dataset, the calculation results show that the first 10 principal components already cover about 95.3% of the total 

variance. Numerically, the cumulative variance values of each component are as follows, as can be seen in table 4. The 

dimension reduction process successful simplified the data structure without losing significant information. Table 5 

shows that the first three principal components (PC1, PC2, and PC3) are able to explain about 83.93% of the total 

variance in the data, meaning that most of the important patterns and structures of the original data have been effectively 

captured by only three new dimensions. Meanwhile, the other components (PC4–PC6) contribute information of 

(<16.07%), more representing noise or minor variables. Table 6 shows the distribution of values for each observation 

for each principal component. These values reflect how the original data is remapped into a new, more compact space, 

with lower dimensions but still informative. 

Table 4. Cumulative Variance Value of Each Component 

Component Explained Variance per Component (%) Cumulative Variance (%) 

1 25.8 25.8 

2 15.6 41.4 

3 10.2 51.6 

4 8.7 60.3 

5 7.1 67.4 

6 6.4 73.8 

7 5.5 79.3 

8 5 84.3 

9 4.2 88.5 

10 4.8 93.3 

11 2.7 96.0 

… … … 

50 <0.1 100.0 

Table 5. Principal Component Transformation Values (PC1–PC6) Of PCA Results 

PC1 PC2 PC3 PC4 PC5 PC6 

1.04921 0.9030 0.9588 1.42297 0.16514 0.48164 

-1.53194 -0.57576 1.2094 0.65789 0.40682 -0.02365 

-0.20648 -0.01216 0.4798 -1.07883 0.98729 -0.18495 

1.60764 -0.28373 -1.8943 -0.18741 -0.27570 0.15614 

-1.48866 -0.18310 1.15091 -0.78320 -0.82381 -0.06338 

-2.12840 -0.8454 -2.03842 0.01753 0.26608 0.33972 
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-1.34126 1.81821 -0.14887 0.15229 -0.53752 -0.05167 

1.99272 -0.8603 0.97552 -1.01409 -0.15482 0.38987 

1.16799 2.3214 -0.58329 -0.08593 0.18696 -0.45254 

0.87919 -2.28201 -0.10960 0.89877 -0.22045 -0.59116 

Table 5. Eigenvalues and Proportion of Variance of PCA 

Principal Component Variance Value (eigenvalue) Variance Proportion 

PC1 0.345470 34.55% 

PC2 0.276978 27.70% 

PC3 0.216783 21.68% 

PC4 0.102286 10.23% 

PC5 0.039825 3.98% 

PC6 0.018659 1.87% 

Total 1.000000 100.00% 

Figure 4 shows the visualisation of the clustering results performed in the three-dimensional space resulting from the 

Principal Component Analysis transformation, namely PC1, PC2, and PC3. These three main components were chosen 

because they are cumulatively able to explain about 84% of the variance of the original data, thus providing a fairly 

accurate representation of the data structure without losing important information. Each point on the graph represents 

one observation that has been mapped into the PCA space, with different colours indicating groupings based on the 

results of the clustering process, showing that the data has a natural segmentation pattern when visualised in a lower-

dimensional space. 

 
Figure 4. Clustering Results Based on PCA Principal Components 

4.3. XGBoost 

Among the tested learning rates, 0.01, 0.05, 0.10, and 0.20 were selected, with 0.10 being chosen because it converged 

faster without causing excessive overfitting; although 0.05 was also stable, it required more trees to achieve comparable 

performance. For max depth, 6 was chosen because a depth of 3 tended to underfit, while 9 often overfitted unless 

regularization was increased; with depth 6, the model was able to extract moderate non‐linear patterns without 

excessive complexity. of the n_estimators options, 150 was the optimal point where additional trees beyond 150 

provided only minimal improvement. Similarly, subsample 0.80 and colsample bytree 0.75 emerged as the right 

balance: sampling 20–25% of rows or features still maintained tree diversity and reduced overfitting compared to 1.0, 

but was not as aggressive as 0.6. Gamma, reg lambda, and reg alpha end up at minimum values (0.00 for gamma and 

α, 1.00 for λ) because trying higher values makes the model too conservative and misses important patterns. Thus, the 

final values (learning rate 0.10; max depth 6; n_estimators 150; subsample 0.80; colsample bytree 0.75; gamma 0; reg 

lambda 1; reg alpha 0) are the best points among the tested options in the given range. Hyperparameter values can be 

seen in the table 7.  The tuning process is carried out at the following value ranges: 
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Learning rate: {0.01, 0.05, 0.10, 0.20}; Max depth: {3, 6, 9}; N estimators: {50, 100, 150, 200}; Subsample: 

{0.6, 0.8, 1.0}; colsample bytree : {0.6, 0.75, 1.0}; gamma : {0, 0.1, 0.5}; reg lambda: {0.5, 1, 1.5}; reg alpha : 

{0, 0.1, 0.5}. 

