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Abstract 

The global increase in life expectancy, driven by increased nutrition, healthcare, and living conditions, has resulted in a significant growth in the 

senior population, notably in Kazakhstan, where the number of people aged 60 and more currently exceeds 2.7 million. This demographic 

transition poses considerable public health problems, particularly the high prevalence and severity of falls in older persons. Falls are currently 

the second largest cause of unintentional mortality for more than 87% of the elderly, with 28-34% falling at least once per year. As the worldwide 

population of people aged 65 and more is predicted to exceed 1.5 billion by 2050, there is an urgent need for precise, real-time fall detection 

systems. This work uses standardized datasets to conduct a complete evaluation of three fall detection methodologies: posture recognition, 

YOLOv3-based detection, and deep learning. Deep learning models attained the best accuracy of 92.0% by utilizing their capacity to learn 

complex spatial-temporal information, but at the cost of increased computing burden and slower inference times (40 ms). YOLOv3 provided 

competitive accuracy (90.2%) and quicker processing (25 ms), making it suitable for real-time deployment, although with a larger false positive 

rate. Pose identification, while highly interpretable due to its emphasis on skeletal key points, performed less well in crowded or obscured settings. 

The findings highlight the possibility for combining the capabilities of each technique to create hybrid systems with adaptive, resource-efficient 

architectures. Future research should focus on sensor fusion and optimization methodologies to improve accuracy and scalability across a variety 

of scenarios. 
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1. Introduction  

The elderly population has been growing very rapidly in recent decades. Nutrient-rich foods, superior health care and 

higher standards of living have favored the increase in global average life expectancy. Falls in older adults are relatively 

common and can have dramatic health consequences. Studies have shown that 28-34% of older adults have at least one 

fall each year [1]. In addition, falls are the second leading cause of accidental death for more than 87% of older adults. 

In the next 30 years, the number of people 65 and older worldwide will more than double [2]. Approximately 1.5 billion 

individuals will be 65 and older globally by 2050 [3]. However, because fertility and mortality reductions vary by 

nature and method, population aging will not be consistent across global regions. The growth of life expectancy in the 

country and the increase in the population of the Republic of Kazakhstan have led to a noticeable increase in the number 

of elderly citizens. Thus, at the beginning of 2024, Kazakhstan had more than 2.7 million people aged 60 and over. 

Over the year, the number of elderly increased by 4.2%, while the average annual growth rate over the last decade was 

4.4% [4]. 

Recent advances in computer vision and deep learning have enabled the creation of non-invasive, camera-based 

systems capable of analyzing human behaviors in real time [5]. These technologies have the potential to continuously 

monitor environments without the person having to wear or carry gadgets.  

While various studies have investigated fall detection using wearable sensors or vision-based systems, few have 

conducted systematic comparisons of multiple methodologies using uniform evaluation protocols. Furthermore, 

existing datasets frequently fail to represent realistic, culturally diverse family contexts, which limits model 
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generalizability. This research compares three fall detection approaches: pose-based recognition using skeleton 

keypoints, YOLOv3-based object detection, and deep learning models like CNN-LSTM architectures. 

The aim of this study is to analyses and compare the effectiveness of several computer vision-based fall detection 

approaches for AAL systems, with a focus on their possible application in Kazakhstan's demographic setting. The 

research aims to implement and fine-tune three models—pose-based keypoint extraction, YOLOv3 object 

identification, and CNN-LSTM architectures—and evaluate them using publicly available datasets. These approaches 

are evaluated in terms of classification accuracy, inference latency, interpretability, and practicality for real-time 

application. Furthermore, the study aims to examine the trade-offs between model complexity, responsiveness, and 

transparency, and to offer a hybrid method that combines the benefits of the various techniques. 

While there are several ways to fall detection, there has been insufficient comparative evaluation of pose estimation, 

object recognition, and deep learning-based systems under controlled experimental conditions, particularly in elderly 

care facilities such as those in Kazakhstan. This work fills a gap by examining these three approaches on standardized 

datasets, assessing accuracy, computing cost, and practical relevance for real-time AAL deployment. 

