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Abstract 

The rapid advancement of digital technologies, including the Internet of Things (IoT), cloud computing, and mobile communications, has 

intensified reliance on interconnected networks, thereby increasing exposure to diverse cyber threats. Intrusion Detection Systems (IDS) are 

essential for identifying and mitigating these threats; however, traditional signature-based and rule-based methods fail to detect unknown or 

complex attacks and often generate high false positive rates. Recent studies have explored machine learning (ML) and deep learning (DL) 

approaches for IDS development, yet many suffer from poor generalization, limited scalability, and an inability to capture both spatial and 

temporal dependencies in network traffic. To overcome these challenges, this study proposes a hybrid deep learning framework integrating 

Convolutional Neural Networks (CNN), Stacked Long Short-Term Memory (LSTM) networks, and a Multi-Head Self-Attention (MHSA) 

mechanism. CNN layers extract spatial features, stacked LSTM layers capture long-term temporal dependencies, and MHSA enhances focus on 

the most relevant time steps, improving accuracy and reducing false alarms. The proposed model was trained and evaluated on the UNSW-NB15 

dataset, which represents modern attack vectors and realistic network behavior. Experimental results show that the model achieves state-of-the-

art performance, attaining 99.99% accuracy and outperforming existing ML and DL-based intrusion detection systems in both precision and 

generalization capability. 
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1. Introduction 

In recent years, remarkable advancements in digital technologies, the IoT, and mobile communication devices have 

significantly transformed the way individuals and organizations operate. The rapid expansion of these technologies has 

increased society’s dependence on computer networks for both personal and professional activities [1]. While this 

digital evolution has improved efficiency and connectivity, it has also introduced serious challenges related to 

cybersecurity. The exponential growth of internet usage, large-scale data transmission, and online services has made 

network infrastructures increasingly vulnerable to a wide range of cyber threats [2]. As a result, ensuring network 

integrity and maintaining secure communication have become critical priorities in the modern digital ecosystem. 

To address these concerns, Intrusion Detection Systems (IDSs) have emerged as a vital component of network defense 

mechanisms. IDSs continuously monitor network traffic, analyze system behaviors, and detect abnormal or suspicious 

activities that may indicate security breaches [3]. These systems are instrumental in identifying unauthorized access 

attempts and compromised nodes while preventing persistent intrusion efforts [4]. Generally, IDS approaches can be 

categorized into misuse detection, anomaly detection, and hybrid detection. Misuse detection relies on known attack 
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signatures, anomaly detection identifies deviations from normal behavior, and hybrid methods combine both strategies 

to achieve higher reliability [5]. Intrusions can originate externally, through unauthorized outsiders [6], or internally, 

when legitimate users attempt to gain unauthorized privileges [7]. 

In recent years, researchers have increasingly applied ML and DL techniques to enhance the accuracy and adaptability 

of IDS models [8]. Although ML-based systems have demonstrated promising results, they still suffer from limitations 

such as high false positive rates, lack of generalizability across datasets, and inefficiency in processing high-speed 

network data [9]. These challenges underscore the need for intelligent, scalable, and adaptive IDS models capable of 

effectively identifying sophisticated and evolving cyberattacks in real time. 

Deep learning, as a subfield of machine learning, has achieved outstanding success in various domains, including 

network intrusion detection [10]. Among DL architectures, LSTM networks are particularly effective in modeling 

temporal dependencies within sequential data [11]. However, conventional LSTM-based IDS frameworks often 

struggle to capture spatial relationships and prioritize the most significant features within lengthy data sequences. To 

overcome these limitations, this study proposes a hybrid deep learning architecture that combines CNNs with Stacked 

LSTM layers, enhanced by a MHSA mechanism and optimized using the Adam algorithm. This integration enables 

the model to simultaneously capture spatial and temporal characteristics of network traffic while focusing on the most 

relevant patterns, thereby improving classification performance and reducing false alarms. 

