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Abstract 

The primary objective of this paper is to present a feedback regulator using a Luenberger observer for state estimation of the ball-plate system, 

which is characterized by high instability and non-linearity. The novelty of this work lies in the design of an innovative control approach that 

explicitly considers time delay in the feedback loop—an aspect often neglected in prior studies. The adopted methodology involves modeling the 

system in state space while accounting for delay, and then constructing a state-feedback observer using a geometric approach. Numerical 

simulations were conducted to validate the proposed design. For instance, with an observer gain of L₂ = [1.58, 1.35], the controller minimizes 

response time along the x-axis and remains stable for delays up to 0.6364 seconds. Similarly, along the y-axis, a gain of L₅ = [0.58, 0.27] ensures 

robustness even with delays up to 1.4084 seconds, while effectively reducing initial overshoot. In all tested scenarios, estimation errors converged 

to zero, confirming the effectiveness of the observer-based controller. These findings support future work on automatic gain tuning based on 

performance specifications. 
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1. Introduction 

The ball and plate system [1], similar to the levitation-magnetic system [2] and the ball and beam system [3], [4], 

exhibits intricate dynamics as a result of its inherent instability and nonlinearity. Consequently, it has garnered 

significant attention in the fields of engineering education and research. The primary benefits of this system include its 

ease of implementation and the opportunity it provides for experimentally validating theoretical concepts in areas such 

as control, analysis, and other engineering fields [5], [6]. 

A multitude of works are documented in the literature. The ball-plate mechanism in [7], [8] utilizes electromagnetic 

actuators to achieve 2 degrees of motion. A control law is designed for this system to adjust the ball's position based 

on a Lyapunov-based approach. The Linear Quadratic Regulator (LQR) is introduced in [9], [10]. The authors in [11], 

[12] examine the utilization of a PD position controller for regulating the system. A novel variant of controller, known 

as dual PD controller, is introduced in [13] to control the ball's position. The literature [14], [15] examines and contrasts 

two control strategies: the PID and a controller based on the sliding mode. Four controllers are compared in [16], PID 

controller, sliding mode controller, linear-quadratic regulator, and fuzzy controller. 

Nonetheless, these investigations were typically conducted using simplified system models [17], [18], [19] that 

neglected the delay inherent in the control loop. This paper proposes the integration of an observer [20] to evaluate the 

system state while considering feedback latency. To accomplish this objective, a state feedback control law [21] will 

be employed in conjunction with a frequency-domain method known as the geometric approach [1], [22]. 

The subsequent sections of this article are structured as follows. Section 2 introduces a system modeling approach that 

considers the influence of feedback latency. In Section 3, a Luenberger observer [23] is constructed to accurately 

predict the system's state. In Section 4, the accuracy of the outcomes derived from the simulation is validated. To 

conclude, Section 5 presents our results and outlines our plans for future work. 
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2. Ball - Plate System Modelling 

Using Lagrange's method, we developed a mathematical representation of the system (figure 1), which forms the basis 

for the control law designed in this article. The subsequent section provides a detailed explanation of the methodology 

employed. Lagrange's technique allows us to determine the model that describes the system's dynamics through the 

subsequent equations: 

𝜕

𝜕𝑡
(

𝜕𝐿

𝜕�̇�
) − 

𝜕𝐿

𝜕𝑥
= 0 (1) 

𝐿 = 𝐸𝑘 − 𝐸𝑝 (2) 

𝐸𝑘 is the kinetic energy and 𝐸𝑝 is the potential energy. 

 

Figure 1. Structure of the ball and plate system 

To simplify the initial dynamic modeling, we begin by disregarding slippage between the ball and the plate. The 

assumption of disregarding slippage, as stated, is made primarily to simplify the initial model derivation and focus on 

the core control and observation problem. While this is a common simplification in foundational studies of ball-and-

plate systems (figure 2), we acknowledge its potential influence on real-world applicability. In practice, especially 

during rapid plate accelerations or if the ball/plate surfaces have low friction coefficients, slippage can occur. This 

unmodeled dynamic could lead to a mismatch between the predicted and actual ball position, potentially degrading the 

controller's tracking performance and, in extreme cases, affecting its robustness. Future extensions of this work could 

incorporate slip models or adaptive/robust control techniques to mitigate these effects and enhance performance across 

a wider range of operating conditions. 