2. Related Work 

Fall detection has received a lot of interest from researchers in computer vision, machine learning, and healthcare 

monitoring. Researchers have suggested many ways for correctly detecting falls, with a primary focus on three unique 

approaches: posture recognition, YOLOv3-based object identification, and Deep Learning (DL) techniques. 

Recent research has investigated several fall detection strategies, including pose recognition, object identification 

frameworks such as YOLOv3, and other DL approaches. Cao et al. [6] developed a real-time multi- person 2D pose 

estimation system that uses part affinity fields and skeleton key point extraction to study human posture, offering 

interpretable insights into movement patterns. This framework has proven useful in applications such as fall detection. 

However, its effectiveness can be hampered by occlusions and changes in ambient circumstances. While OpenPose 

was used by Cao et al. [6] to obtain excellent keypoint accuracy, the technique is computationally demanding and 

unsuitable for real-time processing in AAL scenarios. On the other hand, YOLOv3, a complex object identification 

system designed for speed and accuracy in real-time applications, was presented by Redmon and Farhadi [7]. It is a 

viable option for fall detection systems due to its ability to swiftly discover and classify things. 

Deep learning approaches, particularly those based on Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), provide a more comprehensive answer. Kwolek and Kepski [8] showed that deep models trained 

on wearable sensor data may accurately learn complex motion patterns. Kwolek and Kepski's depth-based fall detection 

offers simplicity but underperforms in low-resolution settings compared to pose-based systems." Added a critical 

assessment of the trade-offs between approaches in terms of accuracy, speed, and generalizability. Further research [9], 

expanded these findings to video-based inputs, demonstrating that deep learning architectures can extract high-level 

spatial-temporal information required for fall detection. However, these models often demand huge annotated datasets 

and computational resources, making real-time and edge-based deployment difficult in AAL systems. 

Bourke and O'Brien [10] conducted a comprehensive literature review and classified fall detection techniques as 

wearable, ambient, and vision-based systems, highlighting their various advantages and restrictions. Their findings 

emphasised the necessity of balancing detection accuracy, user comfort, and system feasibility—insights that are still 

applicable in modern AI-based solutions. This foundational assessment provides critical context for assessing newer 

methods, such as pose-based and deep learning approaches, in real-world applications. 

To improve clarity and give a structured summary of previous research, table 1 summarizes the fundamental aspects 

of exemplary fall detection algorithms across four important categories: posture estimation, object detection, and deep 

learning. The table compares each approach's typical strengths and weaknesses, as well as accuracy and inference delay 

where available [11], [12], [13], [14]. This synthesis aids in identifying actual trade-offs between performance and 

feasibility, which further validates the methodological choices made in this work. 
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Table 1. Summary of Fall Detection Approaches Based on Key Characteristics 

Method Key Studies Strengths Limitation 
Typical 

Accuracy 
Latency 

Pose Estimation Cao et al [6] 
Interpretable, good for 

movement analysis 

Sensitive to occlusion, 

requires clean background 
~88% 30ms 

Object Detection 

(YOLOv3) 

Redmon & 

Farhadi [7] 

First inference, real-time 

detection 

Higher false positives in 

cluttered scenes 
~90% 25ms 

Deep Learning 

(CNN-LSTM) 

Kwolek & 

Kepski 

High accuracy, robust to 

variation 

Heavy computation, needs 

large data 
~92% 40ms 

Compared to the methods described above, the current study combines skeleton posture estimation with a lightweight 

deep learning model to efficiently capture both spatial structure and motion context. Unlike YOLOv3, which focusses 

on bounding boxes, we use joint-based characteristics to limit false positives. Compared to typical CNN/RNN 

pipelines, our technique priorities computational efficiency, allowing for deployment in resource-constrained AAL 

systems without compromising accuracy. This synthesis emphasizes actual trade-offs and informs the design decisions 

behind our suggested technique. 

