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Abstract 

This study proposes a deep learning-based solution to address the longstanding challenge of accurately identifying Indian medicinal plants, which 

are vital to Ayurvedic pharmaceutics but often misidentified due to their morphological similarities. The objective is to develop a reliable, 

automated classification system using image processing and advanced neural network architectures. A dataset of 5,945 images representing 40 

distinct medicinal plant species was sourced from Kaggle and augmented to 11,890 images using techniques such as flipping, rotation, and scaling 

to enhance diversity. The models tested include a baseline Convolutional Neural Network (CNN), transfer learning with DenseNet121, 

DenseNet169, and DenseNet201, a voting ensemble of these DenseNet variants, and a hybrid DenseNet201-LSTM architecture. Experimental 

results show that the CNN model achieved the lowest accuracy at 69.58%, while the hybrid DenseNet201-LSTM model reached the highest 

validation accuracy of 93.38%, with a precision of 94.74%, recall of 93.38%, and F1-score of 93.42%. These findings confirm the hybrid model’s 

superior ability to capture spatial and sequential dependencies in leaf features. The novelty of this work lies in the integration of DenseNet201 

with LSTM for medicinal plant classification, which has not been widely explored in this domain. The study also acknowledges dataset scalability 

as a limitation and proposes future work involving dataset expansion through botanical collaborations, integration of environmental metadata, 

and deployment of a mobile application using TensorFlow Lite for real-time, low-resource implementation. Overall, the research contributes a 

robust and scalable framework for medicinal plant identification, promoting trust in traditional medicine, supporting conservation efforts, and 

enabling practical field-level applications in both rural and clinical settings. 
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1. Introduction  

India possesses a rich and diverse botanical heritage, with an extensive array of medicinal plants that form the backbone 

of Ayurvedic medicine. These plants have been used for centuries in traditional healing practices and remain vital to 

the country’s cultural and pharmaceutical landscape. However, the accurate identification of medicinal plants continues 

to pose a significant challenge. Factors such as seasonal variations, geographical diversity, morphological similarities 

among species, and the use of identical vernacular names for different plants contribute to widespread confusion and 

misidentification [1], [2]. This issue is further exacerbated by limited awareness among collectors, traders, and local 

practitioners, often leading to the misallocation or substitution of plant materials in the supply chain [3]. As a result, 

the quality and efficacy of herbal medicines are compromised, undermining trust in traditional healing systems [4]. 

In response to these challenges, this research proposes a deep learning-based approach to automate and enhance the 

identification of medicinal plants using image data. Recent studies have demonstrated the effectiveness of machine 

learning and computer vision techniques in plant recognition, achieving high classification accuracies on controlled 

datasets [5], [6], [7]. However, many prior efforts have been limited by small datasets, narrow species scope, and low 

generalizability in real-world scenarios [8], [9]. To overcome these limitations, this study leverages a comprehensive 

dataset comprising 40 medicinal plant species sourced from Kaggle, enhanced through image augmentation techniques 
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such as rotation, flipping, and scaling to improve model generalization [10]. Multiple deep learning models are 

explored, including a baseline CNN, transfer learning approaches using DenseNet121, DenseNet169, and 

DenseNet201, and an ensemble voting method that combines the predictions of these three DenseNet architectures 

[11]. To further improve performance, a hybrid model integrating DenseNet201 with a Long Short-Term Memory 

(LSTM) network is proposed, enabling the capture of sequential spatial dependencies in image data [12]. The CNN 

model achieved an accuracy of 69.58%, while the hybrid DenseNet201-LSTM model reached the highest accuracy of 

93.38%, with consistently high precision, recall, and F1 scores across all architectures [13]. 

This research aims not only to provide a scalable and efficient solution to the longstanding problem of plant 

misidentification but also to contribute to the conservation and responsible use of India’s medicinal flora. By 

incorporating advanced deep learning techniques, the proposed system enhances the reliability and efficiency of plant 

identification, with practical implications for quality assurance in Ayurvedic medicine, conservation biology, and 

stakeholder education [14]. Ultimately, this work highlights the transformative potential of artificial intelligence in 

strengthening traditional healthcare systems and promoting sustainable herbal medicine practices. 