 

Figure 2. View of the ball and plate system from the side 

Under this assumption, the expressions for 𝐸𝑘 and 𝐸𝑝 can then be formulated as: 

𝐸𝑘 =  
1

2
 𝑚𝑏(�̇�𝑏

2 + �̇�𝑏
2) +  

1

2
 𝐽𝑏𝜔𝑏

2 (3) 

𝐸𝑝  =  −𝑚𝑏𝑔𝑥𝑏 sin(𝛼)−𝑚𝑏𝑔𝑦𝑏 sin(𝛽) (4) 

By applying (1), where the Lagrangian L is defined in (2), we obtain: 
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𝜕

𝜕𝑡
(

𝜕𝐿

𝜕�̇�
) =

𝜕

𝜕𝑡
((𝑚𝑏 +

𝐽𝑏

𝑟𝑏
2) �̇�𝑏)=(𝑚𝑏 +

𝐽𝑏

𝑟𝑏
2) �̈�𝑏 (5) 

and 

𝜕𝐿

𝜕𝑥
= 𝑚𝑏𝑔 sin(𝛼) (6) 

Thus, by substituting equations (5) and (6) into (1), we obtain (7), which describes the ball's motion along the x-axis. 

�̈�𝑏 =
𝑚𝑏𝑔𝑟𝑏

2

𝑚𝑏𝑟𝑏
2 + 𝐽𝑏

 sin(𝛼) (7) 

Equation (7) describes the ball's trajectory in the x direction. In this case, the controller controls the angle 𝜗𝑥, and this 

is accomplished by employing the subsequent formula: 

sin(𝜗𝑥) 𝑟𝑀 = 𝑠𝑖𝑛(𝛼)𝐿𝑋 = ℎ (8) 

Thus, the equation relating the input 𝜗𝑥 and the output 𝑥𝑏 is determined : 

�̈�𝑏 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2 + 𝐽𝑏) 𝐿𝑋

 sin(𝜗𝑥) (9) 

In the same way, by applying this method, the equation representing the ball's motion on the y-axis is: 

�̈�𝑏 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2 + 𝐽𝑏) 𝐿𝑌

 sin(𝜗𝑦) (10) 

Further simplification of the model is achieved by assuming minimal fluctuation of 𝜗𝑥 and 𝜗𝑦. 

The simplification assuming minimal fluctuation of the plate angles 𝜗𝑥 and 𝜗𝑦 (i.e., sin(𝜗𝑥) ≈ 𝜗𝑥) is employed to 

linearize the system model. This linearization is standard practice as it significantly facilitates the design and analysis 

of linear control strategies, such as the state-feedback controller and Luenberger observer used in this study. While this 

approximation is generally valid for small deviations around the plate's horizontal equilibrium – a common operational 

regime for such control tasks – we recognize that for larger angular movements, the non-linear sin(𝜗𝑥) term would 

become more significant. This could lead to a discrepancy between the simplified model and the actual system 

dynamics, potentially affecting the controller's performance precision and stability margins when operating far from 

the equilibrium where the approximation is less accurate. A formal sensitivity analysis or the application of non-linear 

control techniques could be explored in future work to quantify these effects or extend the operating range. 

With this assumption, where sin(𝜗𝑥) ≈ 𝜗𝑥and sin(𝜗𝑦) ≈ 𝜗𝑦 (small angle approximation), the ball's movement, 

previously described by (9) and (10), can be further simplified to: 

�̈�𝑏 = 𝐺𝑥 𝜗𝑥 (11) 

�̈�𝑏 = 𝐺𝑦 𝜗𝑦 (12) 

With    𝐺𝑥 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑋

    and    𝐺𝑦 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑌

 

Note: Due to the similarities of the models for both axes, we will focus on studying the control law specifically for the 

x-axis. We will then derive the conclusions for the y-axis. 

