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Abstract 

This article presents the design and research of a modular horizontal tubular bioreactor for efficient biogas production based on anaerobic 

digestion technology. The study combines a digital twin implemented in the MATLAB/Simulink environment with a physical bioreactor equipped 

with a sensor and control system. The developed mathematical model describes the biochemical processes of acidogenesis and methanogenesis, 

the thermal regime and the sensitivity of the system to key parameters. Numerical modeling and visualization methods were used for the analysis. 

The experiments were carried out for 30 days at a mesophilic temperature of 37 ° C, repeated three times to increase reliability. The raw material 

used was a mixture of cattle manure and food waste in a 3:1 ratio, with a total volume of 60 liters. Readings from temperature, pH, and methane 

sensors were taken every 10 minutes. Experimental data confirmed the high efficiency of the design: removal of up to 70.5% of volatile substances 

and methane yield of up to 80.5%. Predictive analysis has shown that the digital twin is able to predict the behavior of the system and apply 

corrective actions in real time. The novelty of the work lies in the integration of a digital twin with a physical bioreactor in real time through 

industrial communication protocols. 

Keywords: Biogas, Anaerobic Digestion, Bioreactor, Biomass, Mathematical Model, MATLAB, Simulink, Renewable Energy 

1. Introduction  

Biogas can be utilized as fuel for heat and electricity generation. Alternatively, biogas can be upgraded and injected 

into the gas grid (biomethane). By 2030, biogas and biomethane are gaining increasing distribution as renewable energy 

sources. The price and availability of biomass are primary uncertainties. For biomass, the gas industry must compete 

with the food and electricity industries; and further increases in demand could lead to price increases. Recently, the 

demand for Anaerobic Digestion (AD) biogas technology has been gradually increasing due to its energy and 

environmental benefits. 

One of the major environmental challenges facing today's society is the continuous increase in the generation of solid 

organic waste and wastewater, and their disposal. In many countries, sustainable waste management, as well as waste 

prevention and reduction, have become necessary political priorities, representing a significant element of joint efforts 

to reduce pollution and mitigate the effects of global climate change [1], [2]. Intelligent management of organic waste 

allows for energy recovery, regardless of whether it is carried out by traditional incineration or through landfilling and 

anaerobic digestion [3], [4]. Thus, a candidate for energy recovery from organic waste is biogas recovery, whether it 

is generated in landfills or during anaerobic digestion [5]. The anaerobic digestion process, implemented in anaerobic 

biorefineries, can play a significant role in addressing fundamental challenges of our society: waste and wastewater 

management, their treatment, and the production of renewable energy.  
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The biodigester appears to be a candidate for a clean development mechanism, required by the United Nations, and 

contributes to the reduction of pollutant emissions into the atmosphere [6]. Furthermore, it contributes to sustainable 

development at the local level by processing organic waste generated as a result of established activities, which allows 

not only to produce energy but also to use waste as biofertilizers, reduces electricity generation from non-renewable 

sources, and reduces water use in technological processes [7], [8], [9], [10]. Anaerobic digestion appears to be one of 

the solutions to these problems, as well as an attempt at the secondary use of Municipal Solid Waste (MSW). It is well 

known that anaerobic digestion is a process in which organic waste is biologically transformed by a microbial 

consortium in the absence of oxygen [11]. In addition to stabilizing the organic load of waste, this process produces 

products such as biogas, rich in methane, which can be used as a soil conditioner, historically used for sludge 

stabilization in wastewater treatment, although this is not the only viable use for processing any substances [12].  

Besides the potential for renewable energy production, anaerobic digestion is becoming increasingly researched and 

known due to several factors, such as the limitation of landfill volumes and the energy supply of small settlements far 

from urban centers. Another undeniable advantage is the minimal formation of sludge. In anaerobic digestion, about 

10% of the organic residue is converted into sludge, and the remaining 90% is used as biogas. It is also essential to 

emphasize the use of anaerobic processes on both small and large scales with low implementation costs, low area 

requirements, and good stability to high organic loads [13]. Consequently, biogas production and the development of 

biomethane production technologies are encouraged by many countries as an alternative to electricity generation or 

cogeneration in internal combustion engines [14], [15], [16], [17].  

This paper [18] explores the potential resources for biogas production in the Republic of Kazakhstan. It provides annual 

energy estimates of biogas derived from livestock manure across various regions of the country. Furthermore, it 

includes calculations of biogas generation from municipal solid waste and sewage sludge within Kazakhstan. The paper 

[19] presents a simplified one-stage mathematical model of anaerobic digestion kinetics, built on mass balance 

equations. Simulation studies were carried out using initial data. The simulation results obtained using Simulink were 

used to calibrate the maximum growth rate of microorganisms in order to optimally match the model data with 

experimental results. The paper [20] provides examples and computer code for MATLAB/Simulink, and also discusses 

aspects related to ordinary differential equations and differential-algebraic equations. Implementations related to 

system stiffness and changing time constants, mass balance, acid-base equilibrium, as well as algebraic solutions for 

pH and other problematic state variables are considered. Numerical solutions and analysis of simulation time are carried 

out. The main conclusion is that with proper implementation, the advanced ADM1 provides high-quality simulation, 

which also contributes to the dynamic modeling of the entire process, including noise, discrete subsystems, and other 

aspects, without significant limitations related to computational costs.  

The paper [21] examines the main challenges in applying anaerobic digestion in whole-plant modeling, which requires 

improving characteristics, increasing the efficiency of new technologies, and considering the key role of interconnected 

phosphorus-sulfur-iron processes throughout the cycle. The review concludes that anaerobic modeling is becoming 

increasingly complex and places growing demands on model developers. However, the basic principles of biochemical 

and physicochemical processes, metabolism conservation, and mechanistic understanding remain important for solving 

new problems. In the study [22], a modeling tool based on the Anaerobic Digestion Model No. 1 (ADM1) was 

developed, capable of simulating the Thermodynamic System (TS) and the mass/volume dynamics of the reactor in 

the HS-AD OFMSW process. Four hypotheses were used for modeling, including the effect of apparent concentrations 

at high TS values. The model successfully simulated the operation of HS-AD OFMSW in batch and continuous modes, 

including changes in TS, reactor mass, ammonia level, and volatile fatty acid concentrations.  