2. The Related Works 

Recent advancements in medicinal plant identification have explored a wide array of methodologies, prominently 

featuring machine learning and deep learning techniques. In this section, we compare, contrast, criticize, synthesize, 

and summarize key contributions from the literature. 

Several studies [1], [10], [13], [15], [16] demonstrate strong performance in plant classification tasks using different 

image-based machine learning approaches. For instance, [1] offers an efficient and cost-effective method, while [16] 

and [13] introduce mobile applications for real-time identification, reaching high accuracy levels above 97%. Studies 

such as [5], [6], and [17] show the efficacy of deep convolutional architectures like DenseNet, ShuffleNet, and 

OTAMNet, often achieving accuracy over 98%. Similarly, [18] and [19] propose ensemble and optimized CNN 

frameworks, further pushing the limits of classification performance. 

While methods in [10], [15], and [20] rely on manual feature extraction and traditional classifiers (NBC, KNN, ANN), 

others like [6], [13], [14], [17], and [16] utilize deep learning models that learn features automatically. Some works 

focus on small, region-specific datasets [3], [13], [21], whereas others tackle large-scale classification problems [8], 

[14], [22] with tens of thousands of plant species or millions of images. Additionally, studies differ in their deployment 

contexts: some are purely theoretical or lab-based [4], [23], while others emphasize real-world implementation in 

mobile or cloud-based systems [13], [16]. 

Despite promising accuracies, numerous limitations persist. Several studies [3], [10], [13], [21], [18] suffer from dataset 

limitations—either in size, diversity, or representativeness. Works like [24], [25], and [26] lack empirical 

benchmarking or comparative analysis of models. Privacy concerns and lack of data sharing are flagged in [15], and 

ethical considerations are overlooked in. Even high-performing models such as [17], and [26] may exhibit dataset-

specific performance, limiting generalizability. Furthermore, the absence of occlusion handling and insufficient 

validation under real-world conditions is common in [2], [27]. 

From the reviewed literature, a synthesis reveals strong consensus on the potential of deep learning, particularly CNNs 

and transfer learning, to improve accuracy in medicinal plant identification. Studies such as [6], [7], [14], and [18] 

collectively demonstrate the value of hybrid and ensemble models. There is an emerging trend of integrating advanced 

architectures like InceptionResNetV2 [22], DenseNet [4], and EfficientNet [27] with optimization strategies. The 

literature also underscores the importance of accessible public datasets and standardized benchmarks to enable 

reproducibility and scalability. Moreover, mobile implementation [13], [16] suggests a shift toward practical, user-

friendly solutions. 

While prior works contribute valuable insights into medicinal plant identification using AI techniques, they are often 

limited by dataset scope, environmental variability, or lack of robust validation. Our study builds upon these 

foundations by employing a diverse 40-class dataset, exploring multiple deep learning architectures including 

DenseNet121, DenseNet169, DenseNet201, a voting ensemble, and a hybrid DenseNet201-LSTM model. By 
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addressing the gaps identified in feature extraction, model robustness, and deployment feasibility, our approach offers 

a more comprehensive and scalable solution for real-world applications in herbal medicine classification. 

The literature reveals substantial progress in medicinal plant identification using deep learning but also highlights 

persistent gaps. Many studies rely on limited datasets and narrowly defined feature sets, constraining their applicability 

in diverse environmental contexts. Our study addresses these issues by using a dataset of 40 distinct classes and 

applying CNN, DenseNet121, DenseNet169, and DenseNet201, followed by ensemble learning and a DenseNet201-

LSTM hybrid model. This progression ensures improved accuracy, better generalization, and enhanced performance 

in varied scenarios. Moreover, we emphasize ethical considerations and comprehensive model validation. The result is 

a more scalable, accurate, and practical approach to medicinal plant identification with applications in pharmaceuticals, 

agriculture, and conservation. 

3. Methodology  

Our study employs a well-structured and systematic deep learning pipeline to classify Indian medicinal plant species 

based on leaf images. This pipeline (illustrated in figure 1) is meticulously designed to address key challenges such as 

intra-class similarity, environmental variability, and limited data per class. The methodology consists of four main 

stages: Data Acquisition, Data Preprocessing, Train-Test Split, and Class Prediction. In the data acquisition stage, a 

diverse and high-resolution image dataset of medicinal plant leaves was sourced from Kaggle, capturing a wide range 

of plant species, lighting conditions, and geographic contexts. This diversity is crucial to ensure the model's ability to 

generalize across real-world scenarios. Duplicate entries were removed, and class imbalance was addressed to create a 

reliable and representative dataset.  