Considering the feedback latency 𝜏1𝑥, the state-space model of the system in the x-direction is given by: 

{
  �̇�(𝑡)  =  𝐴 𝑥(𝑡)  +  𝐵 𝑢(𝑡 − 𝜏1𝑥)

 𝑦(𝑡)  =  𝐶 𝑥(𝑡)                             
 (13) 

The state vector 𝑥(𝑡) represents the ball's position and velocity along the x-axis, the input 𝑢(𝑡) is the plate's tilt angle, 

and the output 𝑦(𝑡) is the ball's position. Specifically, these are defined as: 

State vector: 𝑥(𝑡) =  [𝑥𝑏(𝑡) �̇�𝑏(𝑡)] 𝑇 

Input: 𝑢(𝑡) =  𝜗𝑥(𝑡) 
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Output:  𝑦(𝑡)  =  𝑥𝑏(𝑡) 

From the simplified dynamics (9) for the x-direction, �̈�𝑏 = 𝐺𝑥𝜗𝑥(𝑡), we can derive the state-space matrices as follows: 

Let 𝑥1 = 𝑥𝑏 and 𝑥2 = �̇�𝑏 .  

Then �̇�1 = 𝑥2 and �̇�2 = �̈�𝑏 =  𝐺𝑥 𝑢(𝑡). 

This leads to the matrices: 

𝐴 = [
0 1
0 0

] , 𝐵 = [
0

𝐺𝑥
] , 𝐶 = [1 0] 

3. State-Feedback Controller with Observer 

3.1.  The Luenberger Observer 

The primary aim of this study is to establish an observer for monitoring the state of the system, based on the principles 

of the Luenberger observer [23]. This type of observer is central to model-based control and estimation theory [24]. 

Model (12) defines the observer configuration employed, allowing the convergence of the estimate error 𝑒(𝑡) to zero. 

The delay 𝜏2𝑥 represents the additional time lag introduced into the feedback loop by the observer's processing and 

communication. 

{
  �̇�(𝑡)  =  𝐴 𝑥(𝑡)  +  𝐵 𝑢(𝑡 − 𝜏1𝑥) + 𝐿𝑥[𝑦(𝑡 − 𝜏2𝑥) − �̂�(𝑡 − 𝜏2𝑥)]

 �̂�(𝑡)  =  𝐶 𝑥(𝑡)                                                                                 
 (14) 

The observer gains 𝐿𝑥 = [𝑙𝑥1  𝑙𝑥2]𝑇 (and similarly 𝐿𝑦 = [𝑙𝑦1  𝑙𝑦2]𝑇) represent the weighting factors that determine how 

strongly the observer corrects its state estimate based on the discrepancy between the measured output y(𝑡) and the 

estimated output  �̂�(𝑡). Specifically, 𝑙𝑥1 influences the correction of the estimated position error, while 𝑙𝑥2 influences 

the correction of the estimated velocity error (as can be inferred from the structure of the observer dynamics in (14). In 

a practical sense, larger values for these gains generally lead to faster convergence of the estimated states to the true 

states, meaning the observer reacts more quickly to errors. However, excessively large gains can also amplify 

measurement noise, leading to a less smooth state estimate and potentially to oscillatory behavior or even instability in 

the closed-loop system, especially in the presence of delays as analyzed.  

The selection of 𝑙𝑥1 and 𝑙𝑥2 (and 𝑙𝑦1, 𝑙𝑦2) thus involves a trade-off between the speed of state estimation and sensitivity 

to noise and unmodeled dynamics. The stability regions, like those shown in figure 3 and figure 4, define the 

permissible combinations of these gains that ensure the observer error itself remains stable, providing a crucial 

guideline for their practical selection to achieve robust and accurate state estimation. 

