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Abstract

The rapid advancement of digital technologies, including the Internet of Things (IoT), cloud computing, and mobile communications, has
intensified reliance on interconnected networks, thereby increasing exposure to diverse cyber threats. Intrusion Detection Systems (IDS) are
essential for identifying and mitigating these threats; however, traditional signature-based and rule-based methods fail to detect unknown or
complex attacks and often generate high false positive rates. Recent studies have explored machine learning (ML) and deep learning (DL)
approaches for IDS development, yet many suffer from poor generalization, limited scalability, and an inability to capture both spatial and
temporal dependencies in network traffic. To overcome these challenges, this study proposes a hybrid deep learning framework integrating
Convolutional Neural Networks (CNN), Stacked Long Short-Term Memory (LSTM) networks, and a Multi-Head Self-Attention (MHSA)
mechanism. CNN layers extract spatial features, stacked LSTM layers capture long-term temporal dependencies, and MHSA enhances focus on
the most relevant time steps, improving accuracy and reducing false alarms. The proposed model was trained and evaluated on the UNSW-NB15
dataset, which represents modern attack vectors and realistic network behavior. Experimental results show that the model achieves state-of-the-
art performance, attaining 99.99% accuracy and outperforming existing ML and DL-based intrusion detection systems in both precision and
generalization capability.
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1. Introduction

In recent years, remarkable advancements in digital technologies, the IoT, and mobile communication devices have
significantly transformed the way individuals and organizations operate. The rapid expansion of these technologies has
increased society’s dependence on computer networks for both personal and professional activities [1]. While this
digital evolution has improved efficiency and connectivity, it has also introduced serious challenges related to
cybersecurity. The exponential growth of internet usage, large-scale data transmission, and online services has made
network infrastructures increasingly vulnerable to a wide range of cyber threats [2]. As a result, ensuring network
integrity and maintaining secure communication have become critical priorities in the modern digital ecosystem.

To address these concerns, Intrusion Detection Systems (IDSs) have emerged as a vital component of network defense
mechanisms. IDSs continuously monitor network traffic, analyze system behaviors, and detect abnormal or suspicious
activities that may indicate security breaches [3]. These systems are instrumental in identifying unauthorized access
attempts and compromised nodes while preventing persistent intrusion efforts [4]. Generally, IDS approaches can be
categorized into misuse detection, anomaly detection, and hybrid detection. Misuse detection relies on known attack
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signatures, anomaly detection identifies deviations from normal behavior, and hybrid methods combine both strategies
to achieve higher reliability [5]. Intrusions can originate externally, through unauthorized outsiders [6], or internally,
when legitimate users attempt to gain unauthorized privileges [7].

In recent years, researchers have increasingly applied ML and DL techniques to enhance the accuracy and adaptability
of IDS models [8]. Although ML-based systems have demonstrated promising results, they still suffer from limitations
such as high false positive rates, lack of generalizability across datasets, and inefficiency in processing high-speed
network data [9]. These challenges underscore the need for intelligent, scalable, and adaptive IDS models capable of
effectively identifying sophisticated and evolving cyberattacks in real time.

Deep learning, as a subfield of machine learning, has achieved outstanding success in various domains, including
network intrusion detection [10]. Among DL architectures, LSTM networks are particularly effective in modeling
temporal dependencies within sequential data [11]. However, conventional LSTM-based IDS frameworks often
struggle to capture spatial relationships and prioritize the most significant features within lengthy data sequences. To
overcome these limitations, this study proposes a hybrid deep learning architecture that combines CNNs with Stacked
LSTM layers, enhanced by a MHSA mechanism and optimized using the Adam algorithm. This integration enables
the model to simultaneously capture spatial and temporal characteristics of network traffic while focusing on the most
relevant patterns, thereby improving classification performance and reducing false alarms.

The remainder of this paper is organized as follows. Section 2 presents a comprehensive review of related work on
intrusion detection methods. Section 3 describes the proposed methodology and model architecture. Section 4 discusses
the experimental results and findings, and Section 5 concludes the study with final remarks and directions for future
research.

2. Literature Review

ML has long served as a foundation for developing IDSs, providing early automated methods for identifying malicious
network activities. Classical algorithms such as Naive Bayes, Random Forest, K-Nearest Neighbors, and Support
Vector Machines have been widely used in intrusion detection [12]. These models achieved satisfactory accuracy for
known attack types but relied heavily on manually engineered features and static detection rules [13]. As a result, they
often failed to recognize zero-day attacks and produced high false-positive rates when applied to large-scale, dynamic
network environments [ 14]. These limitations motivated a shift toward DL methods, which can automatically extract
complex feature representations from raw network data.

Deep learning-based IDS models have demonstrated superior performance compared to traditional ML approaches due
to their ability to learn hierarchical and nonlinear data patterns. Studies utilizing the NSL-KDD and KDD Cup 1999
datasets have shown that Recurrent Neural Networks (RNNs) and LSTM architectures can effectively capture temporal
dependencies within network traffic, resulting in improved detection accuracy and reduced false alarms [15], [16].
However, these works largely depend on outdated datasets that lack modern attack patterns, thereby limiting their
applicability to current network scenarios.

Hybrid frameworks have been introduced to further enhance IDS performance. Some studies combined spectral
clustering and deep neural networks to extract more abstract representations of network data, which improved
classification accuracy [17]. Others enhanced LSTM-RNN models with optimized learning parameters and achieved
high detection rates and lower false alarm ratios [18], [19]. Variations of RNNs, such as Gated Recurrent Units (GRU),
have also been applied to address vanishing gradient issues and achieve better generalization across attack types [20],
[21]. While these models significantly improved detection accuracy, they remain computationally intensive and
sensitive to hyperparameter tuning, which makes real-time deployment challenging.