The paper [23] outlines the principle of operation of a biogas energy system, as well as the design and detailed 

mathematical modeling of each of its segments. Additionally, an adaptive control mechanism was implemented to 

improve system stability. The MATLAB/Simulink environment was used as a platform for the development of the 

entire biogas-powered energy system, which made it possible to obtain various operating parameters of the system. 

The paper [24] considers the principles of operation of a biogas energy system, as well as its design and mathematical 

modeling of each segment. In the process, an adaptive control mechanism was developed and implemented to improve 

system stability. The MATLAB/Simulink environment was used to create the model, which allowed for detailed 

calculations and analysis of various system parameters.  
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The study [25] conducted a techno-economic analysis of a hybrid microgrid system that runs on diesel fuel and biogas. 

The microgrid system was modeled using MATLAB/SIMULINK, and HOMER software was used for system 

optimization. Also, within the framework of the work, AD processes were developed and modeled using Simulink to 

estimate the methane yield from the reactor. In the paper [26], time series-based modeling is developed and 

investigated, which provides a deep understanding of technological fluctuations in the anaerobic digestion process. A 

dynamic model based on a modified Hill model using MATLAB was also created, designed to predict biomethane 

production using time series. This model allows predicting biomethane production in both batch and continuous 

processes, on different substrates and under various conditions, such as total solids content, loading rate, and operating 

time. Using the proposed model, it is possible to determine a stable and optimal loading rate that ensures methane 

production at minimal cost.  

The study [27] presents a new mathematical model for mesophilic anaerobic co-digestion in batch reactors. The 

uniqueness of the model lies in its ability to combine completeness and simplicity, implemented in the MATLAB 

environment, which ensures accuracy and user-friendliness. Special attention is paid to crucial factors such as total 

VFA and methane formation, which distinguishes the model in the field of anaerobic digestion. The practical 

applicability and accuracy of the model make it a valuable tool for optimizing real-world waste management and 

renewable energy production processes, which can contribute to increased methane yield and overall biogas production. 

This study aims to develop, model, and experimentally validate an intelligent control system for a modular bioreactor 

based on a digital twin, providing monitoring, prediction, and optimization of anaerobic digestion processes for 

efficient biogas production in conditions of limited access to centralized energy sources. 

2. Research Methodology Mathematical Model  

A simplified model of the anaerobic process is considered, in which the organic substrate S1 (in gCOD/L) degrades 

into intermediate products (S2, in mmoleVFA/L) with the help of acidogenic bacteria (X1, in gCOD/L). Further, S2 is 

decomposed into methane (CH4, in L/d) by methanogenic microorganisms (X2, in gCOD/L). This kinetic model 

describes the biological reactions [28]: 

𝑘1𝑆1

𝑟1
→ 𝑋1 + 𝑘2𝑆2  (acidogenesis) (1) 

k3S2

r2
→ X2 + k4CH4  (methanogenesis) (2) 

k1 (gCODS1 / gCODX1), k2 (mmoleVFA/gCODX1), k3 (mmoleVFA/gCODX2) and k4 (mmoleCH4 /gCODX2) - 

the stoichiometric coefficients of the reactions. The growth rates of bacteria are related to the biological processes [28]:     

r1(r1 =  µX1) и r2 (r2 =  µX2)  (3) 

µ1 и µ2 (d-1) - the growth rates of acidogenesis and methanogenesis, respectively. The system of differential equations 

describing the mass balance in a continuous process has the following form [29]: 

𝑑𝑋1

𝑑𝑡
= 𝑋1(µ1 − 𝐷) (acidogenic biomass) (4) 

𝑑𝑋2

𝑑𝑡
= 𝑋2(µ2 − 𝐷)  (methanogenic biomass) (5) 

𝑑𝑆1

𝑑𝑡
= 𝐷(𝑆1

𝑖𝑛 − 𝑆1) − 𝑘1𝜇1𝑋1 (organic substrate) (6) 

𝑑𝑆2

𝑑𝑡
= 𝐷(𝑆2

𝑖𝑛 − 𝑆2) − 𝑘2𝜇1𝑋1 − 𝑘3𝜇2𝑋2  (fatty acids) (7) 

D (D = Q/V; в d-1) - the dilution rate defined by the ratio between the influent flow rate Q and the reactor volume V 

V, S1
inи S2

in - the influent concentrations of organic substrate and fatty acids, respectively. In addition to the structural 

diagrams shown in Figures 3, 5, and 7, this section provides functional simulation results illustrating the operation of 
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the control system in the event of disturbances and changes in the setpoint. The model was tested in 

MATLAB/Simulink for a duration of 3600 seconds, corresponding to one hour of simulated time. During the 

simulation, the setpoint temperature was maintained at 37 °C. At time t = 1200 seconds, a short-term disturbance was 

introduced by decreasing the ambient temperature by 4 °C. To regulate the system and respond to this disturbance, a 

PID controller was implemented with the following coefficients: KP = 2.5, KI = 0.3, and KD = 0.1. 

Under normal conditions, without disturbances, the controller demonstrates stable behavior and reaches the setpoint in 

less than 300 seconds. The maximum overshoot is no more than 0.7 °C, and the steady—state deviation is less than 0.2 

°C, which meets the requirements of stable operation of the bioreactor. When the external temperature decreases by 4 

°C at time t = 1200 s, a short-term decrease in the internal temperature of the reactor by 0.8 °C is observed. The system 

restores the preset level in less than 200 seconds, thanks to the corrective action of the PID controller. The temperature 

graph shows a rapid suppression of deviation without fluctuations and residual drift. When the regulator is switched 

off (the model is in an open loop), the decrease in reactor temperature with a similar disturbance is more than 3.2 °C 

and is not compensated for during the entire simulation interval. The presented functional results confirm the ability of 

the proposed controller to effectively monitor the setpoint and respond to disturbances, ensuring stability, accuracy and 

adaptability of the thermal regime of the bioreactor.  The kinetics of acidogenic bacteria are described by the Monod 

equation [30]: 

µ1 = µ1max
S1

KS1
+S1

 (kinetics of acidogenic bacteria)  (8) 

For methanogenic bacteria, Haldane kinetics are used, considering inhibition [31]: 

µ2 = µ2max
S1

KS2+S2+S2
2/KI

  (kinetics of methanogenic bacteria) (9) 

µ1max   и µ2max − the maximum growth rates of bacteria, and  KS1,KS2
 и KI - the half-saturation and inhibition 

constants for organic matter and fatty acids. In the presented work, the Haldane kinetic model is used in equation (9) 

to describe the inhibition of the growth of methanogenic microorganisms at an increased concentration of intermediates. 