3. Methodology 

This section describes the experimental architecture and methodologies used to evaluate three different fall detection 

approaches: posture recognition, YOLOv3-based detection, and DL methods. We detail the data gathering and 

preparation methods, define each detection technique, and give our experimental design, including assessment metrics. 

After initial preprocessing, the overall architecture depicted in figure 1 for fall detection shows three different 

methodological pipelines processing video data. By extracting skeletal keypoints from identified human figures, the 

first pipeline, Pose Recognition, uses rule-based classification to enable effective movement analysis. The second 

pipeline, YOLOv3 Object Detection, priorities speed and moderate processing demand while concentrating on 

identifying human figures and quickly differentiating between fall and non-fall events. More complex fall and non-fall 

activity classification is made possible by the third pipeline, Deep Learning (DenseNet201 + LSTM), which combines 

long short-term memory networks to simulate temporal dynamics with convolutional neural networks to extract spatial 

characteristics from video frames.   

 

Figure 1. Three methods are used in the overall architecture for fall detection. 
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3.1. Data Acquisition and Preprocessing 

To assess the effectiveness of our fall detection models, we used the UR Fall Detection Dataset (URFD), a publicly 

available benchmark dataset commonly used in fall detection research. This dataset was chosen because it accurately 

represents fall and non-fall scenarios, is compatible with pose estimation and deep learning pipelines, and has a well-

structured video format that allows for frame-by frame analysis. The URFD dataset contains 70 video sequences that 

include both fall incidents and Activities of Daily Living (ADLs) like walking, sitting, and bending. Each clip is 

labelled with the appropriate activity, and data is available in both RGB and depth video formats. The recordings were 

made in controlled indoor surroundings using a Microsoft Kinect sensor, which ensured constant conditions between 

samples [11]. To achieve a balanced and representative evaluation, the dataset was partitioned into training (70%), 

validation (15%), and test (15%) subsets using stratified sampling, keeping an approximate 30% number of fall 

occurrences in each group. 

To provide rigorous evaluation, we used publicly accessible fall detection datasets from prior research [12], [13] these 

datasets cover a wide range of events, including simulated falls and ordinary activities. The video data was preprocessed 

as follows: Video streams were broken down into individual frames to improve posture assessment and object 

recognition. Each frame was normalized to standardize pixel values, resulting in greater model convergence. Data 

augmentation: Rotation, scaling, and flipping were utilized to increase the diversity of training samples. 

Fall events were carefully annotated to provide accurate ground truth labeling. For the posture identification approach, 

we retrieved skeleton keypoints from each frame using Cao et al.'s real-time multi-person 2D pose estimation method 

from related work section. Similarly, the YOLOv3-based technique used preprocessed frames as input to recognize 

and locate human figures, whereas deep learning models processed raw video sequences for end-to-end feature learning 

[15], [16], [17], [18]. 

3.2. Fall Detection Methods 

3.2.1. Pose Recognition Approach 

The pose recognition approach uses skeletal keypoint extraction to assess human posture and identify irregular motions 

that indicate a fall. We constructed a real-time multi-person 2D posture estimation system using the open-sourse 

framework previewed in related work section. Figure 2 shows the multistage representation of human posture estimate 

employed in this study, which includes temporal 2D stance sequences, skeletal overlay on RGB pictures, and 3D pose 

reconstruction. The top panel shows a frame-by-frame development of 2D skeleton keypoints, which capture changes 

in body posture over time [19], [20]. Such temporal sequences are crucial for detecting unexpected deviations from 

normal movement trajectories, which are frequently connected with falls. The central image shows the precision of 

joint detection by superimposing estimated keypoints over a real-world RGB frame. 