To address these challenges, several approaches have combined CNNs with RNN-based architectures. These hybrid
models exploit CNNs to capture spatial correlations in network features and LSTMs to learn temporal dependencies,
improving overall detection capability [22], [23]. Evaluations on NSL-KDD and UNSW-NB15 datasets confirmed
their effectiveness in achieving higher accuracy and reducing false positives. Despite these advancements, most of
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these models lack attention mechanisms that can dynamically emphasize relevant time steps or features, limiting their
ability to prioritize critical network patterns.

Ensemble learning techniques have also been explored to improve robustness. Models integrating multiple classifiers
such as Logistic Regression, Naive Bayes, and Decision Trees through voting mechanisms demonstrated stronger
performance in both binary and multiclass classifications [24], [25]. Feature selection methods, including Kernel PCA,
have been applied to enhance model interpretability and reduce redundancy. Although ensemble-based systems achieve
more stable results, they often require extensive training resources and remain computationally heavy for real-time
applications.

Recent research has incorporated optimization algorithms and transformer-based architectures into IDS development.
Metaheuristic approaches such as the Firefly Algorithm, Particle Swarm Optimization, and the Grasshopper
Optimization Algorithm have been applied to tune parameters in models like XGBoost and LightGBM, achieving
significant improvements in accuracy and detection rate [26], [27], [28]. Transformer-based models, which leverage
attention mechanisms and positional encoding, have shown faster convergence and stronger performance compared to
recurrent models, particularly when handling large and imbalanced datasets [27]. However, these models can be
complex to train and require substantial computational resources. Further hybrid designs that integrate GRU and LSTM
layers have demonstrated high precision in distinguishing between multiple attack types, with detection accuracies
exceeding 98 percent [29], [30]. While effective, these architectures tend to prioritize accuracy over interpretability,
which may limit their transparency in cybersecurity decision-making contexts.

In the field of IoT network security, machine learning and ensemble models have been adapted for lightweight IDS
implementations. Studies using datasets such as TON-IoT have shown that feature extraction methods generally
outperform feature selection when computational efficiency is a priority [31]. Additional work combining various
sampling and dimensionality reduction methods, including undersampling, oversampling, SMOTE, and PCA, has
further enhanced classification performance and reduced training time [32] [33], [34], [35], [36], [37], [38], [39], [40].
Nevertheless, most loT-oriented IDS models trade analytical depth for efficiency, limiting their scalability to high-
throughput enterprise systems.

Overall, the evolution of IDS research reveals a clear transition from traditional ML algorithms to deep, hybrid, and
attention-enhanced models. Traditional ML methods offer simplicity and interpretability but lack adaptability to
evolving threats. Deep learning and hybrid frameworks demonstrate greater accuracy and generalization but are
hindered by computational cost and scalability issues. Optimization and transformer-based models have addressed
some of these limitations but still require more efficient architectures for real-time applications. Therefore, integrating
CNNs, Stacked LSTMs, and Multi-Head Self-Attention mechanisms presents a promising direction for improving
intrusion detection accuracy, minimizing false alarms, and ensuring adaptability across modern network environments.

3. Proposed Methodology

The proposed methodology, illustrated in figure 1, outlines the complete workflow of the intrusion detection process,
beginning from data acquisition to attack classification. The UNSW-NBI15 dataset serves as the primary source of
network traffic data, which undergoes a series of preprocessing operations to ensure quality and consistency. During
data preprocessing, missing values are handled, categorical attributes are label-encoded, and numerical features are
normalized to enhance model stability and convergence. The preprocessed data is then fed into the model training
phase, which integrates CNN and Stacked LSTM layers. The CNN component is responsible for extracting local spatial
features from the network traffic data, while the Stacked LSTM captures temporal dependencies and sequential
behavior across multiple time steps. To further refine feature representation, a MHSA mechanism is applied, enabling
the model to focus selectively on the most relevant features and time intervals within the data sequence. Once trained,
the model proceeds to the testing phase, where it evaluates new instances of network traffic. The system classifies these
inputs as either normal or intrusive based on learned patterns, effectively distinguishing between different types of
attacks. This end-to-end pipeline ensures an adaptive, scalable, and high-accuracy intrusion detection process capable
of handling complex, real-world network environments.
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Figure 1. Proposed Model

3.1. Dataset Details

The UNSW-NBI15 dataset was selected for this study because it provides a realistic and comprehensive benchmark for
evaluating intrusion detection systems. Developed by the Australian Centre for Cyber Security (ACCS) using the IXIA
PerfectStorm tool, it contains approximately 2.5 million records representing both normal and malicious network traffic
[33]. The dataset includes ten attack categories, namely Analysis, Backdoor, Denial of Service (DoS), Exploits,
Fuzzers, Generic, Reconnaissance, Shellcode, and Worms, with features divided into six categories: flow, basic,
content, time, additional generated, and labeled features. A 10 percent subset available on Kaggle, consisting of 175,341
training records and 82,332 testing records, was used for experimentation. Table | summarizes the distribution of attack
classes across the training and testing sets, highlighting an imbalance where NORMAL and GENERIC attacks
dominate, while Worms and Shellcode contain the fewest samples. This imbalance emphasizes the importance of
appropriate preprocessing and resampling methods to ensure balanced learning and improved generalization.