The remainder of this paper is organized as follows. Section 2 presents a comprehensive review of related work on 

intrusion detection methods. Section 3 describes the proposed methodology and model architecture. Section 4 discusses 

the experimental results and findings, and Section 5 concludes the study with final remarks and directions for future 

research. 

2. Literature Review 

ML has long served as a foundation for developing IDSs, providing early automated methods for identifying malicious 

network activities. Classical algorithms such as Naïve Bayes, Random Forest, K-Nearest Neighbors, and Support 

Vector Machines have been widely used in intrusion detection [12]. These models achieved satisfactory accuracy for 

known attack types but relied heavily on manually engineered features and static detection rules [13]. As a result, they 

often failed to recognize zero-day attacks and produced high false-positive rates when applied to large-scale, dynamic 

network environments [14]. These limitations motivated a shift toward DL methods, which can automatically extract 

complex feature representations from raw network data. 

Deep learning-based IDS models have demonstrated superior performance compared to traditional ML approaches due 

to their ability to learn hierarchical and nonlinear data patterns. Studies utilizing the NSL-KDD and KDD Cup 1999 

datasets have shown that Recurrent Neural Networks (RNNs) and LSTM architectures can effectively capture temporal 

dependencies within network traffic, resulting in improved detection accuracy and reduced false alarms [15], [16]. 

However, these works largely depend on outdated datasets that lack modern attack patterns, thereby limiting their 

applicability to current network scenarios. 

Hybrid frameworks have been introduced to further enhance IDS performance. Some studies combined spectral 

clustering and deep neural networks to extract more abstract representations of network data, which improved 

classification accuracy [17]. Others enhanced LSTM-RNN models with optimized learning parameters and achieved 

high detection rates and lower false alarm ratios [18], [19]. Variations of RNNs, such as Gated Recurrent Units (GRU), 

have also been applied to address vanishing gradient issues and achieve better generalization across attack types [20], 

[21]. While these models significantly improved detection accuracy, they remain computationally intensive and 

sensitive to hyperparameter tuning, which makes real-time deployment challenging. 

To address these challenges, several approaches have combined CNNs with RNN-based architectures. These hybrid 

models exploit CNNs to capture spatial correlations in network features and LSTMs to learn temporal dependencies, 

improving overall detection capability [22], [23]. Evaluations on NSL-KDD and UNSW-NB15 datasets confirmed 

their effectiveness in achieving higher accuracy and reducing false positives. Despite these advancements, most of 
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these models lack attention mechanisms that can dynamically emphasize relevant time steps or features, limiting their 

ability to prioritize critical network patterns. 

Ensemble learning techniques have also been explored to improve robustness. Models integrating multiple classifiers 

such as Logistic Regression, Naïve Bayes, and Decision Trees through voting mechanisms demonstrated stronger 

performance in both binary and multiclass classifications [24], [25]. Feature selection methods, including Kernel PCA, 

have been applied to enhance model interpretability and reduce redundancy. Although ensemble-based systems achieve 

more stable results, they often require extensive training resources and remain computationally heavy for real-time 

applications. 

Recent research has incorporated optimization algorithms and transformer-based architectures into IDS development. 

Metaheuristic approaches such as the Firefly Algorithm, Particle Swarm Optimization, and the Grasshopper 

Optimization Algorithm have been applied to tune parameters in models like XGBoost and LightGBM, achieving 

significant improvements in accuracy and detection rate [26], [27], [28]. Transformer-based models, which leverage 

attention mechanisms and positional encoding, have shown faster convergence and stronger performance compared to 

recurrent models, particularly when handling large and imbalanced datasets [27]. However, these models can be 

complex to train and require substantial computational resources. Further hybrid designs that integrate GRU and LSTM 

layers have demonstrated high precision in distinguishing between multiple attack types, with detection accuracies 

exceeding 98 percent [29], [30]. While effective, these architectures tend to prioritize accuracy over interpretability, 

which may limit their transparency in cybersecurity decision-making contexts. 