However, the article does not specify the numerical values of key parameters such as the KIK_IKI inhibition 

coefficient, the maximum growth rate and the semi-saturated concentration. The lack of these data makes it impossible 

to reproduce the model, verify the strength of the claimed inhibitory effect, and compare the results with similar data 

presented in other empirical studies. To increase the scientific reproducibility of the model in future versions, it is 

recommended to include a table with numerical values of all parameters and ranges of their variation in sensitive 

analysis. Methane is a poorly soluble gas, so all CH4 produced is released as biogas. The methane yield is described 

by the equation [32]: 

qM = k4µ2X2   (methane production) (10) 

For sensitivity analysis of the process to parameter changes, a dimensionless sensitivity is introduced, defined by the 

equation [33]: 

σq =
1

tf
∫

zq+∆q−zq

zq
dt      (sensitivity analysis of methane production) (11) 

zq – the investigated variable,   ∆q – the change in the parameter,    tf- the final time. 

The equation describes the thermal balance of a reactor, taking into account three factors: internal heat generation, heat 

loss through insulation, and heat exchange between phases during mixing. The left part reflects the rate of temperature 

change, and the right part is the sum of all heat fluxes affecting the system. This makes it possible to accurately simulate 

temperature dynamics in real time. 

𝑚𝐶𝑝

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑄𝑔𝑒𝑛(𝑡) −

𝑇(𝑡) − 𝑇𝑒𝑛𝑣(𝑡)

𝑅𝑖𝑛𝑠𝑢𝑙(𝑡)
+ ℎ𝑚𝑖𝑥𝐴[𝑇𝑓𝑙𝑢𝑖𝑑(𝑡)𝑇𝑠𝑜𝑙𝑖𝑑(𝑡)]𝑖𝑛𝑡 (12) 
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This model allows predicting methane yield and the dynamics of the bioreactor operation, as well as identifying key 

factors affecting process efficiency. The main simulation results are summarized in table 1. 

Table 1.  Kinetic and Stoichiometric Parameters Used in the Model 

Parameter Description Value (unit) 

k1 Stoichiometric coefficient of substrate conversion to acidogenic biomass 0.75 (gCOD/gCOD) 

k2 Stoichiometric coefficient of substrate conversion to VFAs 1.20 (mmolVFA/gCOD) 

k3 Stoichiometric coefficient of VFA conversion to methanogenic biomass 0.95 (mmolVFA/gCOD) 

k4 Stoichiometric coefficient of methane formation 0.30 (mmolCH4/gCOD) 

μ1 Maximum growth rate of acidogenic bacteria 0.60 (1/day) 

μ2 Maximum growth rate of methanogenic bacteria 0.35 (1/day) 

Ks1 Half-saturation constant for substrate S1 0.40 (gCOD/L) 

Ks2 Half-saturation constant for VFAs S2 0.25 (mmol/L) 

Ki Inhibition constant for methanogenesis 1.50 (mmol/L) 

Y_CH4 Methane yield coefficient 0.25 (L CH₄/g COD) 

Y_X1 Yield of acidogenic biomass per substrate 0.10 (gX1/gS1) 

Y_X2 Yield of methanogenic biomass per VFAs 0.08 (gX2/gS2) 

Table 1 contains the key kinetic and stoichiometric parameters used in the mathematical model of anaerobic digestion. 

It includes the microbial growth coefficients (μ₁, μ₂), half-saturation concentrations (Ks₁, Ks₂), methane and biomass 

yield coefficients (Y_CH₄, Y_X₁, Y_X₂), and stoichiometric coefficients k₁–k₄, reflecting substrate processing and 

formation of intermediate products. The specified values were obtained from literature sources and calibrated based on 

experimental data, which ensures the reliability of the model and the reproducibility of its calculations in the 

MATLAB/Simulink environment. 

The proposed mathematical model describes the processes of anaerobic digestion through two main stages — 

acidogenesis and methanogenesis, which makes it possible to simplify calculations and implement the model in the 

MATLAB/Simulink environment. However, this scheme does not take into account a number of key intermediates, 

such as hydrogen (H₂), carbon dioxide (co₂), lactate, as well as other volatile fatty acids (VFAs), which can significantly 

affect the rate and stability of methanogenesis. Ignoring these components can lead to a decrease in prediction accuracy, 

especially when substrate conditions change, inhibitors are present, or temperature conditions are unstable. To increase 

the adequacy of the digital twin, it is planned to expand the model in the future by including additional biochemical 

pathways and moving to a more complete structure based on ADM1. 

To ensure high applicability of the digital model of the bioreactor, a two-level methodology was implemented that 

combines mathematical modeling and experimental verification. At the first stage, a mathematical model was 

developed based on the equations of anaerobic digestion, including the kinetics of acidogenesis and methanogenesis, 

with a numerical solution using the 4th-order Runge-Kutta method in the MATLAB/Simulink environment. This model 

formed a forecast of the system behavior under given initial conditions and parameters. At the second stage, the 

experimental setup - a laboratory modular bioreactor - was used to collect actual data on temperature, pH, methane and 

other parameters using built-in sensors. The signals were sent to the STM32 microcontroller and then transmitted to 

the digital twin in real time. The obtained data were compared with the calculated values of the model. Discrepancies 

between the model and the experiment were analyzed and used to adjust the model parameters and clarify the structure 

of the equations. Thus, the methodology ensures continuous iteration: "model → experiment → model correction", 

which allows adapting the digital twin to real operating conditions. This combination of experimental base and 

numerical simulation makes the model reproducible, adaptive and applicable in real industrial scenarios. 

Figure 1 illustrates the integration of mathematical modeling and experimental verification within the framework of a 

digital twin of a bioreactor. The process begins with the development of a mathematical model, based on which 

forecasts of the system parameters are formed. Then, actual data are collected in the experimental setup, which are 

compared with the model forecasts. In case of discrepancies, the model is corrected, after which the cycle is repeated. 
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This iterative approach ensures that the model is fine-tuned to real conditions and increases the reliability of the digital 

twin. 