Table 1. Different Types of Attacks and their corresponding records in training and Testing

Attack Type No of Records used for Training No of Records used for Testing
NORMAL 56,000 37,000
GENERIC 40,000 18,871
EXPLOITS 33,393 11,132
FUZZERS 18,184 6,062
DOS 12,264 4,089
RECONNAISSANCE 10,491 3,496
ANALYSIS 20,00 677
BACKDOOR 1,746 583
SHELLCODE 1,133 378
WORMS 130 44
TOTAL 17,5341 82,332

Figure 2 illustrates the boxplot of data fields in logarithmic scale, showing the spread, variability, and outliers among
the dataset’s features. Several attributes, such as sttl, dttl, and ct_dst src_Itm, exhibit significant variance, which can
affect model stability during training. Normalization and scaling are therefore essential to ensure consistent feature
ranges and prevent bias toward dominant variables. The visualization also indicates that preprocessing steps, including
label encoding for categorical features and Min-Max normalization for numerical values, play a vital role in improving
convergence speed and model robustness. These procedures ensure that the proposed CNN—Stacked LSTM model can
effectively capture spatial and temporal dependencies within the network traffic data, leading to more accurate intrusion
classification.
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Figure 2. Features related to UNSW-NBI15 dataset

3.2. Preprocessing of Data

Data preprocessing is a crucial step before model training, as it ensures the dataset is consistent, balanced, and suitable
for deep learning algorithms. The UNSW-NB15 dataset was first cleaned to remove missing or redundant values, and
categorical attributes were transformed into numerical representations using label encoding, where each category was
assigned a unique integer identifier. Missing values were represented using “NaN” placeholders to preserve dataset
integrity during encoding. Since the dataset exhibits class imbalance, especially across different attack types,
preprocessing also involved analyzing statistical distributions to ensure representativeness during training. Numerical
features were normalized using Min-Max scaling to map values within the range of 0 to 1, while standardization was
applied to achieve a mean of 0 and a standard deviation of 1. This process enhances training stability and prevents
features with larger ranges from dominating the learning process. Figure 3 illustrates the correlation heatmap among
different features of the UNSW-NBI15 dataset. It highlights how certain attributes, such as sttl, dttl, and sload, show
relatively strong correlations, suggesting redundancy that may influence feature selection. Conversely, many other
features exhibit weak correlations, indicating diverse contributions to model learning.

Correlation
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Figure 3. Heat Map between different Features
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Figure 4 presents the mutual information scores between input features and target classes, ranking their relevance for
intrusion detection. Features such as sbytes, sttl, and ct_state ttl obtained the highest scores, meaning they contribute
most significantly to distinguishing normal and attack traffic. This analysis guided the selection of features with
stronger predictive power, ensuring that the CNN—Stacked LSTM model learns effectively from both spatial and
temporal relationships within the data. Through these preprocessing and feature evaluation steps, the dataset was
optimized for robust and stable model performance.

Mutual Information Scores for Class Prediction
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Figure 4. Mutual information scores between features

3.3. Models Used in This Research

The proposed model integrates CNN and Stacked LSTM networks to effectively capture both spatial and temporal
dependencies in network intrusion data. The CNN component is primarily responsible for extracting local spatial
features from network traffic by applying convolution operations across input feature maps. Each convolutional layer
performs a linear operation followed by a nonlinear activation function, typically the Rectified Linear Unit (ReLU).
The convolution process is represented as

k k
F=q (Z Ximjsn - Wt + b(k)) (1)
mn

In this expression, Fi(‘;-{) denotes the feature map produced by the k-th filter, Xrepresents the input matrix, W ®and

0.0 0.1

b®indicate the filter weights and bias, and o (-)corresponds to the ReLU activation function. Two convolutional layers
containing 64 and 128 filters were used in this research, followed by batch normalization, max pooling, and dropout
layers to reduce overfitting and enhance generalization capability.

After spatial features are extracted, the data are passed through the Stacked LSTM network to capture long-term
temporal dependencies across time steps. Each LSTM cell maintains internal memory through gating mechanisms that
control the flow of information within the sequence. The operation of each LSTM cell is described by the following
equations:

fe= U(Wf “[he—1,x¢] + bf) 2
i = oW [heeq, x¢] + by) 3
Ce = tanh (W¢ - [he—q, X¢] + bc) 4)

Cc=fOC1+i OC Q)
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o = o(Wp - [he—1,x¢] + Do) (6)

In these equations, f, i;, and o;represent the forget, input, and output gates respectively. Cydenotes the cell state, while
hiindicates the hidden state at time step t. Stacking multiple LSTM layers enables the model to capture hierarchical
temporal patterns, allowing deeper understanding of complex network behavior. The sequential output is then flattened
and passed to dense layers equipped with batch normalization and dropout. A sigmoid activation function is used in
the final dense layer for binary classification, which distinguishes between normal and malicious network traffic. The
classification process is expressed as

y=oW - h,+b) ®)

The integration of a MHSA mechanism enhances the model’s capability to focus on the most relevant temporal features.
Unlike conventional LSTM models that process data sequentially, MHSA allows simultaneous attention across all time
steps, improving the representation of long-range dependencies. The attention function is mathematically defined as

: QKT

Attention(Q, K, V) = softmax F %4 9)
K

In this formulation, Q, K, and Vrepresent the query, key, and value matrices, while d;denotes the dimensionality of

the key vectors. The multi-head version extends this mechanism by applying several attention heads in parallel to

capture diverse contextual relationships. The overall process is given by

MHSA(Q, K,V) = Concat(head;, head,, ..., head;,)W?° (10)

and each attention head is computed as
head; = Attention(QW,%, KW/, vw/) (11

This mechanism enables the model to assign different importance weights to various parts of the input sequence,
focusing on the most informative segments of network data. In this study, two attention heads with a key dimension of
64 were used to enhance the feature representation and improve intrusion classification accuracy.