In the field of IoT network security, machine learning and ensemble models have been adapted for lightweight IDS 

implementations. Studies using datasets such as TON-IoT have shown that feature extraction methods generally 

outperform feature selection when computational efficiency is a priority [31]. Additional work combining various 

sampling and dimensionality reduction methods, including undersampling, oversampling, SMOTE, and PCA, has 

further enhanced classification performance and reduced training time [32] [33], [34], [35], [36], [37], [38], [39], [40]. 

Nevertheless, most IoT-oriented IDS models trade analytical depth for efficiency, limiting their scalability to high-

throughput enterprise systems. 

Overall, the evolution of IDS research reveals a clear transition from traditional ML algorithms to deep, hybrid, and 

attention-enhanced models. Traditional ML methods offer simplicity and interpretability but lack adaptability to 

evolving threats. Deep learning and hybrid frameworks demonstrate greater accuracy and generalization but are 

hindered by computational cost and scalability issues. Optimization and transformer-based models have addressed 

some of these limitations but still require more efficient architectures for real-time applications. Therefore, integrating 

CNNs, Stacked LSTMs, and Multi-Head Self-Attention mechanisms presents a promising direction for improving 

intrusion detection accuracy, minimizing false alarms, and ensuring adaptability across modern network environments. 

3. Proposed Methodology 

The proposed methodology, illustrated in figure 1, outlines the complete workflow of the intrusion detection process, 

beginning from data acquisition to attack classification. The UNSW-NB15 dataset serves as the primary source of 

network traffic data, which undergoes a series of preprocessing operations to ensure quality and consistency. During 

data preprocessing, missing values are handled, categorical attributes are label-encoded, and numerical features are 

normalized to enhance model stability and convergence. The preprocessed data is then fed into the model training 

phase, which integrates CNN and Stacked LSTM layers. The CNN component is responsible for extracting local spatial 

features from the network traffic data, while the Stacked LSTM captures temporal dependencies and sequential 

behavior across multiple time steps. To further refine feature representation, a MHSA mechanism is applied, enabling 

the model to focus selectively on the most relevant features and time intervals within the data sequence. Once trained, 

the model proceeds to the testing phase, where it evaluates new instances of network traffic. The system classifies these 

inputs as either normal or intrusive based on learned patterns, effectively distinguishing between different types of 

attacks. This end-to-end pipeline ensures an adaptive, scalable, and high-accuracy intrusion detection process capable 

of handling complex, real-world network environments. 
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Figure 1. Proposed Model 

3.1. Dataset Details 

The UNSW-NB15 dataset was selected for this study because it provides a realistic and comprehensive benchmark for 

evaluating intrusion detection systems. Developed by the Australian Centre for Cyber Security (ACCS) using the IXIA 

PerfectStorm tool, it contains approximately 2.5 million records representing both normal and malicious network traffic 

[33]. The dataset includes ten attack categories, namely Analysis, Backdoor, Denial of Service (DoS), Exploits, 

Fuzzers, Generic, Reconnaissance, Shellcode, and Worms, with features divided into six categories: flow, basic, 

content, time, additional generated, and labeled features. A 10 percent subset available on Kaggle, consisting of 175,341 

training records and 82,332 testing records, was used for experimentation. Table 1 summarizes the distribution of attack 

classes across the training and testing sets, highlighting an imbalance where NORMAL and GENERIC attacks 

dominate, while Worms and Shellcode contain the fewest samples. This imbalance emphasizes the importance of 

appropriate preprocessing and resampling methods to ensure balanced learning and improved generalization. 