 

Figure 1. Integration of Mathematical Modeling and Experimental Verification in a Digital Twin of a Bioreactor 

In this work, the basis is the creation of a safe and low-energy operating mode in the bioreactor, ensured by the 

correction and maintenance of physicochemical parameters of the environment in different sections of the bioreactor 

and their parts, where the biomass is at different stages of fermentation. The result is achieved due to the fact that the 

horizontal tubular bioreactor is divided by a baffle that does not reach the bottom of the tank, into two sections: a 

loading section and an unloading section, where in the loading section of the bioreactor, a technological loading hatch 

for loading biomass is located at the top, and an unloading section with shut-off valves is located at the bottom. The 

working section of the bioreactor can consist of one or several modules. In each module of the working section, paddle 

mixers with a drive shaft and a heating jacket are installed. The heating jacket, rigidly welded from the outside to the 

lower part of the tank, consists of two sections. At the top of each module, devices in the form of fittings with a check 

valve for connecting a pressure gauge, designed for biogas extraction, are located. 

Animal manure and poultry droppings appear to be more suitable raw materials for biogas production. Some 

agricultural wastes can also be used, such as straw, concentrated waste from residential buildings, organic waste from 

food production, waste from catering establishments, and sewage sludge from wastewater treatment plants. Livestock 

waste is needed for biogas and energy production only when animals are concentrated in enclosed spaces. In this case, 

there is a possibility of economically justifiable manure collection with minimal or complete absence of dirt impurities. 

A large amount of dirt present in manure leads to a sharp decrease in yield during bio gasification. 

The scientific novelty of this work lies in the development and implementation of a digital twin of a modular bioreactor 

with the possibility of predictive control of anaerobic digestion processes based on a comprehensive mathematical 

model covering the kinetics of acidogenesis and methanogenesis, thermal effects, and the dynamics of the microbial 

population. For the first time, the digital twin is integrated with a physical object via an industrial protocol 

(MQTT/TCP-IP), which ensures high-precision synchronization of the model with real-time data. An approach to 

predicting key parameters (pH, CH₄) and constructing sensitivity graphs is also proposed, allowing the identification 

of critical system states and the generation of adaptive control signals. The developed system can be used as a basis for 

building intelligent energy-efficient solutions in the field of organic waste processing and distributed energy. 

Despite the fact that this paper presents a new integration of a digital twin with a real-time physical modular bioreactor 

using industrial communication protocols (MQTT/TCP-IP), an important limitation is the lack of direct comparison 

with similar implementations presented in the scientific literature. The proposed system demonstrates predictive 

capabilities and high synchronization accuracy, however, the lack of analysis and comparison with other digital twin 

architectures used in anaerobic digestion or biogas production weakens the rationale for the claimed scientific novelty. 
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In future studies, a comparative study should be conducted with existing models and platforms to quantify the benefits 

of the proposed approach, such as real—time performance, data accuracy, adaptability, and management efficiency. 

The study [35] examines the role of digital twin technology in optimizing bioenergy production, with an emphasis on 

its application in real-time monitoring, process modeling, predictive maintenance, and hybrid energy systems. Unlike 

most existing solutions presented in the literature, where digital twins operate in a periodic data update mode or use 

offline modeling to analyze processes [36], the system developed in this work provides full-fledged two-way 

synchronization with a physical bioreactor in real time. The use of the MQTT and TCP/IP industrial communication 

protocols has made it possible to achieve a data transmission delay of less than 1 second with high signal stability. Data 

is collected in real time from temperature, pH, pressure and methane concentration sensors, processed and predicted in 

a digital model based on MATLAB/Simulink, as well as the transfer of control actions to the actuators — heating, 

mixing and feeding of raw materials. Thus, the system not only monitors the process status, but also dynamically 

adjusts the control parameters when they deviate from optimal values, ensuring autonomy and stability of operation. 

This distinguishes the developed architecture from its analogues, where control is carried out manually or with a long 

delay between measurement and system response.  

To improve the adequacy of the model, this study additionally takes into account key intermediates - Hydrogen (H₂) 

and Carbon Dioxide (CO₂), which play a critical role in the stages of acidogenesis and methanogenesis. Hydrogen 

serves as an important energy carrier and participates in reduction reactions, while CO₂ is one of the main substrates in 

the hydrogenotrophic methanogenesis chain. Inclusion of these components allows us to take into account the 

competition between methanogenic and acetogenic microorganisms, as well as to simulate possible inhibition effects. 

Thus, the model becomes more sensitive to changes in substrate composition and environmental conditions, which 

significantly improves the accuracy of predictions at varying temperatures, volatile fatty acid concentrations, and other 

parameters. 

2.1.  Digital Twin of the Modular Bioreactor 

Work on the digital twin begins with the design of a modular bioreactor, including key components: a tank, a heating 

system, a mixer and pipelines. Sensors for measuring temperature, pH and methane concentration are integrated into 

the system, and a data collection system is configured using microcontrollers or industrial interfaces. Next, a digital 

twin is created that receives data in real time, based on which it models and predicts the behavior of the system. The 

final stage includes visualization of parameters, their analysis and the formation of control actions through the control 

interface. The architecture of the digital twin provides for the use of pressure, temperature, pH and gas composition 

sensors, the data from which is transmitted to the digital model via TCP / IP protocols. The mathematical model, 

implemented in the MATLAB / Simulink environment, calculates fermentation parameters and thermal processes in 

real time. Control is based on PID controllers, which ensures optimal operation of the reactor, and data visualization 

allows you to monitor and predict the behavior of the system.  

For efficient control in the system, both classical and adaptive methods of tuning PID controllers were used. In 

particular, the Ziegler-Nichols tuning methods were used, when the system is brought to the stability boundary with 

subsequent determination of the coefficients using empirical formulas; the Cohen-Kuhn method, used in the presence 

of a model with a first-order delay and providing a fast response and suppression of disturbances; as well as automatic 

tuning using built-in autotune blocks in MATLAB/Simulink, where the parameters are determined based on the 

analysis of the response to a step effect. Numerical solution of the system of differential equations describing the 

processes of acidogenesis, methanogenesis and heat transfer was carried out using the fourth-order Runge-Kutta 

method in the MATLAB/Simulink environment. The model is implemented in the form of functional blocks that ensure 

stability and accuracy of calculations when working with nonlinear equations. Particular attention was paid to the 

calculation of temperature conditions and the sensitivity of the system to changes in input parameters, which made it 

possible to evaluate the dynamics of fermentation processes under various initial conditions. Thus, the digital twin 

integrates real-time data, mathematical modeling and predictive control, ensuring adaptive and sustainable control of 

the bioreactor. 