 

Figure 1. Research Pipeline 

In the preprocessing stage, all images were resized to a fixed resolution of 150×150×3 pixels and normalized to aid 

convergence during training. Extensive data augmentation techniques—such as rotation, flipping, scaling, and 

brightness adjustment—were applied to simulate natural variations and enhance model robustness. After cleaning, the 

dataset was split into 80% training and 20% testing subsets, with augmentation applied uniformly to maintain class 

balance. For classification, we explored both baseline CNN architectures and advanced transfer learning models 

including DenseNet121, DenseNet169, and DenseNet201. An ensemble voting strategy was implemented to combine 

the strengths of individual models. Furthermore, we proposed a hybrid model combining DenseNet201 and LSTM, 
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which integrates spatial and sequential features to achieve superior classification performance. This multi-stage 

methodology, illustrated in figure 1, forms the foundation for accurate and efficient medicinal plant identification using 

deep learning. 

3.1. Data Acquisition 

A diverse and high-quality image dataset of Indian medicinal plant leaves was obtained from Kaggle [28], originally 

compiled by Arya Shah. This dataset comprises 5,945 labeled images representing 40 distinct medicinal plant species, 

with considerable variation in geographical origin, seasonal context, and environmental backgrounds. Such diversity 

ensures a robust foundation for training models capable of generalizing well to real-world plant identification scenarios. 

To maintain data integrity and ensure consistent learning performance, the dataset underwent an initial cleaning phase, 

where duplicate entries were removed and class distributions were balanced to prevent bias during training. The dataset 

emphasizes leaf morphology, which is a critical feature in plant taxonomy and provides rich visual cues for 

classification. To further increase the variability and enhance the model’s ability to generalize, we applied basic data 

augmentation techniques, including image rotation, flipping, and brightness adjustments, simulating natural variations 

in leaf orientation and lighting conditions. 

3.2. Data Preprocessing 

The preprocessing stage was essential to prepare the raw image data for effective deep learning model training. All 

images were uniformly resized to 150×150 pixels with 3 color channels (RGB) to ensure compatibility with standard 

convolutional neural network architectures and to maintain consistency in input dimensions. Following resizing, 

normalization was applied to scale pixel values to a [0,1] range, which facilitates faster and more stable convergence 

during training by reducing internal covariate shift. 

To enhance the model’s ability to generalize and handle real-world variations, the dataset was further enriched through 

data augmentation techniques, including random rotation, horizontal flipping, and scaling. These transformations 

introduce artificial diversity without altering the underlying class semantics, thereby reducing the risk of overfitting. 

Additionally, a comprehensive data cleaning process was conducted to eliminate ambiguous, mislabeled, or corrupted 

samples, ensuring that only high-quality and relevant images were retained for training. This preprocessing pipeline 

played a critical role in improving the robustness, accuracy, and generalizability of the classification models. 

3.3. Train-Test Split 

To enable reliable evaluation of model performance, the dataset—expanded to approximately 11,890 images after 

augmentation—was divided into training and testing subsets using an 80:20 split ratio. Each original image was paired 

with one augmented version, effectively doubling the dataset size and ensuring that class distributions remained 

balanced and representative across both subsets. 

The training set (80%) was exclusively used for model learning, allowing the deep learning architectures to extract and 

generalize relevant features from the data. In contrast, the testing set (20%) was kept entirely separate during training 

to ensure an unbiased assessment of the model’s ability to classify unseen data. Model performance was evaluated 

using key metrics including accuracy, precision, recall, and F1-score, providing a comprehensive view of classification 

effectiveness across all 40 medicinal plant species. This splitting strategy ensures both the robustness and validity of 

the experimental results. 

3.4. Class Prediction 

To address the multi-class classification of medicinal plant species, this study implemented and compared several deep 

learning approaches, including a baseline CNN, transfer learning models based on DenseNet variants (DenseNet121, 

DenseNet169, and DenseNet201), an ensemble voting mechanism, and a hybrid architecture that integrates 

DenseNet201 with a LSTM network. These models were trained and evaluated using the augmented dataset to 

determine the most accurate and robust architecture for plant image classification. 