Table 1. Different Types of Attacks and their corresponding records in training and Testing 

Attack Type No of Records used for Training No of Records used for Testing 

NORMAL 56,000 37,000 

GENERIC 40,000 18,871 

EXPLOITS 33,393 11,132 

FUZZERS 18,184 6,062 

DOS 12,264 4,089 

RECONNAISSANCE 10,491 3,496 

ANALYSIS 20,00 677 

BACKDOOR 1,746 583 

SHELLCODE 1,133 378 

WORMS 130 44 

TOTAL 17,5341 82,332 

Figure 2 illustrates the boxplot of data fields in logarithmic scale, showing the spread, variability, and outliers among 

the dataset’s features. Several attributes, such as sttl, dttl, and ct_dst_src_ltm, exhibit significant variance, which can 

affect model stability during training. Normalization and scaling are therefore essential to ensure consistent feature 

ranges and prevent bias toward dominant variables. The visualization also indicates that preprocessing steps, including 

label encoding for categorical features and Min-Max normalization for numerical values, play a vital role in improving 

convergence speed and model robustness. These procedures ensure that the proposed CNN–Stacked LSTM model can 

effectively capture spatial and temporal dependencies within the network traffic data, leading to more accurate intrusion 

classification. 
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Figure 2. Features related to UNSW-NB15 dataset 

3.2. Preprocessing of Data 

Data preprocessing is a crucial step before model training, as it ensures the dataset is consistent, balanced, and suitable 

for deep learning algorithms. The UNSW-NB15 dataset was first cleaned to remove missing or redundant values, and 

categorical attributes were transformed into numerical representations using label encoding, where each category was 

assigned a unique integer identifier. Missing values were represented using “NaN” placeholders to preserve dataset 

integrity during encoding. Since the dataset exhibits class imbalance, especially across different attack types, 

preprocessing also involved analyzing statistical distributions to ensure representativeness during training. Numerical 

features were normalized using Min-Max scaling to map values within the range of 0 to 1, while standardization was 

applied to achieve a mean of 0 and a standard deviation of 1. This process enhances training stability and prevents 

features with larger ranges from dominating the learning process. Figure 3 illustrates the correlation heatmap among 

different features of the UNSW-NB15 dataset. It highlights how certain attributes, such as sttl, dttl, and sload, show 

relatively strong correlations, suggesting redundancy that may influence feature selection. Conversely, many other 

features exhibit weak correlations, indicating diverse contributions to model learning. 

 
Figure 3. Heat Map between different Features 
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Figure 4 presents the mutual information scores between input features and target classes, ranking their relevance for 

intrusion detection. Features such as sbytes, sttl, and ct_state_ttl obtained the highest scores, meaning they contribute 

most significantly to distinguishing normal and attack traffic. This analysis guided the selection of features with 

stronger predictive power, ensuring that the CNN–Stacked LSTM model learns effectively from both spatial and 

temporal relationships within the data. Through these preprocessing and feature evaluation steps, the dataset was 

optimized for robust and stable model performance. 

 
Figure 4. Mutual information scores between features 

3.3. Models Used in This Research 

The proposed model integrates CNN and Stacked LSTM networks to effectively capture both spatial and temporal 

dependencies in network intrusion data. The CNN component is primarily responsible for extracting local spatial 

features from network traffic by applying convolution operations across input feature maps. Each convolutional layer 

performs a linear operation followed by a nonlinear activation function, typically the Rectified Linear Unit (ReLU). 

The convolution process is represented as 

𝐹𝑖,𝑗
(𝑘) = 𝜎(∑𝑋𝑖+𝑚,𝑗+𝑛

𝑚,𝑛

⋅ 𝑊𝑚,𝑛
(𝑘) + 𝑏(𝑘)) (1) 

In this expression, 𝐹𝑖,𝑗
(𝑘)

denotes the feature map produced by the 𝑘-th filter, 𝑋represents the input matrix, 𝑊(𝑘)and 

𝑏(𝑘)indicate the filter weights and bias, and 𝜎(⋅)corresponds to the ReLU activation function. Two convolutional layers 

containing 64 and 128 filters were used in this research, followed by batch normalization, max pooling, and dropout 

layers to reduce overfitting and enhance generalization capability. 