To optimize the model, the Adaptive Moment Estimation (Adam) algorithm was employed with a learning rate of
0.001. Adam combines the advantages of Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation
(RMSProp) by utilizing the first and second moments of gradients for adaptive learning rate adjustment. The parameter
update procedure is described as follows:

my = pime_1 + (1= B1)9: (12)

v = Boveog + (1 — Br)gf (13)

My = —t §y = — 14

T (14)
m;

041 =0 —a— (15)
U+ €

In this formulation, m,and v,represent the moving averages of the gradient and its square, f;and f,are decay rates,

ais the learning rate, and €is a small constant to prevent division by zero. Mutual information-based feature selection

was also applied to retain the most informative attributes, reducing computational complexity while maintaining

predictive performance. Early stopping was implemented to prevent overfitting by terminating training after five

consecutive epochs without improvement in validation loss.

The combination of CNN for spatial feature extraction, Stacked LSTM for temporal sequence modeling, MHSA for
dynamic attention across time steps, and Adam optimization for efficient convergence enables the proposed hybrid
model to achieve high accuracy, robust generalization, and effective detection of diverse network intrusions.
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4. Result and Discussion

4.1. Various Model Hyperparameters

The performance of a deep learning model depends significantly on the selection and optimization of its
hyperparameters. Properly configured hyperparameters determine the model’s capacity to learn complex data
representations while maintaining generalization and convergence stability. In this study, several key hyperparameters
were carefully selected to optimize the training process and enhance the accuracy of the proposed CNN—Stacked LSTM
model. The parameters used in the research are summarized in table 2.

Table 2. Parameters used in this Research

Parameters Used Value
Convl1D Layer 1 64
Kernel Size 3
Activation Function Relu
Dropout Rate 0.4
Pooling Size 2
Number of Heads 2
Key Dimension 64
Stacked LSTM Layers Layerl :128 Layer 2 :64
Output Layer Activation Sigmoid
Optimizer Adam
Learning Rate 0.001
Batch Size 32
Epoch 50
Patience 5
Loss function Binary Cross entropy

The model employs two one-dimensional convolutional layers, with the first Conv1D layer consisting of 64 filters and
a kernel size of 3 to capture fine-grained spatial features in the network data. The ReL U activation function is used in
all convolutional layers to introduce nonlinearity and improve learning efficiency. A dropout rate of 0.4 is applied to
prevent overfitting, and a pooling size of 2 is used to reduce dimensionality while retaining important feature
characteristics. The architecture includes two Stacked LSTM layers configured with 128 and 64 hidden units
respectively, enabling the model to learn both high-level and fine-grained temporal dependencies.

To enhance the model’s capacity for contextual learning, a Multi-Head Self-Attention mechanism with two attention
heads and a key dimension of 64 is integrated into the framework. The final dense output layer employs a sigmoid
activation function to perform binary classification between normal and attack traffic. Optimization during training is
handled by the Adam optimizer with a learning rate of 0.001, which provides adaptive learning rates for faster
convergence. The model is trained using a batch size of 32 over 50 epochs, with an early stopping patience of five
epochs to prevent overfitting. Binary cross-entropy is used as the loss function, as it effectively measures the divergence
between predicted probabilities and true class labels in binary classification tasks.

4.2. Metrics for Evaluation and Discussion

The performance of the proposed intrusion detection model was evaluated using several key metrics, including training
and validation accuracy, loss, confusion matrix, and feature importance analysis. These metrics collectively provide a
comprehensive assessment of the model’s learning capability, generalization strength, and classification reliability.
Figure 5 illustrates the model’s accuracy and loss trends throughout the training epochs. The training accuracy begins



Journal of Applied Data Sciences ISSN 2723-6471
Vol. 7, No. 1, January 2026, pp. 475-488 483

at approximately 96 percent, indicating that the model successfully captures relevant patterns early in the learning
process. As training progresses, accuracy improves steadily and exceeds 99.9 percent in the final epochs, while
validation accuracy remains consistently high, confirming that the model generalizes effectively to unseen data. The
close alignment between training and validation curves indicates stable learning behavior and the absence of overfitting.
Correspondingly, the training loss, which starts near 0.11, declines sharply during the initial epochs and converges
toward zero as learning stabilizes. Validation loss remains low and consistent, further demonstrating the model’s
efficiency in minimizing prediction errors and optimizing parameters throughout the training phase.
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Figure 5. Training and Validation Accuracies/Losses

A deeper understanding of the classification performance is provided by the confusion matrix shown in figure 6. The
matrix demonstrates that the model achieved near-perfect classification, with 13,946 true negatives and 24,698 true
positives, along with only two false positives and a single false negative. These results indicate exceptional precision,
recall, and overall reliability in distinguishing between normal and malicious traffic. The extremely low
misclassification rate suggests that the proposed CNN-Stacked LSTM model, enhanced by the Multi-Head Self-
Attention mechanism, is capable of robustly identifying network intrusions with minimal error. Furthermore, the
feature importance analysis presented in figure 7 highlights the most influential attributes contributing to accurate
classification decisions. Features such as sbytes, sttl, and sload exhibit the highest mutual information scores, signifying
their strong correlation with attack detection outcomes. These features play a crucial role in capturing both the spatial
and temporal characteristics of network traffic, thereby enhancing the model’s decision-making capability.
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4.3. Comparison Analysis with the State of Art Models