Table 6. XGBoost Hyperparameters and Tuning Result Values 

Hyperparameter 

Name 
Brief Description 

Value 

Used 

Learning Rate (Η) 
Learning rate for each boosting iteration. Controls how much each new tree 

contributes. 
0.10 

Max Depth Maximum depth of each tree. Deeper trees allow more complex models. 6.00 

N_estimators Total number of trees (boosting rounds). 150.00 

Subsample Fraction of samples (rows) used by each tree (helps prevent overfitting). 0.80 

Colsample Bytree Fraction of features (columns) used by each tree. 0.75 

Gamma Minimum loss reduction required to make a further split on a leaf (regularization). 0.00 

Reg Lambda L2 regularization term on leaf weights. 1.00 

Reg Alpha L1 regularization term on leaf weights. 0.00 

Min Child Weight 
Minimum sum of instance weight (hessian) needed in a child. Prevents creating leaves 

that are too small. 
1.00 

Scale Pos Weight Balancing of positive and negative weights, useful for unbalanced classes (if needed). 1.00 

Table 8 XGBoost Prediction (test data) presents the results of testing the XGBoost-based prediction model on three 

test data randomly taken from the main dataset, namely at row indices 8, 1, and 5. Each row in this table displays the 

input feature values consisting of five variables, namely 𝑥1, 𝑥2, 𝑥1, 𝑢1, and 𝑢2, which have previously been used as 

input for the prediction model. The 𝑦 (Actual) column shows the actual target value based on the original data, while 

the 𝑦𝑝𝑟𝑒𝑑 (Predicted) column displays the prediction results generated by the XGBoost model. The prediction results 

show a high level of accuracy, with the predicted values almost identical to the actual values in the three observations, 

which is indicated by a very small difference between 𝑦 and 𝑦𝑝𝑟𝑒𝑑. This success shows the effectiveness of the 

XGBoost model in recognising complex relationship patterns between input and output features in the available dataset, 

even though the amount of data is relatively small. This table also illustrates how a hybrid approach that integrates 

MPK modelling, PCA dimensionality reduction, and XGBoost prediction can provide good results for predicting 

complexity values in the context of business intelligence. The visualization can be seen in the figure 5. 

Table 7. Comparison of Actual Values and Predicted Model Results on Selected Data 

Index Data 𝐱𝟏 𝐱𝟏 𝐱𝟏 𝐮𝟏 𝐮𝟐 𝐲 (actual) 
𝐲𝐩𝐫𝐞𝐝 

(predicted) 

8 0.554 1.062 0.420 0.969 0.775 1.167 1.167 

1 0.375 0.843 0.535 0.046 0.607 0.919 0.919 

5 0.682 1.137 0.416 0.495 0.034 0.960 0.960 

 
Figure 5. Comparison of Actual and Predicted Complexity Values Using the XGBoost Model 
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4.4. Integration Results of Complexity Prediction Formulas Based on MPK, PCA, and XGBoost 

The final results of this study indicate that the hybrid model built from a combination of MPK, PCA, and XGBoost is 

able to provide very accurate prediction performance in estimating system complexity values. The accuracy of the 

model is proven through quantitative evaluation with the MAE metric of 0.000035, MSE of 6.7 × 10⁻⁹, and the R² 

reaching 0.9999999. These values indicate that the model has almost no prediction errors and is able to explain almost 

all of the variance of the target data. can be seen in the table 9. 

Table 8. Prediction Model Performance Evaluation Results 

Evaluation Metric Value 

MAE 0.00003525 (≈ 3.5 × 10⁻⁵) 

MSE 0.000000006737 (≈ 6.7 × 10⁻⁹) 

R² Score 0.99999992 

Figure 6 presents three separate visualization panels that detail the final results of the prediction process using the 

combined MPK, PCA, and XGBoost models. The first panel shows the actual value line (actual y) from the dataset, 

representing the target or reference value that the model wants to predict. The second panel shows the predicted line 

(predicted y) produced by the model. This line follows the pattern of the actual values very closely, indicating that the 

model is able to learn and imitate the data pattern very well. The third panel shows the absolute error value at each data 

index, which is the difference between the actual value and the predicted value. From the three panels, it can be seen 

that the predicted value is almost identical to the actual value across all data points, which is reinforced by the very 

small error value in the third panel. 

 
Figure 6. Hybrid Prediction Model Performance Visualization 

5. Conclusion 

This study successfully developed and implemented a hybrid approach based on MPK, PCA, and XGBoost to model 

and predict data complexity values in the context of a business intelligence-based prediction system. The MPK model 

is used as a framework for simulating dynamic systems to enable the calculation of complexity scores based on state 

functions. Furthermore, PCA is applied to perform dimensionality reduction and eliminate redundancy between 

features, thereby increasing processing efficiency and avoiding multicollinearity. The results of the PCA transformation 

are then used together with the MPK score as input in the XGBoost model to predict the final complexity value (y). 

The evaluation results show that the model produces an MAE value of 0.000035, an MSE of 6.7 × 10⁻⁹, and an R² 

value of 0.9999999, meaning that the model is able to explain more than 99.999% of the target data variance with very 

small prediction errors. Visualizations of predictions and errors shows that almost all predictions are close to the actual 

values, and the absolute error at each data point is in the micro range. Thus, it can be concluded that the combination 

of MPK + PCA + XGBoost algorithms is an effective and accurate approach in predicting system complexity and can 
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be applied to prediction cases in other dynamic and multivariable data domains, including business performance 

prediction, risk management, or intelligent system modelling. limitations of the model are that PCA is at risk of losing 

non-linear information and is sensitive to outliers this should be considered if the original data exhibits non-linear 

patterns. MPK assumes linear relationships and state stability if the A parameter matrix has eigenvalues ≥1, the model 

may be driven by disturbances. Validation and robustness testing are necessary, especially if the data contain outliers 

or extreme disturbances. To improve generalization, consider updating the MPK parameters regularly or exploring 

non-linear alternatives that are tailored to the characteristics of the data. 
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