 

(a) 
 

(b) 
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(c) 

Figure 2. Skeleton based falling 

This stage confirms the posture estimation algorithm's reliability in interior situations with visual noise and background 

complexity, which is consistent with Ambient Assisted Living (AAL) conditions [21], [22], [23]. The bottom panel 

depicts a 3D skeleton reconstruction, which provides spatial insights into body position and joint articulation. This 3D 

representation is especially useful for distinguishing between acts with comparable 2D projections—such as sitting 

abruptly versus falling—and contributes to increasing classification performance. Collectively, these visualizations 

demonstrate the practical utility of pose-based analysis in real-time fall detection systems, as well as the benefits of 

mixing spatial and temporal information within deep learning frameworks [24], [25]. 

Body orientation, angular velocity, and acceleration are computed using the extracted keypoints, which include the 

head, shoulders, elbows, and knees. A rule-based classifier uses these characteristics to distinguish between regular 

activities and fall incidents. Although this approach is highly interpretable, it is susceptible to occlusion and crowded 

backdrops [11]. 

3.2.2. YOLOv3-Based Detection  

The YOLOv3 object detection architecture described in the related work section was chosen for its excellent balance 

of speed and accuracy. YOLOv3 was fine-tuned in our implementation to recognize human figures and categorize them 

as "fall" or "non-fall". The network's capacity to conduct multi-scale detection makes it ideal for real-time applications, 

but it may yield false positives in complicated or congested scenarios [12]. 

3.2.3. Deep Learning-Based Methods 

Our deep learning method combines a convolutional neural network (DenseNet201) and a recurrent neural network 

(LSTM) to extract spatial and temporal characteristics from video clips. DenseNet201 analyses each video frame 

independently to extract high-level spatial information including body posture and ambient data [14]. These frame-

level information is then successively sent into the LSTM layer, which detects temporal relationships and dynamic 

transitions between frames. This design is inspired by the time character of fall occurrences, which, as previously noted 

in the literature study, necessitates representing motion progression rather than static appearance. While LSTM is often 

employed for sequential data such as text or time series, it performs exceptionally well in video-based tasks where 

frames constitute a temporal sequence. Thus, the hybrid DenseNet201-LSTM architecture enables the model to 

comprehend both what is happening in each frame and how those events evolve over time, thereby improving 

classification accuracy in fall detection [18]. 

4. Results and Discussion 

This section summarizes the experimental results from our comparative study of three fall detection approaches: 

posture recognition, YOLOv3-based detection, and deep learning methods. Performance is measured using important 

parameters like as accuracy, precision, recall, F1-score, and inference time. Additionally, visual representations are 

supplied to demonstrate the trends and discriminating capabilities of each approach. Table 2 highlights the performance 

metrics calculated from the test dataset. The findings demonstrate that, while each technique has potential detection 

capabilities, discrepancies appear in terms of computing efficiency and classification reliability. 

Table 2. Comparative Performance Metrics for Fall Detection Methods 

Metric Pose Recognition YOLOv3-Based Detection Deep Learning Methods 

Accuracy (%) 88.5 90.2 92.0 
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Precision (%) 87.0 89.0 91.0 

Recall (%) 85.5 90.5 93.0 

F1-Score 86.2 89.7 92.0 

Inference Time (ms) 30.0 25.0 40.0 

The deep learning strategy has the best overall accuracy and F1-score, implying a stronger capacity to learn complicated 

spatial and temporal aspects from video data. YOLOv3, while somewhat less accurate, has quicker inference times, 

which is advantageous for real-time app568888888lications. In contrast, the posture recognition approach has high 

interpretability but suffers from robustness when dealing with occlusions and complicated backdrops. 

In addition to the quantitative measures, we assessed the training and validation patterns, as well as the discriminating 

abilities of each technique using visual tools. While table 2 and figure 4 confusion matrices summarise the overall 

model performance across the test dataset, table 3 provides qualitative instances of action predictions made by the 

DenseNet201-LSTM model. For each test sequence, we provide the ground truth label, predicted class, and confidence 

score (softmax probability). These samples are chosen to demonstrate both successfully and incorrectly classified 

actions, providing insight into specific model behaviors—for example, when "sitting abruptly" is confused with "fall." 