To assess the effectiveness of the proposed CNN—Stacked LSTM model, its performance was compared with several
existing state-of-the-art intrusion detection systems developed using different machine learning and deep learning
techniques. Prior studies have demonstrated notable results using classical and neural-based architectures on the
UNSW-NB15 dataset. In [32], a Multilayer Perceptron (MLP) model was implemented using 23 selected features for
multiclass classification, achieving an accuracy of 84.24 percent. Although this model captured basic nonlinear
relationships, its performance was limited by the shallow architecture and lack of temporal feature learning. Further
improvements were achieved by models using ensemble and recurrent structures. In [33], a Random Forest algorithm
was trained on all available features and achieved an accuracy of 94.21 percent, showing better feature utilization but
still constrained by its inability to capture sequential dependencies. Similarly, the study in [34] employed a LSTM
network using the complete feature set and achieved an accuracy of 96.98 percent, demonstrating that temporal pattern
recognition enhances intrusion detection performance.

The proposed hybrid model, which combines CNN and Stacked LSTM layers, outperforms these approaches by
achieving an accuracy of 99.99 percent on the same UNSW-NB15 dataset. The CNN component enhances spatial
feature extraction, while the Stacked LSTM captures deeper temporal dependencies, and the integration of attention
mechanisms ensures that the model focuses on the most relevant time steps during classification. This combination
enables the model to achieve both high precision and robust generalization. The comparison summarized in table 3
clearly indicates that the proposed CNN—Stacked LSTM architecture substantially improves accuracy compared to
existing models, validating its superiority in detecting and classifying network intrusions efficiently.

Table 3. Comparison Analysis with state of Art models.

Ref Algorithm Used Dataset used No of features Classified Accuracy
Classes
[32] MLP UNSWNB-15 23 6 84.24
RANDOM
[33] FOREST UNSWNB-15 Complete 9 94.21
[34] LSTM UNSWNB-15 Complete 9 96.98
Proposed Model NN With Stacked 1y eyunp 5 23 2 99.99

LSTM

4.4. Discussion

The findings of this study confirm that integrating CNN, Stacked LSTM, and MHSA provides a robust and intelligent
framework for network intrusion detection. Hybrid deep learning architectures have consistently demonstrated superior
performance compared to traditional methods by efficiently modeling nonlinear and dynamic attack behaviors [2], [3],
[10], [12]. The proposed model combines CNN’s strength in spatial feature extraction with LSTM’s ability to capture
temporal dependencies, enabling the detection of both short-term and long-term attack patterns within network traffic.
The inclusion of the MHSA mechanism further enhances this capability by dynamically assigning greater attention to
critical time steps, allowing the model to detect subtle but crucial deviations in traffic behavior [28], [36].

The learning curves observed during training and validation indicate that the model achieves rapid convergence and
maintains high generalization performance. The Adam optimizer contributes to stable learning by adaptively adjusting
parameter updates, ensuring minimal overfitting and faster convergence [5], [26]. The close correspondence between
training and validation accuracy, as well as the sharp reduction in loss values, demonstrates the model’s stability and
consistent error minimization. The confusion matrix results also confirm that the model classifies nearly all attack and
normal samples correctly, showing an outstanding balance between precision and recall. Similar findings were
observed in previous studies that applied deep recurrent and hybrid neural models for intrusion detection [16], [18],
[19], [23], but the integration of CNN, LSTM, and MHSA in this research achieves substantially higher accuracy and
robustness in identifying diverse intrusion types.
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The comparative analysis highlights that the proposed CNN—Stacked LSTM—MHSA model significantly outperforms
existing state-of-the-art approaches. Earlier works using MLP, Random Forest, and standalone LSTM architectures on
the UNSW-NBI15 dataset achieved accuracies of 84.24%, 94.21%, and 96.98% respectively [32], [33], [34]. The
proposed model, by contrast, achieved an accuracy of 99.99%, validating its superior ability to generalize across
complex traffic patterns. These findings align with recent research emphasizing that hybrid and attention-based
architectures, particularly those combining convolutional and recurrent layers, can dramatically enhance detection
accuracy and scalability in modern IoT and cloud security systems [7], [8], [9], [11], [35], [40].

Despite its strong performance, the proposed approach also faces challenges that present opportunities for future work.
The combination of CNN, LSTM, and MHSA introduces increased computational complexity, which may limit
deployment in real-time or low-power environments such as loT edge devices [14], [31], [36]. Although the UNSW-
NB15 dataset provides realistic attack diversity, further evaluation on newer datasets or under adversarial conditions
is necessary to confirm the model’s resilience. Future research could focus on reducing computational costs using
model pruning or quantization, developing distributed learning frameworks such as federated IDS for decentralized
environments, and enhancing robustness through adversarial training or transfer learning [27], [29], [37], [38], [39].

Overall, the results of this study demonstrate that the CNN—Stacked LSTM-MHSA model represents a substantial
advancement in deep learning-based intrusion detection. The unified integration of spatial, temporal, and attention
mechanisms enables the system to learn discriminative representations that are both accurate and computationally
stable. The observed performance improvements, combined with strong generalization across network traffic patterns,
underscore the potential of hybrid architectures as a foundational direction for next-generation intrusion detection
systems [1], [3], [10], [40], [41].