Given the state feedback controller defined by: 

𝑢(𝑡)  =  −𝐾𝑥 �̂�(𝑡) (15) 

We determine the formula that governs the progression of the error:     

𝑠𝑒(𝑠) = (𝐴 −𝐿𝑥𝐶 𝑒−𝜏2𝑥𝑠) 𝑒(𝑠) (16) 

The characteristic equation is: 

𝐻(𝑠, 𝑙𝑥1, 𝑙𝑥2, 𝜏2𝑥) = det (𝐿𝑥𝐶 𝑒−𝜏2𝑥𝑠 +  𝑠𝐼2 − 𝐴) (17) 

3.2.  Routh-Hurwitz Stability Analysis 

This analysis allows for the identification of elements that ensure stability in relation to the observer. To achieve this, 

we first examine a scenario where the lag 𝜏2𝑥 is equal to zero.  In this case, substituting 𝜏2𝑥 = 0 (thus 𝑒−𝜏2𝑥𝑠 = 1) into 

the characteristic equation (17), and given 𝐴 = [
0 1
0 0

] , 𝐶 = [1 0], and 𝐿𝑥 = [𝑙𝑥1  𝑙𝑥2]𝑇, we have: 

𝐻(𝑠) = det(𝐿𝑥𝐶 𝑒−𝜏2𝑥𝑠 +  𝑠𝐼2 − 𝐴) = det ([
𝑙𝑥1

𝑙𝑥2
] [1 0] + [

s 0
0 s

] − [
0 1
0 0

]) 

Thus, (17) can be expressed as: 

𝐻(𝑠) = 𝑠2 + 𝑠 𝑙𝑥1 + 𝑙𝑥2 (18) 
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For this second-order polynomial, the Routh-Hurwitz stability criterion requires all coefficients to be positive for a 

stable system (as the first coefficient, a₀=1, is already positive). Therefore, for stability, we must have:    

 𝑙𝑥1 > 0 ,    𝑙𝑥2 > 0 (19) 

3.3.  The System Stability: Geometric Approach  

In this section, we will conduct a comprehensive analysis of the overall stability of the system with a non-zero delay 

τ₂ₓ. To achieve this, we employ a geometric approach. The core idea of this method is to find the boundaries of stability 

in the plane of the observer parameters (𝑙𝑥1, 𝑙𝑥2) by determining the conditions under which the characteristic equation 

(17) has purely imaginary roots, i.e., 𝑠 = 𝑗𝜔 where 𝜔 is a real frequency. Such roots signify that the system is on the 

verge of instability, at the boundary between stable and unstable regions. 

Therefore, substituting 𝑠 = 𝑗𝜔 into (17) gives: 

∀𝜔 ∈  ℛ+, ∃𝜏2𝑥
∗  ∈  ℛ+,          𝐻(𝑗𝜔, 𝑙𝑥1, 𝑙𝑥2, 𝜏2𝑥

∗ ) = 0 (20) 

In order for (20) to be satisfied, both its real and imaginary parts must independently be equal to zero. This separation 

leads to two real equations: 

{
−𝜔2 + 𝜔𝑙𝑥1 sin(𝜔 𝜏2𝑥

∗ ) + 𝑙𝑥2 cos(𝜔 𝜏2𝑥
∗ ) = 0 

           𝜔𝑙𝑥1 cos(𝜔 𝜏2𝑥
∗ ) − 𝑙𝑥2 sin(𝜔 𝜏2𝑥

∗ ) = 0
 

i.e. : 

𝑙𝑥1 = 𝜔 𝑠𝑖𝑛(𝜔𝜏2𝑥
∗ ) (21) 

𝑙𝑥2 = 𝜔2 cos(𝜔𝜏2𝑥
∗ ) (22) 

Equations (21) and (22) define a parametric curve in the (𝑙𝑥1, 𝑙𝑥2) plane, with 𝜔  (where 𝜔 > 0) serving as the parameter. 

For a fixed delay τ₂ₓ, as 𝜔 varies, this curve traces the stability boundary. Points (𝑙𝑥1, 𝑙𝑥2) on one side of this boundary 

will correspond to a stable observer, while points on the other side will correspond to an unstable one. The stability 

region itself, shown for example in figure 3, is the graphical representation of the set of (𝑙𝑥1, 𝑙𝑥2) pairs satisfying the 

stability conditions derived from this approach. 