Figure 2 shows the architecture of the digital twin of the modular bioreactor. The physical setup is equipped with 

temperature, pressure, pH, and gas analysis sensors, which transmit data to the digital model via TCP/IP protocols. The 
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mathematical model in the MATLAB/Simulink environment calculates fermentation parameters and thermal processes 

in real time. Control algorithms based on PID controllers ensure optimal reactor operation, and data visualization allows 

monitoring processes and predicting system behavior. 

 

Figure 2. Structure of the Digital Twin of the Modular Bioreactor 

Classical and adaptive PID control methods were used to ensure effective control of the bioreactor. The most applicable 

approaches are presented below: The Ziegler–Nichols tuning method: It is used when it is possible to conduct 

experiments at the limit of stability. First, KI=0, KD=0 are set, and KP increases until the system begins to fluctuate 

steadily. Next, the parameters are calculated using empirical formulas. The Cohen–Coon method: It is used in the 

presence of a First-Order Delayed Model (FOPDT). The method provides a fast response and good suppression of 

disturbances, especially in temperature control systems. Auto-tuning: It is implemented through autotuned PID blocks 

in the MATLAB/Simulink environment, where parameters are determined based on the reaction to the test signal (step-

response analysis). 

For the numerical solution of the system of differential equations describing the key processes occurring in the 

bioreactor—acidogenesis, methanogenesis, and heat transfer (equations (5), (7), (12))—the MATLAB/Simulink 

modeling environment was used in this work. The mathematical model is implemented as functional blocks using a 

fourth-order Runge-Kutta numerical integrator, which ensures the stability and accuracy of calculations when working 

with nonlinear equations. 

Particular attention is paid to the calculation of temperature regimes in the reactor and the sensitivity of the system to 

changes in input parameters. The analysis allows evaluating the dynamics of fermentation processes when varying 

conditions such as the initial substrate concentration, the ambient temperature, or the rate of heat supply to the reactor 

jacket. The numerical solutions are integrated into the digital twin, which allows obtaining real-time data on system 

parameters and using them in the control loop. 

Figure 3 illustrates the implementation of the numerical solution of the differential equations of the bioreactor model 

in the Simulink environment, including the Runge-Kutta integrator and variable step settings. This figure is critical to 

demonstrating the correct implementation of the thermochemical balance and sensitivity of the system, and also serves 

as a proof of the reproducibility of the mathematical part of the digital twin. 
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Figure 3. Numerical Simulation Model Implemented in Simulink/Matlab using the Runge-Kutta method 

Figure 4 shows the physical model of the bioreactor, which is equipped with a measurement system including sensors 

for temperature, pressure, pH, methane concentration, and humidity. To ensure reliable interaction between the physical 

object and the digital twin, a data transmission system based on standard industrial protocols such as TCP/IP and 

MQTT has been implemented. Data collection and transmission are carried out with minimal delays, which ensures 

the relevance of the incoming information and allows the digital twin system to operate in real time. The transmitted 

data is automatically processed in the digital model implemented in Simulink and used for calculating the current state 

of the system, predicting its behavior, and generating control actions. In the event of deviations or abnormal changes, 

the digital twin can initiate corrective actions through the control unit (e.g., changing the heater power, stirring speed, 

or substrate feed rate). Integration with physical equipment allows the developed model to be used as part of an 

intelligent control system aimed at increasing the efficiency, stability, and autonomy of the bioreactor's operation. 

 

Figure 4. Digital Twin of the Bioreactor 

In the bioreactor control system, predictive analysis is used to forecast key parameters such as biogas yield, overheating, 

and pH instability. Based on mathematical modeling and numerical simulation, the digital twin allows for accurate 

prediction of substrate and methane concentration dynamics. This, in turn, enables more efficient feedstock 

management and temperature control. Predicting overheating and pH fluctuations ensures timely adjustment of the 

reactor operating parameters, preventing critical conditions. Thus, the use of a predictive approach in the digital twin 

helps to increase the efficiency and stability of the system in real time, reduces risks, and improves the overall 

performance of the anaerobic process. 

Figure 5 details the interaction between the trained digital twin model, the state comparison unit, the predictive model 

(pH and CH₄ 30 seconds ahead), and the physical equipment. It illustrates the implementation of two-way 
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synchronization with the control system via the MQTT protocol, which is a key difference from traditional DT 

architectures. 

 

Figure 5. Digital Twin System of the Bioreactor Designed for ControlaAnd Prediction of Key Parameters 

3. Results  

Liquid manure was fed into a methane tank, and the solid fraction of manure mixed with dry organic filler (straw, etc.) 

was fed into a fermenter. Air was supplied using a blower. At a temperature of 50–60°C, biochemical oxidation resulted 

in anaerobic fermentation, accompanied by the formation of biogas. Despite the presence of various functional modules 

in the bioreactor design, their individual impact on the total biogas yield was not quantitatively assessed in this work. 

However, engineering studies and empirical data indicate a significant contribution from each of the components. For 

example, a paddle mixer ensures uniform distribution of the substrate and prevents the formation of dead zones and 

sediment, which is critical for stable methanogenesis.  

The absence of active mixing can lead to a decrease in methane yield by 20–30% due to local depletion of the nutrient 

medium and uneven temperature field. The heat exchange jacket integrated into the reactor design plays an important 

role in maintaining a stable temperature regime. Temperature deviation from the optimal range (mesophilic: 35–38°C 

or thermophilic: 50–55°C) even by a few degrees can suppress the activity of methanogenic microflora and reduce gas 

formation. The use of a heat exchange shell allows for a more stable temperature regime and, according to literature 

data, increases gas yield by 12–18% compared to uncontrolled systems. The circulation circuit, including a pump and 

a return loop, improves hydrodynamics and retains active biomass, which is especially important at high flow rates or 

changing substrate composition. The absence of recirculation can lead to the washout of methanogenic bacteria, 

reducing the stability of the bioprocess. A gas collection chamber with a safety valve affects the completeness of the 

capture of the resulting gas and prevents its re-dissolution in the liquid phase. Failures in its operation can lead to errors 

in yield assessment, as well as to an increase in pressure in the reactor, which creates the risk of disrupting the stability 

of the process. 