5. Conclusion

The integration of CNNs and Stacked LSTM networks, enhanced with a MHSA mechanism and optimized using the
Adam optimizer, has proven to be a highly effective approach for developing intelligent and adaptive Intrusion
Detection Systems (IDS). This hybrid architecture addresses the key limitations of conventional machine learning and
individual deep learning models by combining spatial and temporal feature extraction in a unified framework. The
convolutional layers effectively identify localized spatial correlations within network traffic, while the stacked LSTM
layers preserve long-term temporal dependencies. The inclusion of the MHSA mechanism further improves this process
by dynamically weighting critical time steps, allowing the model to focus on subtle but significant changes in network
behavior that indicate potential intrusions.

The proposed model was evaluated using the UNSW-NB15 dataset, which reflects modern cyberattack patterns and
realistic traffic characteristics. The model achieved near-perfect performance, with an overall accuracy of 99.99 percent
and equally high precision, recall, and F1-score values. These results confirm that the proposed CNN-Stacked LSTM—
MHSA architecture significantly outperforms traditional machine learning and earlier deep learning-based intrusion
detection approaches. The use of the UNSW-NB15 dataset, in contrast to older datasets such as KDDCup99, provides
a more representative benchmark for current cybersecurity challenges, ensuring that the model generalizes effectively
to contemporary and evolving network threats.

In addition to its classification accuracy, the proposed framework effectively addresses persistent issues in intrusion
detection, such as high false positive rates, scalability limitations, and inefficiencies in handling large volumes of data.
By leveraging attention mechanisms to emphasize relevant features, the model substantially reduces false alarms while
maintaining computational efficiency suitable for real-time implementation. The architectural flexibility of the model
allows it to scale seamlessly across diverse network environments, making it well-suited for continuous enterprise-
level monitoring. Furthermore, the framework’s modularity enables potential future enhancements through advanced
techniques such as graph neural networks for relational feature modeling, federated learning for distributed detection,
and adversarial training for improved resistance against evasion attacks.

In conclusion, this study presents a high-performing, scalable, and adaptive deep learning framework for network
intrusion detection. The successful combination of CNN, Stacked LSTM, and MHSA components demonstrates that
deep learning architectures can achieve both exceptional accuracy and operational practicality. As cybersecurity threats
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continue to grow in sophistication, hybrid models of this nature provide a promising foundation for building resilient,
intelligent, and autonomous intrusion detection systems capable of protecting modern digital infrastructures.

6. Declarations

6.1. Author Contributions

Conceptualization: S.P.P.,P.P., U.S., D.A.D., T.B.K., L.E.; Methodology: T.B.K.; Software: S.P.P.; Validation: S.P.P.,
T.B.K., and L.E.; Formal Analysis: S.P.P., T.B.K., and L.E.; Investigation: S.P.P.; Resources: T.B.K.; Data Curation:
T.B.K.; Writing Original Draft Preparation: S.P.P., T.B.K., and L.E.; Writing Review and Editing: T.B.K., S.P.P., and
L.E.; Visualization: S.P.P.; All authors have read and agreed to the published version of the manuscript.

6.2. Data Availability Statement
The data presented in this study are available on request from the corresponding author.

6.3. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

6.4. Institutional Review Board Statement
Not applicable.

6.5. Informed Consent Statement
Not applicable.

6.6. Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

(1]

(2]

(3]

[4]

(5]

(8]

(9]

A. Thakkar and R. Lohiya, “A survey on intrusion detection system: Feature selection, model, performance measures,
application perspective, challenges, and future research directions,” Artificial Intelligence Review, vol. 55, no. 1, pp. 453—
563, 2022, doi: 10.1007/s10462-021-10037-9.

N. Khare, S. K. Dubey, R. Kumar, R. K. Gupta, and R. C. Poonia, “SMO-DNN: Spider monkey optimization and deep neural
network hybrid classifier model for intrusion detection,” Electronics, vol. 9, mno. 4, pp. 692-704, 2020, doi:
10.3390/electronics9040692.

P. Vijayalakshmi and D. Karthika, “Hybrid dual-channel convolution neural network (DCCNN) with spider monkey
optimization (SMO) for cyber security threats detection in Internet of Things,” Measurement: Sensors, vol. 27, no. 12, pp. 1—-
8, 2023, doi: 10.1016/j.measen.2023.100783.

A. Shenfeld, D. Day, and A. Ayesh, “Intelligent intrusion detection systems using artificial neural networks,” ICT Express,
vol. 4, no. 2, pp. 95-99, 2018, doi: 10.1016/j.icte.2018.06.002.

A. Agrawal, D. Garg, R. Sethi, and A. K. Shrivastava, “Optimum redundancy allocation using spider monkey
optimization,” Soft Computing, vol. 27, no. 21, pp. 15595-15608, 2023, doi: 10.1007/s00500-022-07626-6.

V. Agrawal, R. Ratika, and D. C. Tiwari, “Spider monkey optimization: A survey,” International Journal of System Assurance
Engineering and Management, vol. 9, no. 4, pp. 929-941, 2018, doi: 10.1007/s13198-017-0685-6.

P. Pothumani and E. S. Reddy, “Network intrusion detection using ensemble weighted voting classifier based honeypot
framework,” Journal of Autonomous Intelligence, vol. 7, no. Dec., pp. 1-16, 2024, doi: 10.32629/jai.v7i3.1081.