After spatial features are extracted, the data are passed through the Stacked LSTM network to capture long-term 

temporal dependencies across time steps. Each LSTM cell maintains internal memory through gating mechanisms that 

control the flow of information within the sequence. The operation of each LSTM cell is described by the following 

equations: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

𝐶̃𝑡 = tanh⁡(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (4) 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 (5) 
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𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh⁡(𝐶𝑡) (7) 

In these equations, 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡represent the forget, input, and output gates respectively. 𝐶𝑡denotes the cell state, while 

ℎ𝑡indicates the hidden state at time step 𝑡. Stacking multiple LSTM layers enables the model to capture hierarchical 

temporal patterns, allowing deeper understanding of complex network behavior. The sequential output is then flattened 

and passed to dense layers equipped with batch normalization and dropout. A sigmoid activation function is used in 

the final dense layer for binary classification, which distinguishes between normal and malicious network traffic. The 

classification process is expressed as 

𝑦̂ = 𝜎(𝑊 ⋅ ℎ𝑡 + 𝑏) (8) 

The integration of a MHSA mechanism enhances the model’s capability to focus on the most relevant temporal features. 

Unlike conventional LSTM models that process data sequentially, MHSA allows simultaneous attention across all time 

steps, improving the representation of long-range dependencies. The attention function is mathematically defined as 

Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (9) 

In this formulation, 𝑄, 𝐾, and 𝑉represent the query, key, and value matrices, while 𝑑𝑘denotes the dimensionality of 

the key vectors. The multi-head version extends this mechanism by applying several attention heads in parallel to 

capture diverse contextual relationships. The overall process is given by 

MHSA(𝑄, 𝐾, 𝑉) = Concat(head1, head2, . . . , headℎ)𝑊
𝑂 (10) 

and each attention head is computed as 

head𝑖 = Attention(𝑄𝑊𝑖
𝑄
, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (11) 

This mechanism enables the model to assign different importance weights to various parts of the input sequence, 

focusing on the most informative segments of network data. In this study, two attention heads with a key dimension of 

64 were used to enhance the feature representation and improve intrusion classification accuracy. 

To optimize the model, the Adaptive Moment Estimation (Adam) algorithm was employed with a learning rate of 

0.001. Adam combines the advantages of Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation 

(RMSProp) by utilizing the first and second moments of gradients for adaptive learning rate adjustment. The parameter 

update procedure is described as follows: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (12) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (13) 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 , 𝑣𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡 (14) 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝑚̂𝑡

√𝑣𝑡 + 𝜖
 (15) 

In this formulation, 𝑚𝑡and 𝑣𝑡represent the moving averages of the gradient and its square, 𝛽1and 𝛽2are decay rates, 

𝛼is the learning rate, and 𝜖is a small constant to prevent division by zero. Mutual information-based feature selection 

was also applied to retain the most informative attributes, reducing computational complexity while maintaining 

predictive performance. Early stopping was implemented to prevent overfitting by terminating training after five 

consecutive epochs without improvement in validation loss. 

The combination of CNN for spatial feature extraction, Stacked LSTM for temporal sequence modeling, MHSA for 

dynamic attention across time steps, and Adam optimization for efficient convergence enables the proposed hybrid 

model to achieve high accuracy, robust generalization, and effective detection of diverse network intrusions. 
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4. Result and Discussion 

4.1. Various Model Hyperparameters 

The performance of a deep learning model depends significantly on the selection and optimization of its 

hyperparameters. Properly configured hyperparameters determine the model’s capacity to learn complex data 

representations while maintaining generalization and convergence stability. In this study, several key hyperparameters 

were carefully selected to optimize the training process and enhance the accuracy of the proposed CNN–Stacked LSTM 

model. The parameters used in the research are summarized in table 2. 