The baseline CNN model was developed using a series of convolutional layers with 32 filters, a kernel size of 3×3, and 

ReLU activation. Max-pooling layers with a 2×2 window were included to reduce the spatial dimensions of feature 
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maps. The extracted features were then flattened and passed into a dense layer containing 128 neurons with ReLU 

activation, followed by a final softmax output layer for multi-class prediction. The softmax function computes the 

probability distribution over the 40 plant classes using the following equation: 

𝑦𝑖̂ =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐶
𝑗=1

,  𝑖 = 1,2, … , 𝐶 (1) 

The variable C represents the number of classes, and zi is the raw output (logit) for class i. This baseline architecture 

served as a reference to measure the improvements brought by more advanced models. 

To enhance performance and feature learning, transfer learning was utilized by incorporating pre-trained DenseNet121, 

DenseNet169, and DenseNet201 models. These models were initially trained on ImageNet and provided strong 

hierarchical representations of image features. The original top layers of each DenseNet were removed, and their 

convolutional bases were frozen to preserve pre-trained weights. A GlobalAveragePooling2D layer was then added to 

reduce the spatial dimensions of the feature maps. This operation calculates the mean of each feature map using the 

formula: 

𝐺𝐴𝑃(𝑥) =
1

𝐻 × 𝑊
∑ ∑ 𝑥𝑖𝑗

𝑊

𝑗=1

𝐻

𝑖=1

 (2) 

Following this, additional dense layers and a softmax layer were added for classification. DenseNet121 was selected 

for its speed and efficiency, DenseNet169 offered a balance between depth and complexity, while DenseNet201 

provided the deepest architecture with superior feature extraction capability. 

An ensemble voting strategy was introduced to improve prediction robustness and accuracy. In this approach, each of 

the three DenseNet models independently predicted a probability vector for all classes. The final prediction was 

obtained by averaging these vectors element-wise, as expressed by: 

𝑃ensemble =
1

𝑛
∑ 𝑃𝑖

𝑛

𝑖=1

 (3) 

The term 𝑃𝑖 refers to the predicted probability vector from the ith model, and 𝑛 is the total number of models. The class 

with the highest averaged probability was selected as the final prediction. This method was preferred over stacking or 

weighted voting due to its simplicity and effectiveness, particularly with a limited-sized dataset. 

To further capture both spatial and sequential patterns, a hybrid model combining DenseNet201 and LSTM was 

constructed. DenseNet201, pre-trained on ImageNet, was used exclusively as a feature extractor by freezing its 

convolutional layers and excluding its classification head. The extracted features were passed through a 

GlobalAveragePooling2D layer, reshaped into sequences, and then processed using an LSTM layer to learn spatial 

relationships within the image features. Dropout and additional dense layers with ReLU activation were used to 

introduce non-linearity and regularization. The final classification was performed using a softmax layer. The hybrid 

model was compiled using the Adam optimizer, described by the equations: 

mₜ =  𝛽₁𝑚ₜ₋₁ +  (1 −  𝛽₁)𝑔ₜ,    𝑣ₜ =  𝛽₂𝑣ₜ₋₁ +  (1 −  𝛽₂)𝑔ₜ² (4) 

The training process employed categorical cross-entropy as the loss function, given by: 

ℒ =  − ∑ 𝑦ᵢ 𝑙𝑜𝑔(ŷᵢ)

𝐶

𝑖=1

  (5) 

Model performance was evaluated using standard metrics such as accuracy, precision, recall, and F1-score. Among all 

tested architectures, the hybrid DenseNet201-LSTM model achieved the highest validation accuracy, exceeding 93%. 

This result highlights the strength of combining deep spatial feature extraction with sequential modeling for complex 

image classification tasks such as medicinal plant identification. 
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4. Results and Discussion 

This study systematically evaluated multiple deep learning models for classifying 40 species of Indian medicinal plants. 