C. K. Ramu, T. S. Rao, and E. U. S. Rao, “Attack classification in network intrusion detection system based on optimization
strategy and deep learning methodology,” Multimedia Tools and Applications, vol. 2024, no. Dec., pp. 1-32, 2024, doi:
10.1007/s11042-024-18558-5.

D. Jayalatchumy, R. Ramalingam, A. Balakrishnan, M. Safran, and S. Alfarhood, “Improved crow search-based feature
selection and ensemble learning for IoT intrusion detection,” IEEE Access, vol. 12, no. Dec., pp. 33218-33235, 2024, doi:
10.1109/ACCESS.2024.3372859.


https://doi.org/10.1007/s10462-021-10037-9
https://doi.org/10.1007/s10462-021-10037-9
https://doi.org/10.1007/s10462-021-10037-9
https://doi.org/10.3390/electronics9040692
https://doi.org/10.3390/electronics9040692
https://doi.org/10.3390/electronics9040692
https://doi.org/10.1016/j.measen.2023.100783
https://doi.org/10.1016/j.measen.2023.100783
https://doi.org/10.1016/j.measen.2023.100783
https://doi.org/10.1016/j.icte.2018.06.002
https://doi.org/10.1016/j.icte.2018.06.002
https://doi.org/10.1007/s00500-022-07626-6
https://doi.org/10.1007/s00500-022-07626-6
https://doi.org/10.1007/s13198-017-0685-6
https://doi.org/10.1007/s13198-017-0685-6
https://doi.org/10.32629/jai.v7i3.1081
https://doi.org/10.32629/jai.v7i3.1081
https://doi.org/10.1007/s11042-024-18558-5
https://doi.org/10.1007/s11042-024-18558-5
https://doi.org/10.1007/s11042-024-18558-5
https://doi.org/10.1109/ACCESS.2024.3372859
https://doi.org/10.1109/ACCESS.2024.3372859
https://doi.org/10.1109/ACCESS.2024.3372859

Journal of Applied Data Sciences ISSN 2723-6471
Vol. 7, No. 1, January 2026, pp. 475-488 487

[10] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep learning approach
for intelligent intrusion detection system,” [EEE Access, vol. 7, no. Dec., pp. 41525-41550, 2019, doi:
10.1109/ACCESS.2019.2895334.

[11] F. Alwahedi, A. Aldhaheri, M. A. Ferrag, A. Battah, and N. Tihanyi, “Machine learning techniques for IoT security: Current
research and future vision with generative Al and large language models,” Internet of Things and Cyber-Physical Systems,
vol. 4, no. Dec., pp. 167-185, 2024, doi: 10.1016/j.i0tcps.2023.12.003.

[12] S. Keskin and E. Okatan, “Machine learning methods for intrusion detection in computer networks: A comparative
analysis,” International Journal of Engineering Innovation and Research, vol. 5, no. 3, pp. 268-279, 2023.

[13] S.T.Ikram and A. K. Cherukuri, “Improving accuracy of intrusion detection model using PCA and optimized SVM,” Journal
of Computing and Information Technology, vol. 24, no. 2, pp. 133-148, 2016, doi: 10.20532/¢it.2016.1002701.

[14] S. Bebortta, S. K. Das, and S. Chakravarty, “Fog-enabled intelligent network intrusion detection framework for Internet of
Things applications,” in 2023 International Conference on Confluence, vol. 2023, no. Jan., pp. 1-7, 2023, doi:
10.1109/Confluence56041.2023.10048841.

[15] T. A. Tang, L. Mhamdi, D. McLernon, S. A. Zaidi, and M. Ghogho, “Deep learning approach for network intrusion detection
in software defined networking,” in 2016 International Conference on Wireless Networks and Mobile Communications
(WINCOM), vol. 2016, no. Oct., pp. 258-263, 2016, doi: 10.1109/WINCOM.2016.7777224.

[16] J. Kim, J. Kim, H. L. Thi Thu, and H. Kim, “Long short term memory recurrent neural network classifier for intrusion
detection,” in 2016 International Conference on Platform Technology and Service (PlatCon), vol. 2016, no. Feb., pp. 258—
263,2016, doi: 10.1109/PlatCon.2016.7456805.

[17] T. Ma, F. Wang, J. Cheng, Y. Yu, and X. Chen, “A hybrid spectral clustering and deep neural network ensemble algorithm
for intrusion detection in sensor networks,” Sensors, vol. 16, no. 10, pp. 1701-1713, 2016, doi: 10.3390/s16101701.

[18] T.-T.-H. Le, J. Kim, and H. Kim, “An effective intrusion detection classifier using long short-term memory with gradient
descent optimization,” in 2017 International Conference on Platform Technology and Service (PlatCon), vol. 2017, no. Feb.,
pp. 1-6, 2017, doi: 10.1109/PlatCon.2017.7883684.

[19] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion detection using recurrent neural networks,” /EEE
Access, vol. 5, no. Dec., pp. 21954-21961, 2017, doi: 10.1109/ACCESS.2017.2762418.

[20] Y. Fu, X. Liu, X. Sun, S. Li, and J. Liu, “An intelligent network attack detection method based on RNN,” in 2018 IEEE Third
International Conference on Data Science in Cyberspace (DSC), vol. 2018, no. Jun., pp. 483-489, 2018, doi:
10.1109/DSC.2018.00078.

[21] H. He, J. Yan, Z. Zhang, Z. Ma, and Y. Tian, “A novel multimodal-sequential approach based on multi-view features for
network intrusion  detection,” [EEE  Access, vol. 7, mno. Dec., pp. 183207-183221, 2019, doi:
10.1109/ACCESS.2019.2959131.