Table 2. Parameters used in this Research 

Parameters Used Value 

Conv1D Layer 1 64 

Kernel Size 3 

Activation Function Relu 

Dropout Rate 0.4 

Pooling Size 2 

Number of Heads 2 

Key Dimension 64 

Stacked LSTM Layers Layer1 :128 Layer 2 :64 

Output Layer Activation Sigmoid 

Optimizer Adam 

Learning Rate 0.001 

Batch Size 32 

Epoch 50 

Patience 5 

Loss function Binary Cross entropy 

The model employs two one-dimensional convolutional layers, with the first Conv1D layer consisting of 64 filters and 

a kernel size of 3 to capture fine-grained spatial features in the network data. The ReLU activation function is used in 

all convolutional layers to introduce nonlinearity and improve learning efficiency. A dropout rate of 0.4 is applied to 

prevent overfitting, and a pooling size of 2 is used to reduce dimensionality while retaining important feature 

characteristics. The architecture includes two Stacked LSTM layers configured with 128 and 64 hidden units 

respectively, enabling the model to learn both high-level and fine-grained temporal dependencies. 

To enhance the model’s capacity for contextual learning, a Multi-Head Self-Attention mechanism with two attention 

heads and a key dimension of 64 is integrated into the framework. The final dense output layer employs a sigmoid 

activation function to perform binary classification between normal and attack traffic. Optimization during training is 

handled by the Adam optimizer with a learning rate of 0.001, which provides adaptive learning rates for faster 

convergence. The model is trained using a batch size of 32 over 50 epochs, with an early stopping patience of five 

epochs to prevent overfitting. Binary cross-entropy is used as the loss function, as it effectively measures the divergence 

between predicted probabilities and true class labels in binary classification tasks. 

4.2. Metrics for Evaluation and Discussion 

The performance of the proposed intrusion detection model was evaluated using several key metrics, including training 

and validation accuracy, loss, confusion matrix, and feature importance analysis. These metrics collectively provide a 

comprehensive assessment of the model’s learning capability, generalization strength, and classification reliability. 

Figure 5 illustrates the model’s accuracy and loss trends throughout the training epochs. The training accuracy begins 
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at approximately 96 percent, indicating that the model successfully captures relevant patterns early in the learning 

process. As training progresses, accuracy improves steadily and exceeds 99.9 percent in the final epochs, while 

validation accuracy remains consistently high, confirming that the model generalizes effectively to unseen data. The 

close alignment between training and validation curves indicates stable learning behavior and the absence of overfitting. 

Correspondingly, the training loss, which starts near 0.11, declines sharply during the initial epochs and converges 

toward zero as learning stabilizes. Validation loss remains low and consistent, further demonstrating the model’s 

efficiency in minimizing prediction errors and optimizing parameters throughout the training phase. 

 

Figure 5. Training and Validation Accuracies/Losses 

A deeper understanding of the classification performance is provided by the confusion matrix shown in figure 6. The 

matrix demonstrates that the model achieved near-perfect classification, with 13,946 true negatives and 24,698 true 

positives, along with only two false positives and a single false negative. These results indicate exceptional precision, 

recall, and overall reliability in distinguishing between normal and malicious traffic. The extremely low 

misclassification rate suggests that the proposed CNN–Stacked LSTM model, enhanced by the Multi-Head Self-

Attention mechanism, is capable of robustly identifying network intrusions with minimal error. Furthermore, the 

feature importance analysis presented in figure 7 highlights the most influential attributes contributing to accurate 

classification decisions. Features such as sbytes, sttl, and sload exhibit the highest mutual information scores, signifying 

their strong correlation with attack detection outcomes. These features play a crucial role in capturing both the spatial 

and temporal characteristics of network traffic, thereby enhancing the model’s decision-making capability. 