The baseline CNN model achieved a validation accuracy of 69.58%, while transfer learning models showed 

progressively better performance: DenseNet121 reached 77.20%, DenseNet169 reached 81.18%, and DenseNet201 

achieved 83.55%. An ensemble of these three DenseNet models further improved accuracy to 89.66%, and finally, the 

hybrid DenseNet201-LSTM model achieved the best performance with an accuracy of 93.38%. These results confirm 

the benefit of using deeper networks and hybrid learning in fine-grained classification tasks involving complex visual 

patterns. 

Figure 2 illustrates the training and validation accuracy trends of the CNN model over 20 epochs. The training accuracy 

shows a consistent upward trend, starting below 0.2 and reaching close to 0.80 by the final epoch. This indicates that 

the model is effectively learning patterns from the training data. However, the validation accuracy begins to plateau 

around epoch 12 and fluctuates thereafter, peaking below 0.70. This divergence between training and validation 

accuracy in the later stages of training suggests that the model is beginning to overfit — learning the training data too 

well while failing to generalize effectively to unseen validation data. The increasing gap between the two curves 

highlights the CNN model's limitations in capturing complex features needed for distinguishing between visually 

similar medicinal plant species. 

Figure 3 presents the training and validation loss curves for the same CNN model. Both losses decrease steadily during 

the early training phases, indicating successful error minimization. However, after epoch 10, the validation loss 

decreases at a slower rate and begins to diverge from the training loss. This growing gap between the two loss curves, 

particularly after epoch 15, reinforces the earlier observation of overfitting. While the model continues to perform well 

on training data, its performance on the validation set stagnates. These trends confirm that although the CNN 

architecture is capable of learning basic visual features, it lacks the representational depth and generalization ability 

necessary for accurate multi-class classification in this domain. More advanced architectures or transfer learning 

techniques are required to improve performance. 

  

Figure 2. Total Validation Accuracy vs Total Accuracy 

of CNN 

Figure 3. Total Validation Loss vs Total Loss of CNN 

Figure 4 presents the training and validation accuracy curves of the DenseNet121 model over 20 epochs. Unlike the 

CNN model, the DenseNet121 architecture exhibits a strong alignment between training and validation accuracy 

throughout the training process. Both curves rise rapidly in the initial epochs and continue to improve consistently, 

ultimately converging near 0.80. The close proximity of these two curves suggests that the model is learning in a stable 

and generalized manner, without significant overfitting. This performance improvement is a direct result of leveraging 

transfer learning with pre-trained ImageNet weights, which allows the model to begin training from a strong feature 

representation base. 

Figure 5 shows the corresponding training and validation loss curves for DenseNet121. Both loss values decrease 

smoothly and consistently over the epochs, with the validation loss closely following the training loss. By the end of 

training, both curves settle below a value of 0.6, and the narrow gap between them indicates minimal generalization 

error. This balance between learning and generalization confirms that DenseNet121 effectively adapts to the 

classification task, making it significantly more robust and reliable than the baseline CNN model. The stable 
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convergence of loss values further validates the architecture’s capacity to extract meaningful features while resisting 

overfitting.  

  
Figure 4. Total Validation Accuracy vs Total Accuracy 

of DenseNet121 

Figure 5. Total Validation Loss vs Total Loss of 

DenseNet121 

Figure 6 illustrates the training and validation accuracy curves of the DenseNet169 model across 20 epochs. From the 

early stages of training, both curves show a steep and consistent upward trend, with the validation accuracy closely 

tracking the training accuracy throughout. By the final epoch, the model reaches a validation accuracy of approximately 

81.18%, confirming a noticeable improvement over previous architecture. The tight alignment between the two curves 

suggests that the model maintains a balanced learning process, exhibiting strong generalization capabilities. This 

indicates that DenseNet169 successfully leverages its deeper architecture and densely connected layers to extract more 

abstract and discriminative features from the leaf image dataset. 

Figure 7 presents the training and validation loss curves for DenseNet169. Both losses decrease progressively and in 

parallel, showing no significant divergence between training and validation loss values. This smooth and synchronized 

downward trend demonstrates that the model is learning effectively across epochs without overfitting. The consistent 

reduction in validation loss also indicates that the model retains its ability to perform well on unseen data, further 

validating the efficacy of the DenseNet169 architecture. The performance gain achieved here can be attributed to the 

network’s enhanced capacity for feature reuse and gradient flow, which are key strengths of the DenseNet family.  