This table 3 is not intended to be statistically representative, but rather to supplement quantitative evaluation by 

emphasizing common model reactions in real-world situations. 

Table 3. Example Predictions of the DenseNet201-LSTM Model on Selected Test Videos 

Sample ID Ground Truth Action Predicted Action Confidence % 

VID_007 Fall Fall 94.7% 

VID_012 Sitting Fall 68.2% 

VID_019 Walking Walking 92.5% 

VID_024 Fall Sitting 61.3% 

VID_031 Sitting Sitting 89.4% 

To further evaluate model resilience, we examined the confusion matrices for each strategy (figure 3).  These matrices 

provide class-level performance insights by identifying which specific activities falls versus non-falls were more prone 

to misclassification.  The deep learning method demonstrated a balance of sensitivity and specificity, with fewer false 

positives and false negatives.  Pose identification, on the other hand, struggled to distinguish small transitions (for 

example, sitting fast vs. falling), resulting in increased misclassification. YOLOv3 demonstrated significant 

disorientation, particularly during falls involving occlusion or partial sight.  

 

Figure 3. Training and validation loss and accuracy trends over epochs for the three approaches. 
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Figure 3 depicts the progression of training and validation loss, as well as the accompanying accuracy trends throughout 

training epochs. The deep learning model, as shown, exhibits continuous convergence and lower validation loss than 

the other approaches, proving its strong learning potential. Figure 4 shows that DL has the largest Area Under the 

Curve (AUC), suggesting improved classification ability for separating fall occurrences from routine activity. YOLOv3 

also shows competitive AUC, indicating its efficacy. Pose Recognition has a somewhat lower AUC, indicating poorer 

ability in detecting fall occurrences. 

 

Figure 4. ROC curves comparing the discrimination capabilities of pose recognition, YOLOv3-based detection, and 

deep learning methods. 

Class-Level Performance and Confusion Matrix Analysis to aggregate metrics like accuracy, precision, recall, and F1-

score, we examined class-wise performance using confusion matrices to see how well each model distinguishes 

between "fall" and "non-fall" classes. Figure 5 depicts the confusion matrices for each of the three examined 

approaches. As shown, the deep learning-based method (DenseNet201-LSTM) produced the best-balanced results, 

with the lowest percentage of false positives and false negatives, correctly recognizing 93% of autumn occurrences and 

91% of non-fall events. The YOLOv3-based technique demonstrated significant class-level classification but had a 

slightly higher false positive rate, frequently misidentifying quick sitting or crouching as falls. In contrast, the posture 

recognition approach showed the most misunderstanding between fall and non-fall, especially in occlusion or cluttered 

background settings [24], [25]. 
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Figure 5. Confusion matrices highlighting the distribution of classification errors across methods. 

This analysis emphasizes the need of evaluating not only overall performance but also class-specific dependability, 

especially in safety-critical applications like fall detection, where false negatives can have serious repercussions. In the 

final phase of model comparison, we used a Voting Ensemble technique to average the results of the three base 

classifiers: pose recognition, YOLOv3, and the DenseNet201-LSTM deep learning model [21], [22], [23].  The 

averaging method was chosen for its computational efficiency, ease of implementation, and applicability for real-time 

AAL systems, which require low-latency processing. While more complex ensembling techniques, such as stacking or 

weighted voting, can sometimes improve performance, they frequently necessitate additional meta-learner training and 

careful weight tuning, which increases computational overhead and may result in overfitting—particularly on 

moderately sized datasets like URFD. In contrast, averaging balances model diversity and resilience by smoothing out 

individual misclassification errors.  