Next, to determine the direction of transition across this stability boundary (i.e., whether the system moves from 

unstable to stable or vice-versa as a root crosses the imaginary axis), we analyze the sign of the expression 𝑅2𝐼1 −
𝑅1𝐼2.This analysis is based on established stability-crossing theorems [1], which examine how roots of the characteristic 

equation traverse the imaginary axis. Here, 𝑅i and 𝐼𝑖 are the real and imaginary parts derived from the partial derivatives 

of the characteristic function with respect to the parameters 𝑙𝑥1 and 𝑙𝑥2, evaluated at 𝑠 = 𝑗𝜔, as defined in (23) and 

(24) respectively. The sign of the expression 𝑅2𝐼1 − 𝑅1𝐼2indicates the direction in which the roots cross the imaginary 

axis. 

𝑅1 + 𝑗𝐼1   =  −
1

𝑠
 
𝜕𝐻(𝑠, 𝑙𝑥1, 𝑙𝑥2, 𝜏2𝑥

∗ )

𝜕𝑙𝑥2
|

𝑠=𝑗𝜔

 (23) 

𝑅2 + 𝑗𝐼2   =  −
1

𝑠
 
𝜕𝐻(𝑠, 𝑙𝑥1, 𝑙𝑥2, 𝜏2𝑥

∗ )

𝜕𝑙𝑥1
|

𝑠=𝑗𝜔

 (24) 

After obtaining the expressions of 𝑅𝑖 and 𝐼𝑖 , we have: 

𝑅2𝐼1 − 𝑅1𝐼2 = −
1

𝜔
< 0 (25) 

This indicates that when 𝜔 increases in the positive direction, a solution of (20) passes through the imaginary axis 

moving to the left. Therefore, by utilizing equations (19), (21), (22), and (25), and considering that 𝜏2𝑥
∗  is equal to 0.4 

seconds, we have determined the stability region, as illustrated in figure 3. Each point (𝑙𝑥1
∗ ,  𝑙𝑥2

∗ ) within the stability 

zone corresponds to a specific observer gain 𝐿𝑥
∗  where the characteristic equation, defined by 𝐻(𝑙𝑥1

∗ , 𝑙𝑥2
∗ , 𝜏2𝑥) = 0, is 

stable for all delays less than the critical delay 𝜏2𝑥
∗ . 
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3.4.  Critical Delay 

To determine the critical delay 𝜏2𝑥 
∗ ,  an examination of the stability threshold is conducted, which occurs when (17) 

has a purely imaginary root. Thus, we have: 

cos(𝜔 𝜏2𝑥
∗ ) − j sin(𝜔 𝜏2𝑥

∗ ) =  
 𝜔2

𝑗𝜔𝑙𝑥1
∗ +  𝑙𝑥2

∗  

Therefore, the critical delay is: 

𝜏2𝑥  
∗ =

1

𝜔
 𝐴𝑟𝑐𝑐𝑜𝑠 [

𝑙𝑥2
∗  𝜔2

(𝑙𝑥2
∗ )2 + (𝜔𝑙𝑥1

∗ )2
] (26) 

3.5.  Observer on the y-axis 

Following the approach outlined earlier, we determine the stability region along the y-direction. Figure 4 illustrates 

this region for 𝜏2𝑦
∗ = 1𝑠. The critical delay 𝜏2𝑦  

∗ is defined as follows: 

𝜏2𝑦  
∗ =

1

𝜔
 𝐴𝑟𝑐𝑐𝑜𝑠 [

𝑙𝑦2
∗  𝜔2

(𝑙𝑦2
∗ )2 + (𝜔𝑙𝑦1

∗ )2
] (27) 

For a specific set of observer gains (𝑙𝑥1, 𝑙𝑥2) selected from the stable region (figure 3), Equation (26) is used to 

analytically compute the maximum delay 𝜏2𝑥 for which the observer remains stable. Similarly, Equation (27) is used 

for the y-axis with gains (𝑙𝑦1, 𝑙𝑦2). The frequency ω used in these formulas corresponds to the critical crossing 

frequency associated with the chosen gains. This frequency is determined by first considering (20). By separating the 

real and imaginary parts of this complex equation, the critical delay 𝜏2𝑥  
∗  can be eliminated, allowing the determination 

of the critical crossing frequency ω that satisfies the boundary condition for stability, given 𝑙𝑥1 and 𝑙𝑥2. The detailed 

derivation methodology is presented in [1]. Once this critical frequency ω is found, it is then used in Equations (26) 

and (27) to compute the corresponding critical delays 𝜏2𝑥  
∗  and 𝜏2𝑦  

∗ . 