  

Figure 6. Total Validation Accuracy vs Total Accuracy 

of DenseNet169 

Figure 7. Total Validation Loss vs Total Loss of 

DenseNet169 

Figure 8 displays the training and validation accuracy curves for the DenseNet201 model across 20 epochs. Among all 

transfer learning models tested, DenseNet201 demonstrates the most stable and highest performance, with validation 

accuracy reaching approximately 83.55%. Throughout the training process, the validation accuracy closely follows the 

training accuracy, with both curves showing consistent and smooth growth. This close alignment between the two 

curves suggests that the model is not only learning effectively but also generalizing well to unseen data. The result 

reflects DenseNet201’s enhanced representational power due to its deeper architecture, which enables it to capture 

fine-grained spatial patterns in complex leaf images more effectively than its predecessors. 

Figure 9 shows the corresponding training and validation loss curves for DenseNet201. Both curves decline steadily 

and in parallel, with validation loss consistently tracking slightly above the training loss, indicating very low 

generalization error. By the final epoch, both losses converge near 0.5, confirming that the model maintains high 
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prediction accuracy while avoiding overfitting. The consistently small gap between training and validation loss further 

highlights the robustness and stability of DenseNet201, making it a highly suitable choice for complex image 

classification tasks such as medicinal plant identification. These results affirm that the model's deep and densely 

connected layers effectively facilitate feature reuse and gradient propagation, leading to superior learning efficiency.  

  

Figure 8. Total Validation Accuracy vs Total Accuracy 

of DenseNet201 

Figure 9. Total Validation Loss vs Total Loss of 

DenseNet201 

Figure 10 illustrates the training and validation accuracy curves of the hybrid DenseNet201-LSTM model over a limited 

number of epochs. The model demonstrates a rapid convergence, reaching a validation accuracy of approximately 

93.38% within the first few epochs. Interestingly, the validation accuracy slightly exceeds the training accuracy in 

some epochs, which is often indicative of a well-regularized model. This behavior can be attributed to the incorporation 

of dropout layers and the LSTM component, which enhances the model’s ability to capture long-range spatial 

dependencies across feature sequences generated by DenseNet201. The early saturation of the accuracy curve, 

combined with its high peak, reflects the model's ability to learn discriminative features quickly and generalize 

effectively to unseen data. 

Figure 11 presents the corresponding training and validation loss curves. The training loss remains consistently low 

and stable, while the validation loss fluctuates slightly but stays within a narrow range between 0.14 and 0.22, showing 

no signs of escalation. This suggests that the model avoids overfitting despite its rapid learning behavior. The low 

magnitude of both losses confirms that the hybrid model maintains robust performance throughout training. The 

combination of DenseNet201’s deep feature extraction capabilities with LSTM’s temporal modeling results in a highly 

expressive and generalizable architecture, making it particularly well-suited for classifying complex leaf images in 

fine-grained tasks such as medicinal plant identification. 

  

Figure 10. Total Validation Accuracy vs Total 

Accuracy of Loss of Hybrid Model LSTM 

Figure 11. Total Validation Loss vs Total Hybrid 

Model (DenseNet201-DenseNet201- LSTM 

The experimental results, as presented in table 1, clearly demonstrate that increasing model complexity leads to 

consistent improvements in classification performance. Starting from a basic CNN model and progressing through the 

DenseNet family to a hybrid DenseNet201-LSTM model, each step introduces architectural enhancements that 

translate into better accuracy, precision, recall, and F1-score. The CNN model, while capable of learning low-level 

features, achieves only moderate accuracy and shows signs of overfitting, as evidenced by the divergence between 

training and validation performance. In contrast, the DenseNet models make use of pre-trained weights and dense 
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connectivity to extract more meaningful patterns, leading to a clear upward trend in performance across evaluation 

metrics. 