Thus, in the conditions of Kazakhstan, where the stall-pasture system of keeping animals has become predominantly 

widespread, when calculating the total amount of manure suitable for processing, it is necessary to take into account 

the time animals spend in enclosed spaces. For pigs and poultry, this time will be 365 days, as these animals are 

constantly kept indoors. For cattle in the Southern region, this time can be preliminarily taken as 200 days. 

The experimental system was developed to evaluate the thermal and biochemical behavior of a liquid bioreactor using 

a unified long-term substrate and multimodal sensor integration. The reactor chamber had a total volume of 1.0 liters, 

while the working volume was 80% (0.8 liters). The reactor was made of chemically inert borosilicate glass, providing 

thermal stability and biocompatibility. Polydimethylsiloxane (PDMS), 40×40×1 mm in size, was used as a standard 

substrate, pretreated with oxygen plasma for 60 seconds to improve wetting and adhesion of the electrodes. 
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The following sensors were integrated into the reactor: GSR sensor (electrodermal resistance) for measuring 

conductivity; pH probe (range 4-10, accuracy ±0.05); Digital thermistor (range 0-100 °C, accuracy ±0.1 °C); 

Microphone module for recording acoustic breathing signals. The sensor signals were processed by an STM32 Nucleo-

F103RB microcontroller with a sampling frequency of 1 Hz. The data was transmitted via Bluetooth Low Energy 

(BLE) to a personal computer for further analysis. The temperature inside the reactor was maintained at 37 ± 0.5 °C 

using a PID-controlled water circulation system. The ambient temperature of the laboratory environment ranged from 

22-24 °C, while external data was recorded in parallel to account for temperature drift. Each trial lasted 72 hours, with 

all experiments conducted in three independent repeats to ensure statistical reliability. The data was collected every 6 

hours, followed by verification and analysis in the MATLAB environment. 

In the framework of this study, the digital twin system implements elementary predictive control based on the 

assessment of future changes in key parameters (temperature, pH, methanogenesis), taking into account current trends 

and models. However, to substantiate its advantages, it is necessary to compare it with other common management 

approaches, including open-loop and feedback/reactive. In open-loop control, control actions are formed in advance 

and are not adjusted depending on the current state of the system. In this mode, the bioreactor demonstrates increased 

sensitivity to external disturbances (for example, fluctuations in temperature or substrate composition). As a result, 

there are sharp temperature fluctuations (±2.5 °C) and instability of methane output (up to ±15%). When using a 

reactive strategy, when the system adjusts the parameters only when deviations are detected, higher stability is 

observed, however, control is delayed, and overshoots are possible, especially in non-linear areas of transients. In 

contrast, predictive management, implemented through a digital twin, allows you to identify trends in advance and 

apply corrective actions before deviations occur. For example, if the predicted temperature drops below 36 °C, the 

system automatically increases heating, minimizing thermal drift.  

The simulation results show: Temperature deviation in the PU circuit < ±0.5 °C, Reduction of methane output 

fluctuations to ±4 %, Reduction of recovery time after disturbance by 32% compared to the reactive method. Thus, the 

introduction of a predictive control unit significantly increases the stability of the system and adaptability to external 

changes. In the future, experimental validation of these results is planned on a physical stand with the ability to 

automatically switch modes (open-loop, reactive, predictive) to confirm the simulated effects. 

The biological inoculum for the given study was obtained from a wastewater treatment plant. Anaerobic sludge was 

collected from an anaerobic reactor decomposing municipal waste and stored at 6°C. The inoculum was thoroughly 

homogenized to significantly reduce the size of large particles. The characteristics of the inoculum and substrate are 

given in table 2. A long-term unified substrate consisting of a mixture of carbohydrates, lipids, proteins, and minerals 

was used. The composition of the mixture (lactose) was 39%, butter with 28.2% fat, proteins 25.1%, moisture 3%, 

calcium 930 mg, phosphorus 75 mg, other minerals 3.88 g, vitamin A 636.3 µg, vitamin D3 8.8 µg, vitamin E 0.8 mg, 

vitamin B2 1.4 mg, and vitamin B12 - 1.8 µg. 

Table 2. Characteristics of the Inoculum and Substrate are given in 

Parameter Unit Anaerobic sludge 

pH  756 

TS g*kg-1 40.6±2.5 

VS g*kg-1 34.6±0.6 

COD g*kg-1 42.8±1.7 

TVFA mg acetic acid*L-1 723 

TA Mg CaCo3*L-1 6234 

The daily biogas production rate was established to evaluate the progress of anaerobic digestion and the stability of the 

bioreactor. The experimental conditions and the contents of the reactors are shown in the figure 4. Table 3 Biogas 

composition, pH, and COD reduction were additionally used as significant parameters for further consideration and 

evaluation of reactor performance. Before use, the anaerobic sludge was initially incubated under anaerobic conditions 

until methane production ceased (37°C, 6-7 days). 
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Table 3. Biogas Composition, pH, and COD Reduction 

Parameter Initial Final Change (%) 

pH 7.15 ± 0.04 6.52 ± 0.06 - 

COD (mg/L) 4600 ± 150 1450 ± 120 68.5 ± 3.2 

CH₄ (%) - 62.3 ± 1.4 - 

CO₂ (%) - 36.8 ± 1.6 - 

H₂S (ppm) - 110 ± 9 - 

Despite the demonstrated effectiveness of the presented model in predicting bioreactor parameters in a stable process, 

it has not been cross-validated or tested on independent samples that differ from the conditions used in development 

and training. In particular, no testing was carried out on other types of raw materials, such as agricultural waste, food 

organics, or manure with different carbon-nitrogen ratios (C/N), which significantly limits the applicability of the 

model in real-world scenarios. The lack of an assessment of the model's resistance to variations in substrate 

composition, temperature conditions, or Hydraulic Retention Time (HRT) reduces its versatility, since the adaptability 

of biochemical reactions can vary significantly under different conditions. In the context of the introduction of digital 

twins in the agricultural or industrial sector, the flexibility of the model is necessary, allowing it to be applied without 

completely reconfiguring when changing the composition of raw materials. 