 

Figure 3. Stability region in the (𝑙𝑥2, 𝑙𝑥1) plane for the observer gains with delay 𝜏2𝑥
∗ = 0.4s. The shaded area 

represents combinations of 𝑙𝑥1 and 𝑙𝑥2 for which the observer is stable 

4. Results And Discussion 

To verify the obtained results, we examine the ball-and-plate system described in [1]. Our objective is to regulate the 

ball's position on the plate while ensuring minimal estimation errors. To confirm this, we will test multiple observer 

gain values 𝐿𝑥 and 𝐿𝑦. These vectors correspond to the areas illustrated in figure 3 and figure 4. The critical delays are 

determined using (26) and (27). The obtained results are shown in table 1 and table 2. 
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Figure 4. Stability region in the (𝑙𝑦2, 𝑙𝑦1)  plane for the observer gains with delay 𝜏2𝑦
∗ = 1s. The shaded area 

represents combinations of 𝑙𝑦1 and 𝑙𝑦2 for which the observer is stable. 

By using the observer gains from table 1 and table 2, selected from within the stable regions depicted in figure 3 and 

figure 4, we have determined the trajectory of the ball position, as shown in figure 5 and figure 6. Furthermore, the 

temporal evolution of the observer errors 𝑒1(𝑡) and 𝑒2(𝑡) are presented in figure 7, figure 8, figure 9, and figure 10. 

Table 1. Chosen gains along the x-axis 

(𝒍𝒙𝟏
∗ ,  𝒍𝒙𝟐

∗ ) 𝑳𝒙
∗  𝝉𝟐𝒙

∗  

(3.68, 0.76) 𝐿1 =  [3.68  0.76]𝑇  0.4109 

(2.67, 2.79) 𝐿2 =  [2.67  2.79]𝑇  0.4284 

(1.58, 1.35) 𝐿3 =  [1.58  1.35]𝑇  0.6364 

Table 2. Chosen gains along the y-axis 

(𝒍𝒚𝟏
∗ ,  𝒍𝒚𝟐

∗ ) 𝑳𝒚
∗  𝝉𝟐𝒚

∗  

(1.66, 0.1) 𝐿4 =  [1.66  0.1]𝑇 0.9238 

(1.15, 0.39) 𝐿5 =  [1.15  0.39]𝑇 1.0827 

(0.58, 0.27) 𝐿6 =  [0.58  0.27]𝑇 1.4084 

For the x-axis motion, as detailed in figure 5, gain  𝐿3  (1.58, 1.35) appears to offer the fastest convergence to the origin 

with minimal oscillations after the initial transient, suggesting a well-damped response. Gain 𝐿1  (3.68, 0.76), while 

also stable, exhibits a slightly slower response. Meanwhile, gain 𝐿2  (2.67, 2.79) shows a reasonable convergence 

speed, possibly with a slightly different transient behavior compared to 𝐿3. 

 

Figure 5. Temporal evolution of the ball's x-coordinate (𝑥𝑏) for different observer gains 𝐿1, 𝐿2, and 𝐿3. 
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Turning to the y-axis motion illustrated in figure 6, gain 𝐿5 (1.15, 0.39) seems to provide a good balance, leading to a 

relatively fast response with controlled overshoot.  

 

Figure 6. Temporal evolution of the ball's x-coordinate ( 𝑦𝑏) for different observer gains 𝐿4, 𝐿5, and 𝐿6. 

Gain 𝐿4 (1.66, 0.1) might result in a quicker initial response but potentially with more pronounced overshoot. 

Conversely, 𝐿6 (0.58, 0.27), having the largest critical delay  𝜏2𝑦
∗ , might offer a smoother but potentially slower 

response. These qualitative observations highlight that the choice of observer gains within the stable region 

significantly impacts the transient response characteristics of the system. 