  

Figure 6. Confusion Matrix of Proposed 

model 

Figure 7. Feature Importance Based on Mutual Information 

Scores 
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4.3. Comparison Analysis with the State of Art Models 

To assess the effectiveness of the proposed CNN–Stacked LSTM model, its performance was compared with several 

existing state-of-the-art intrusion detection systems developed using different machine learning and deep learning 

techniques. Prior studies have demonstrated notable results using classical and neural-based architectures on the 

UNSW-NB15 dataset. In [32], a Multilayer Perceptron (MLP) model was implemented using 23 selected features for 

multiclass classification, achieving an accuracy of 84.24 percent. Although this model captured basic nonlinear 

relationships, its performance was limited by the shallow architecture and lack of temporal feature learning. Further 

improvements were achieved by models using ensemble and recurrent structures. In [33], a Random Forest algorithm 

was trained on all available features and achieved an accuracy of 94.21 percent, showing better feature utilization but 

still constrained by its inability to capture sequential dependencies. Similarly, the study in [34] employed a LSTM 

network using the complete feature set and achieved an accuracy of 96.98 percent, demonstrating that temporal pattern 

recognition enhances intrusion detection performance. 

The proposed hybrid model, which combines CNN and Stacked LSTM layers, outperforms these approaches by 

achieving an accuracy of 99.99 percent on the same UNSW-NB15 dataset. The CNN component enhances spatial 

feature extraction, while the Stacked LSTM captures deeper temporal dependencies, and the integration of attention 

mechanisms ensures that the model focuses on the most relevant time steps during classification. This combination 

enables the model to achieve both high precision and robust generalization. The comparison summarized in table 3 

clearly indicates that the proposed CNN–Stacked LSTM architecture substantially improves accuracy compared to 

existing models, validating its superiority in detecting and classifying network intrusions efficiently. 

Table 3. Comparison Analysis with state of Art models. 

Ref Algorithm Used Dataset used No of features 
Classified 

Classes 
Accuracy 

[32] MLP UNSWNB-15 23 6 84.24 

[33] 
RANDOM 

FOREST 
UNSWNB-15 Complete 9 94.21 

[34] LSTM UNSWNB-15 Complete 9 96.98 

Proposed Model 
CNN with Stacked 

LSTM 
UNSWNB-15 23 2 99.99 

4.4. Discussion 

The findings of this study confirm that integrating CNN, Stacked LSTM, and MHSA provides a robust and intelligent 

framework for network intrusion detection. Hybrid deep learning architectures have consistently demonstrated superior 

performance compared to traditional methods by efficiently modeling nonlinear and dynamic attack behaviors [2], [3], 

[10], [12]. The proposed model combines CNN’s strength in spatial feature extraction with LSTM’s ability to capture 

temporal dependencies, enabling the detection of both short-term and long-term attack patterns within network traffic. 

The inclusion of the MHSA mechanism further enhances this capability by dynamically assigning greater attention to 

critical time steps, allowing the model to detect subtle but crucial deviations in traffic behavior [28], [36]. 

The learning curves observed during training and validation indicate that the model achieves rapid convergence and 

maintains high generalization performance. The Adam optimizer contributes to stable learning by adaptively adjusting 

parameter updates, ensuring minimal overfitting and faster convergence [5], [26]. The close correspondence between 

training and validation accuracy, as well as the sharp reduction in loss values, demonstrates the model’s stability and 

consistent error minimization. The confusion matrix results also confirm that the model classifies nearly all attack and 

normal samples correctly, showing an outstanding balance between precision and recall. Similar findings were 

observed in previous studies that applied deep recurrent and hybrid neural models for intrusion detection [16], [18], 

[19], [23], but the integration of CNN, LSTM, and MHSA in this research achieves substantially higher accuracy and 

robustness in identifying diverse intrusion types. 
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The comparative analysis highlights that the proposed CNN–Stacked LSTM–MHSA model significantly outperforms 

existing state-of-the-art approaches. Earlier works using MLP, Random Forest, and standalone LSTM architectures on 

the UNSW-NB15 dataset achieved accuracies of 84.24%, 94.21%, and 96.98% respectively [32], [33], [34]. The 

proposed model, by contrast, achieved an accuracy of 99.99%, validating its superior ability to generalize across 

complex traffic patterns. These findings align with recent research emphasizing that hybrid and attention-based 

architectures, particularly those combining convolutional and recurrent layers, can dramatically enhance detection 

accuracy and scalability in modern IoT and cloud security systems [7], [8], [9], [11], [35], [40]. 