Table 1. Overall Accuracy Result 

Algorithms CNN 
Dense 

Net121 

Dense 

Net169 

Dense 

Net201 

Voting 

Ensemble 

Hybrid 

(DenseNet201-LSTM) 

Predicted Plant Hibiscus Aloe Vera Aloe Vera Aloe Vera Hibiscus Hibiscus 

Accuracy 0.6958 0.7720 0.8118 0.8355 0.8966 0.9338 

Precision 0.7194 0.7808 0.8178 0.8365 0.8998 0.9474 

Recall 0.6958 0.7720 0.8118 0.8355 0.8966 0.9338 

F1 Score 0.6988 0.7699 0.8101 0.8331 0.8947 0.9342 

Among the DenseNet variants, DenseNet201 stands out by achieving an accuracy of 83.55 percent, demonstrating the 

benefit of deeper feature representations. The model shows high training stability, with minimal divergence between 

training and validation accuracy and loss. To further enhance performance, a voting ensemble that integrates 

DenseNet121, DenseNet169, and DenseNet201 is applied. This ensemble achieves 89.66 percent accuracy by 

averaging the softmax outputs from the three models. The ensemble approach reduces classification errors by balancing 

the strengths and weaknesses of individual architectures and is particularly useful for complex classification tasks 

involving subtle visual distinctions. 

The best overall results are obtained from the hybrid DenseNet201-LSTM model, which integrates convolutional 

feature extraction with sequential modeling. This architecture achieves an accuracy of 93.38 percent, the highest among 

all models tested. DenseNet201 is used to extract deep spatial features, which are then reshaped and passed into an 

LSTM layer that captures sequential relationships across feature dimensions. The LSTM enhances the model’s ability 

to understand the structure and variation of leaf morphology. In addition, dropout layers contribute to regularization, 

helping the model avoid overfitting despite its complexity. This combination proves especially effective in identifying 

nuanced differences between visually similar medicinal plants. 

As shown in table 1, the hybrid model also attains the highest scores in precision (0.9474), recall (0.9338), and F1-

score (0.9342). These results clearly surpass those of the CNN, individual DenseNet models, and the ensemble. Each 

progression in model design results in measurable gains, both in predictive accuracy and generalization capability. The 

hybrid architecture not only meets the technical demands of fine-grained classification but also provides a strong 

foundation for practical applications in medicinal plant recognition. This confirms that combining convolutional and 

recurrent layers offers a powerful strategy for solving complex image analysis problems in real-world environments. 

5. Conclusion 

This study successfully implemented and evaluated multiple deep learning approaches for medicinal plant 

classification, including a baseline CNN, individual transfer learning models using DenseNet121, DenseNet169, and 

DenseNet201, a voting ensemble of these DenseNet variants, and a hybrid model combining DenseNet201 with an 

LSTM layer. These methods were tested on a dataset comprising 40 diverse plant species and demonstrated strong 

classification performance, with the hybrid DenseNet201-LSTM model achieving the highest accuracy. The research 

underscores the potential of deep learning in supporting accurate and scalable identification of medicinal plants, 

offering a promising alternative to traditional, labor-intensive identification methods. 

The outcomes of this project have important implications for improving the reliability of plant identification in the 

herbal medicine supply chain. By reducing the risk of misidentification, these models can help safeguard the 

authenticity and quality of medicinal plant products, ultimately building greater trust in traditional healing practices. 

Furthermore, this technology can support field practitioners, researchers, and consumers by providing accessible and 

objective tools for identifying medicinal plants, thereby contributing to the integrity of traditional medicine systems 

and promoting public health. 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2758-2769 

ISSN 2723-6471 

2767 

 

 

 

Despite the encouraging results, one of the key limitations encountered is the relatively small size of the dataset, which 

may constrain the model's generalizability to broader plant populations and environmental contexts. To address this, 

future efforts will focus on expanding the dataset through collaboration with botanical institutions and conservation 

organizations. Incorporating environmental metadata, such as soil type, climate, and regional variation, could further 

enhance the model's robustness and accuracy. However, these additions will introduce new challenges, including class 

imbalance and variability, which can be mitigated through data augmentation techniques and re-sampling strategies. 

Moving forward, the research will be operationalized through the development of a mobile application using 

TensorFlow Lite, allowing for real-time plant identification on low-power devices typically used in rural and resource-

limited areas. The app will feature a user feedback system and validation mechanism to ensure continuous improvement 

and community engagement. Educational outreach and awareness campaigns will accompany deployment to promote 

sustainable harvesting and biodiversity conservation. Long-term success will be supported by international 

partnerships, enabling cross-border knowledge sharing and contributing to global standards for medicinal plant 

identification and preservation. 
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