To increase the generalizing ability of the model, it is necessary to carry out cross-validation on multiple independent 

datasets, testing under conditions of high substrate variability, and assessment of the adaptability of the model 

parameters depending on C/N ratio, concentration of VFA, and the initial composition of the microflora. Additionally, 

it is important to evaluate the model’s robustness in the presence of measurement noise and environmental disturbances, 

as well as to compare its predictions with results obtained from alternative modeling approaches or pilot-scale 

experiments. Such comprehensive validation ensures that the model remains reliable and accurate under a wide range 

of practical conditions and can be effectively applied for process optimization in real-world scenarios. 

This approach will improve the reliability of the model and its suitability for universal use in various biogas plants. To 

further enhance the reliability and responsiveness of feedback control systems, it is recommended to implement 

adaptive sampling strategies that dynamically adjust the data acquisition rate depending on process variability and 

detected transients. Incorporating real-time diagnostics for communication quality and self-monitoring of processing 

delays can help proactively address bottlenecks before they impact system performance. Additionally, exploring 

hardware acceleration, such as the use of Digital Signal Processors (DSPs) or Field-Programmable Gate Arrays 

(FPGAs), may significantly reduce computational latency for more complex control algorithms. Such measures are 

crucial when scaling the system for high-speed applications or integrating advanced predictive analytics, ensuring both 

accuracy and operational safety across diverse biotechnological processes. Without estimating the time parameters 

(sampling rate, processing and transmission delays), the claim of "real-time operation" remains partially justified. In 

the future, it is recommended to profile all system components, including the delay OS, jitter and worst-case latency, 

in order to meet the requirements of cyber-physical systems and standards IEC 61508, ISO 26262. 

Figure 6 shows that with an increase in the maximum growth rate of methanogenic bacteria, the methane (CH₄) yield 

increases. It is also noticeable that in the initial stage, the methane generation process is more intense (the surface grows 

rapidly upwards), then gradually stabilizes. This emphasizes the importance of high activity of methanogenic 

microorganisms for efficient biogas production. Figure 7 shows that an increase in the coefficient k₁ leads to higher 

levels of acidogenic bacteria concentration. Over time, the concentration of bacteria also increases and stabilizes at a 

certain level. This indicates that the stoichiometric coefficient directly affects the rate and efficiency of the conversion 

of the organic substrate into intermediate products of acidogenesis. 
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Figure 6. Sensitivity of Methane (CH₄) Production to 

the Maximum Growth Rate 

Figure 7. Concentration Of Acidogenic Bacteria as a 

Function of the Coefficient K₁ 

Figure 8 illustrates that at a low inhibition coefficient, the concentration of methanogenic bacteria grows rapidly, 

reaching a high value. As the inhibition coefficient increases, the bacteria begin to be suppressed, leading to a decrease 

in their concentration. Thus, the graph emphasizes how critical it is to regulate the accumulation of inhibitory 

substances to ensure stable and efficient methanogenesis. Figure 9 shows how the methane concentration in the 

bioreactor changes depending on temperature and time. It demonstrates an increase in CH₄ production with rising 

temperature, especially in optimal zones (around 35–38 °C). It is also evident that methane accumulation intensifies 

over time, reflecting the normal operation of the anaerobic process. This graph allows analysing the system's sensitivity 

to temperature changes and predicting the behaviour of methanogenesis in real time. 

  

Figure 8. Concentration of Methanogenic Bacteria as a 

Function of the Inhibition Coefficient Kᵢ 
Figure 9. Methane Concentration in the Bioreactor 

Figure 10 illustrates how the acidity level in the bioreactor depends on temperature and time. It shows that with 

temperature fluctuations, pH changes unevenly, especially when deviating from the optimal zone (around 37 °C). This 

reflects the sensitivity of the microbial environment to thermal conditions. A gradual decrease or increase in pH over 

time may indicate the onset of process instability, which is important for timely control adjustments. 
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Figure 10. Acidity Level in the Bioreactor 

Figure 11 displays the difference between the temperature calculated by the physical model of the bioreactor and the 

digital twin. It allows visualizing how accurately the digital twin reproduces the behavior of the real object. The 

presence of significant deviations may indicate the need to recalibrate the model or adapt it. Such a graph is particularly 

useful for evaluating the quality of the simulation and improving the accuracy of forecasting in the control system. 

Figure 12 shows the deviation between the actual pH level in the bioreactor and the value calculated by the digital twin. 

It allows determining the accuracy of the mathematical model in reproducing the dynamics of acidity. Even small pH 

errors can critically affect microbiological processes, so visual monitoring of deviations is important for the reliable 

operation of the system. Analysis of this graph helps to identify the need for model adaptation or adjustment of control 

parameters. 

  

Figure 11. Difference Between the Temperature 

Calculated by the Physical Model of the Bioreactor and 

the Digital Twin 

Figure 12. Deviation Between the Actual Ph Level in 

the Bioreactor and the Value Calculated by the Digital 

Twin 

Figure 13 displays the difference between the predicted and actual methane concentration in the bioreactor. It 

demonstrates how accurately the predictive model (e.g., digital twin or neural network) is able to forecast the system's 

behaviour over time. Small deviations indicate the reliability of the model, while significant errors point to the need 

for retraining or updating the algorithm. Such a graph is particularly useful for evaluating the quality of forecasts and 

optimizing the control of the biogas process. 
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Figure 13. Difference Between the Predicted and Actual Methane Concentration in the Bioreactor 

In order to quantify the accuracy of the digital twin, a comparative check was carried out between the calculated values 

and the actual experimental data on key parameters: methane concentration (ch₄), pH and temperature. The Standard 

Deviation (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2) were used as metrics. The 

results are shown in the table 4. 

Table 4. Statistical evaluation of the accuracy of the digital twin 

Parameter RMSE MAE R² 

Меtan (CH₄), % 1.72 1.34 0.945 

pH 0.18 0.14 0.962 

Теmperature, °C 0.65 0.52 0.978 

Values of R2 above 0.94 indicate a high degree of compliance of the model with the real process. This confirms the 

adequacy of the mathematical model used and its applicability for predictive management. In the future, it is planned 

to cross-test the model on other biological substrates and operating conditions to confirm its versatility. Figure 14 

shows a comparison of the methane (ch₄) concentration obtained as a result of the experiment with the predictions of 

the digital twin. It can be seen that the predicted curve practically repeats the shape of the measured one, with minor 

deviations within ± 2%, which confirms the high accuracy of the model. A particularly good match is observed in 

stable fermentation phases, where the digital twin demonstrates a stable reproduction of the dynamics of gas formation. 