Despite its strong performance, the proposed approach also faces challenges that present opportunities for future work. 

The combination of CNN, LSTM, and MHSA introduces increased computational complexity, which may limit 

deployment in real-time or low-power environments such as IoT edge devices [14], [31], [36]. Although the UNSW-

NB15 dataset provides realistic attack diversity, further evaluation on newer datasets or under adversarial conditions 

is necessary to confirm the model’s resilience. Future research could focus on reducing computational costs using 

model pruning or quantization, developing distributed learning frameworks such as federated IDS for decentralized 

environments, and enhancing robustness through adversarial training or transfer learning [27], [29], [37], [38], [39]. 

Overall, the results of this study demonstrate that the CNN–Stacked LSTM–MHSA model represents a substantial 

advancement in deep learning-based intrusion detection. The unified integration of spatial, temporal, and attention 

mechanisms enables the system to learn discriminative representations that are both accurate and computationally 

stable. The observed performance improvements, combined with strong generalization across network traffic patterns, 

underscore the potential of hybrid architectures as a foundational direction for next-generation intrusion detection 

systems [1], [3], [10], [40], [41]. 

5. Conclusion 

The integration of CNNs and Stacked LSTM networks, enhanced with a MHSA mechanism and optimized using the 

Adam optimizer, has proven to be a highly effective approach for developing intelligent and adaptive Intrusion 

Detection Systems (IDS). This hybrid architecture addresses the key limitations of conventional machine learning and 

individual deep learning models by combining spatial and temporal feature extraction in a unified framework. The 

convolutional layers effectively identify localized spatial correlations within network traffic, while the stacked LSTM 

layers preserve long-term temporal dependencies. The inclusion of the MHSA mechanism further improves this process 

by dynamically weighting critical time steps, allowing the model to focus on subtle but significant changes in network 

behavior that indicate potential intrusions. 

The proposed model was evaluated using the UNSW-NB15 dataset, which reflects modern cyberattack patterns and 

realistic traffic characteristics. The model achieved near-perfect performance, with an overall accuracy of 99.99 percent 

and equally high precision, recall, and F1-score values. These results confirm that the proposed CNN–Stacked LSTM–

MHSA architecture significantly outperforms traditional machine learning and earlier deep learning-based intrusion 

detection approaches. The use of the UNSW-NB15 dataset, in contrast to older datasets such as KDDCup99, provides 

a more representative benchmark for current cybersecurity challenges, ensuring that the model generalizes effectively 

to contemporary and evolving network threats. 

In addition to its classification accuracy, the proposed framework effectively addresses persistent issues in intrusion 

detection, such as high false positive rates, scalability limitations, and inefficiencies in handling large volumes of data. 

By leveraging attention mechanisms to emphasize relevant features, the model substantially reduces false alarms while 

maintaining computational efficiency suitable for real-time implementation. The architectural flexibility of the model 

allows it to scale seamlessly across diverse network environments, making it well-suited for continuous enterprise-

level monitoring. Furthermore, the framework’s modularity enables potential future enhancements through advanced 

techniques such as graph neural networks for relational feature modeling, federated learning for distributed detection, 

and adversarial training for improved resistance against evasion attacks. 

In conclusion, this study presents a high-performing, scalable, and adaptive deep learning framework for network 

intrusion detection. The successful combination of CNN, Stacked LSTM, and MHSA components demonstrates that 

deep learning architectures can achieve both exceptional accuracy and operational practicality. As cybersecurity threats 



Journal of Applied Data Sciences 

Vol. 7, No. 1, January 2026, pp. 475-488 

ISSN 2723-6471 

486 

 

 

 

continue to grow in sophistication, hybrid models of this nature provide a promising foundation for building resilient, 

intelligent, and autonomous intrusion detection systems capable of protecting modern digital infrastructures. 
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