The simulation results, presented in figure 5, figure 6, figure 7, figure 8, figure 9 and figure 10, illustrate the 

performance of the designed controller and observer. As observed from the ball trajectories in figure 5 and figure 6, 

the dynamic behavior of the system is indeed sensitive to the specific choice of observer gains 𝐿x and 𝐿y, even when 

these are selected from within the derived stable regions (figure 3 and figure 4). For instance, along the x-axis (figure 

5), gain 𝐿3 appears to offer the most effective speed of convergence. Similarly, for the y-axis (figure 6), 𝐿5 demonstrates 

comparatively rapid and well-damped performance. This highlights that different gains within the stable zone can be 

chosen to prioritize certain performance aspects, such as minimizing initial overshoot (potentially with a gain like 𝐿4 

for the y-axis) or ensuring faster settling, illustrating the inherent trade-offs in control design. While this qualitative 

analysis provides valuable insights, a more rigorous selection process would benefit from quantitative performance 

metrics. 

 

Figure 7. Time evolution of the estimation errors e₁(t) (position error) and e₂(t) (velocity error) for observer gain 𝐿1. 
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Figure 8. Time evolution of the estimation errors e₁(t) (position error) and e₂(t) (velocity error) for observer gain 𝐿2. 

Furthermore, figure 7, figure 8, figure 9 and figure 10 confirm the convergence of the estimation errors for 

representative observer gains, indicating that the Luenberger observer successfully tracks the system states. For the 

designated gains, such as 𝐿3 and 𝐿6 which are designed to operate up to their respective critical delays ( 𝜏2𝑥
∗  and  𝜏2𝑦

∗  

as per table 1 and table 2), the simulations demonstrate that the closed-loop system maintains stability and achieves the 

control objective of steering the ball to the origin (0,0). 

 

Figure 9. Time evolution of the estimation errors e₁(t) (position error) and e₂(t) (velocity error) for observer gain 𝐿4. 

 

Figure 10. Time evolution of the estimation errors e₁(t) (position error) and e₂(t) (velocity error) for observer gain 𝐿5. 
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 It is important to contextualize these findings: the presented simulation results were obtained under ideal conditions, 

without the inclusion of external disturbances or significant measurement noise. This study has primarily focused on 

the stability analysis methodology in the presence of known feedback and observer delays. Consequently, while the 

controller and observer demonstrate effective performance under these conditions within the calculated critical delay 

ranges, their robustness to unmodeled dynamics, external disturbances, or measurement noise has not been explicitly 

tested. A rigorous proof of convergence under more general conditions, or a thorough analysis of robustness to such 

practical imperfections, would constitute important areas for further investigation and represent valuable extensions to 

this work. 

5. Conclusion 

This study explores the regulation of the ball and plate system through a geometric approach. The designed controller 

integrates a state feedback mechanism with a Luenberger observer. This allows for state estimation, enhancing the 

system's control efficiency. The outcomes of the simulations validate the effectiveness of our method. However, we 

face challenges in selecting the optimal gains Lx and Ly based purely on the stability regions derived from the geometric 

approach. As observed qualitatively in Section 4, different gains within the stable region yield varied transient 

responses. Therefore, we recommend that future research focus on developing an algorithm or a systematic 

methodology for selecting optimal observer gains. This could involve defining a multi-objective cost function that 

includes standard performance metrics such as rise time, settling time, percentage overshoot, and integral error criteria 

(e.g., IAE, ISE), as well as a measure of robustness to delay variations or noise sensitivity. Optimization techniques 

such as Particle Swarm Optimization (PSO), Genetic Algorithms (GA), or gradient-based methods could then be 

employed to search for gains within the pre-identified stable regions that minimize this cost function. This would allow 

for more precise and automated tuning of the observer based on specific desired performance trade-offs. Additionally, 

further research could focus on rigorously analyzing the system's robustness to external disturbances and measurement 

noise, potentially incorporating adaptive or robust control techniques to enhance performance under real-world 

conditions. 
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