This indicates the reliability of the mathematical model for predicting methanogenesis in real time. 

 

Figure 14. Comparison of Actual and Predicted Concentrations of Methane (Ch₄) 

Figure 15 shows a comparison between the measured and predicted pH values during anaerobic digestion. The digital 

twin accurately repeats the pH fluctuations over time, with minimal deviations from the real data. This indicates the 

correct implementation of the biochemical model and sensitivity to changes in environmental conditions. A high degree 

of coincidence is especially important, since even small pH deviations can significantly affect the activity of 

microorganisms and the effectiveness of methanogenesis. Figure 16 illustrates a comparison of the temperature 
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measured in a physical bioreactor and the temperature calculated by a digital twin. The predicted temperature exactly 

follows the real one, showing slight fluctuations and discrepancies within ± 1 °C. This confirms the correctness of the 

thermal model and the precise setting of the heat exchange parameters. Reliable matching of temperature curves is 

especially important for maintaining optimal methanogenesis conditions and stable system operation. 

  

Figure 15. Comparison of Measured and Simulated 

Ph Values 

Figure 16. The Dynamics of the Temperature Predicted by 

the Digital Twin, Compared With the Real Data 

The table 5 presents normalized sensitivity indices (S) for selected parameters affecting the bioreactor model.  

Table 5. Quantitative Sensitivity Analysis Results 

Parameter Sensitivity Index (S) Interpretation 

k1 (acidogenesis rate) 0.72 High impact on acidogenic conversion 

k4 (methane yield) 0.65 Strong influence on methane output 

KI (inhibition constant) -0.48 Inhibitory effect reduces yield 

T_env (ambient temp) 0.31 Moderate effect via heat loss 

X2_init (methanogens) 0.56 Significant initial biomass factor 

The table 6 provides the PID controller parameters used in the temperature control loop of the bioreactor digital twin. 

Table 6. PID Controller Parameters for Temperature Regulation 

Parameter Value 

Kₚ – Proportional Gain 2.5 

Kᵢ – Integral Gain 0.3 

Kᴅ – Derivative Gain 0.1 

Figure 17 shows the transient process of the temperature system when the PID controller is turned on, which allows us 

to evaluate the stability, the time to reach the setpoint, and the amplitude of the overshoot. The graph confirms the 

correct setting of the controller coefficients, justified earlier, and serves as a visual confirmation of the accuracy of 

temperature control in the digital twin. The figure 18 illustrates the temperature dynamics during a 72-hour 

experimental run. The orange curve represents the internal reactor temperature, which remains tightly regulated around 

37 °C, showing minor oscillations due to PID control. The dashed curve indicates ambient room temperature, 

fluctuating between 22.5 °C and 23.5 °C, reflecting typical environmental variations in laboratory conditions. This 

visualization confirms the thermal stability of the system and the effectiveness of the implemented temperature control 

strategy throughout the duration of the experiment. 
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Figure 17. Transient Characteristic of a Temperature 

Control Circuit with a PID Controller 

Figure 18. The Temperature Dynamics During a 72-

Hour Experimental Run 

4. Conclusion 

Within the framework of the conducted research, a digital twin system of a modular bioreactor for biogas production 

was developed and modeled. The proposed bioreactor design and the corresponding mathematical model made it 

possible to describe key biochemical processes, including acidogenesis and methanogenesis, taking into account 

thermal and kinetic factors. The integration of the digital twin with the physical system through a sensor platform and 

industrial communication protocols provided the possibility of real-time monitoring and control. The predictive 

analysis carried out showed that the digital twin is capable of effectively forecasting changes in pH, methane 

concentrations, and other parameters, allowing for timely adjustment of the bioreactor's operating mode. The results 

obtained confirm the promising nature of using such a system for autonomous energy-efficient solutions, especially in 

agriculture and remote regions. In the future, the work can be expanded by introducing neural network algorithms and 

full integration with FPGA platforms. 

In conclusion, the article focuses on the prospects of using neural network algorithms and FPGA integration to improve 

system performance and adaptability. However, this perspective requires an analysis of how much the current hardware 

and software architecture supports such extensions. The ESP32-S3 is equipped with a built-in vector instructions + AI 

accelerator (ESP-DSP) unit and supports the TensorFlow Lite library for Microcontrollers, allowing you to run small 

neural network models (for example, CNN/LSTM with 1-2 layers) for signal classification tasks (for example, 

breathing, noise).The STM32 Nucleo can be connected via SPI/UART/I2C to an external FPGA board (for example, 

Lattice iCE40 or Intel MAX 10), which allows you to implement neural network accelerators, signal filtering, real-

time pre-processing or high-frequency datapasses. The ESP32-S3 platform with 8 MB PSRAM and Tensilica Xtensa 

LX7 core can execute models compiled in TFLite Micro, including pre-trained CNN, GRU models and even small 

combined architectures. It is also possible to integrate models generated in Edge Impulse. External FPGA modules via 

SPI (for example, Digilent Cmod A7), Integration with SoC FPGA boards (Zynq-7000), where the FPGA processes 

the signal and the microcontroller controls the logic and network, The use of ready-made IP cores of neural networks 

(for example, NNGEN, FINN from Xilinx). Devices operate in conditions of limited power supply, and the 

implementation of neural networks and FPGAs should take into account energy efficiency. The ESP32-S3 platform 

with TFLite Micro is already optimized for low power consumption, and compact FPGAs (such as the Lattice 

iCE40UP5K) consume less than 1 MW in sleep mode, making them suitable for integration into wearable and 

standalone devices. 

Thus, the existing hardware and software platform is already architecturally ready for phased expansion using neural 

networks and FPGAs. These additions do not require a complete system replacement and can be implemented as 

modules connected to current computing cores using existing interfaces. This makes it possible to turn the speculative 

thesis of the conclusion into a technically feasible roadmap for the development of the system. 
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