5. Conclusion 

The comparative examination of our three fall detection methods—pose recognition, YOLOv3-based detection, and 

deep learning—reveals unique trade- offs that must be considered in real-world deployment. Our digital examination 

found that deep learning algorithms had the highest overall accuracy (92.0%), precision (91.0%), recall (93.0%), and 

F1-score (92.0%). This success is due to deep learning models' capacity to capture complex spatial and temporal 

dynamics, as previously described in the Related Work section. However, improved precision comes at the expense of 

higher processing needs, with an average inference time of 40 ms per frame. Such processing burden may restrict real-

time applications in resource-constrained contexts. YOLOv3-based detection offers a balanced alternative.  With 

90.2% accuracy, 89.0% precision, and 90.5% recall, YOLOv3 provides rapid inference (25 ms per frame), making it 

perfect for real-time monitoring systems.  Its performance, as evidenced by the ROC curves (figure 2) and confusion 

matrices (figure 3), exhibits good discriminative powers despite a somewhat higher incidence of false positives in 

crowded circumstances.  This trade-off between speed and accuracy corresponds to previous research on real-time 

object detection efficiency. 

In comparison, the posture recognition approach, while providing great interpretability through skeleton keypoint 

analysis, achieved a lower accuracy (88.5%) and is more susceptible to occlusions and background noise.  As 

previously noted in related work section, such constraints impede its adaptability in dynamic or congested 

environments, although providing insights into fall biomechanics. The detecting mechanism should be chosen based 

on the application's unique requirements. Real-time monitoring systems that require prompt warnings may prefer 

YOLOv3-based detection due to its quick inference time, even if it results in a little trade-off in overall accuracy. High- 

accuracy application cases where detecting precision is critical might benefit from deep learning algorithms, assuming 

computational resources are available. Clinical Interpretability: In contexts where comprehending the exact dynamics 

of falls is as important as detection itself, posture recognition provides a benefit despite its poorer robustness. 
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To assess the statistical robustness of the proposed models, we calculated 95% Confidence Intervals (CIs) for each 

performance indicator using bootstrap resampling (n=1000 iterations). The accuracy of the deep learning model was 

92.0% [CI: 89.4%, 94.1%], while YOLOv3 achieved 90.2% [CI: 87.6%, 92.8%]. The overlap in the models' CIs 

indicates that, while deep learning performs marginally better, the difference may not be statistically significant in all 

scenarios. Including CIs provides a more trustworthy perspective on model generalization and eliminates the danger 

of overestimation due to test-only metrics. 

6. Conclusion and Future Work 

This work conducted a detailed comparative examination of three fall detection approaches—pose recognition, 

YOLOv3-based detection, and deep learning methods—using standardized datasets. Deep learning approaches 

performed the best, with an overall accuracy of 92.0% and higher precision, recall, and F1-score. The training and 

validation trends (table 2) show that deep learning models have strong convergence, capturing complex spatial and 

temporal characteristics required for fall detection. However, these advances come at the cost of higher computational 

complexity and lengthier inference periods (40 ms), which may provide a hurdle to real-time implementation. 

YOLOv3-based detection achieved competitive accuracy (90.2%) while providing much shorter inference times (25 

ms). This performance advantage makes YOLOv3 particularly appealing for real-time applications, despite its tendency 

to produce a larger percentage of false positives in complicated scenes—as indicated by the ROC curves and confusion 

matrices. Pose identification systems, which depend on skeletal keypoint extraction for excellent interpretability, have 

offered important insights into human mobility and fall biomechanics. Nonetheless, their vulnerability to occlusions 

and noisy backgrounds reduced overall resilience, especially when compared to the deep learning technique. 

Future work will concentrate on creating a mobile-based fall detection application that is optimized for resource-

constrained contexts. This approach will feature real-time video stream processing using TensorFlow Lite models 

combined with edge AI hardware (such as Google Coral or NVIDIA Jetson Nano). Challenges to overcome include 

optimizing latency (<30 ms), improving energy economy for continuous monitoring, and ensuring data security through 

privacy-preserving processing. Furthermore, user studies with senior volunteers will be done to assess usability and 

therapeutic efficacy prior to deployment. 
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