[22] P. Wu and H. Guo, “LuNet: A deep neural network for network intrusion detection,” in 2019 IEEE Symposium Series on
Computational Intelligence (SSCI), vol. 2019, no. Dec., pp. 617-624, 2019, doi: 10.1109/SSCI44817.2019.9003126.

[23] M. M. Hassan, A. Gumaei, A. Alsanad, M. Alrubaian, and G. Fortino, “A hybrid deep learning model for efficient intrusion
detection in big data environment,” Information Sciences, vol. 513, no. Jan., pp. 386-396, 2020, doi:
10.1016/j.ins.2019.10.069.

[24] A. Adeel, M. S. Khurram, M. S. Zia, and A. Ahmad, “A new ensemble-based intrusion detection system for Internet of
Things,” Arabian Journal for Science and Engineering, vol. 46, no. Dec., pp. 1-14, 2021, doi: 10.1007/s13369-021-06086-
5.

[25] V. Ravi, R. Chaganti, and M. Alazab, “Recurrent deep learning-based feature fusion ensemble meta-classifier approach for
intelligent network intrusion detection system,” Computers & Electrical Engineering, vol. 102, no. Dec., pp. 1-16, 2022, doi:
10.1016/j.compeleceng.2022.108156.

[26] M. Zivkovi¢, D. Bozi¢, M. Nikoli¢, M. Stojanovié, and S. Simi¢, “Novel hybrid firefly algorithm: An application to enhance
XGBoost tuning for intrusion detection classification,” PeerJ Computer Science, vol. 8, no. Dec., pp. 1-16, 2022, doi:
10.7717/peerj-cs.956.

[27] B. Majhi, “Optimizing LightGBM for intrusion detection systems using GOA,” in 2023 [4th International Conference on
Computing Communication and Networking Technologies (ICCCNT), vol. 2023, no. Jul, pp. 1-5, 2023, doi:
10.1109/ICCCNT56998.2023.10308360.

[28] Y. Liu and L. Wu, “Intrusion detection model based on improved transformer,” Applied Sciences, vol. 13, no. 10, -121, 2023,
doi: 10.3390/app13106251.


https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1016/j.iotcps.2023.12.003
https://doi.org/10.1016/j.iotcps.2023.12.003
https://doi.org/10.1016/j.iotcps.2023.12.003
https://doi.org/10.20532/cit.2016.1002701
https://doi.org/10.20532/cit.2016.1002701
https://doi.org/10.1109/Confluence56041.2023.10048841
https://doi.org/10.1109/Confluence56041.2023.10048841
https://doi.org/10.1109/Confluence56041.2023.10048841
https://doi.org/10.1109/WINCOM.2016.7777224
https://doi.org/10.1109/WINCOM.2016.7777224
https://doi.org/10.1109/WINCOM.2016.7777224
https://doi.org/10.1109/PlatCon.2016.7456805
https://doi.org/10.1109/PlatCon.2016.7456805
https://doi.org/10.1109/PlatCon.2016.7456805
https://doi.org/10.3390/s16101701
https://doi.org/10.3390/s16101701
https://doi.org/10.1109/PlatCon.2017.7883684
https://doi.org/10.1109/PlatCon.2017.7883684
https://doi.org/10.1109/PlatCon.2017.7883684
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/DSC.2018.00078
https://doi.org/10.1109/DSC.2018.00078
https://doi.org/10.1109/DSC.2018.00078
https://doi.org/10.1109/ACCESS.2019.2959131
https://doi.org/10.1109/ACCESS.2019.2959131
https://doi.org/10.1109/ACCESS.2019.2959131
https://doi.org/10.1109/SSCI44817.2019.9003126
https://doi.org/10.1109/SSCI44817.2019.9003126
https://doi.org/10.1016/j.ins.2019.10.069
https://doi.org/10.1016/j.ins.2019.10.069
https://doi.org/10.1016/j.ins.2019.10.069
https://doi.org/10.1007/s13369-021-06086-5
https://doi.org/10.1007/s13369-021-06086-5
https://doi.org/10.1007/s13369-021-06086-5
https://doi.org/10.1016/j.compeleceng.2022.108156
https://doi.org/10.1016/j.compeleceng.2022.108156
https://doi.org/10.1016/j.compeleceng.2022.108156
https://doi.org/10.7717/peerj-cs.956
https://doi.org/10.7717/peerj-cs.956
https://doi.org/10.7717/peerj-cs.956
https://doi.org/10.1109/ICCCNT56998.2023.10308360
https://doi.org/10.1109/ICCCNT56998.2023.10308360
https://doi.org/10.1109/ICCCNT56998.2023.10308360
https://doi.org/10.3390/app13106251
https://doi.org/10.3390/app13106251

Journal of Applied Data Sciences ISSN 2723-6471
Vol. 7, No. 1, January 2026, pp. 475-488 488

[29] P. D. N. Khare, “Ensemble-based feature selection with long short-term memory for classification of network intrusion,”
in Advances in Social Networking and Online Communities, vol. 2021, no. Dec., pp. 228-245, 2021, doi: 10.4018/978-1-
7998-7764-6.ch008.

[30] A. A. Donkol, A. G. Hafez, A. I. Hussein, and M. M. Mabrook, “Optimization of intrusion detection using likely point PSO
and enhanced LSTM-RNN hybrid technique in communication networks,” /EEE Access, vol. 11, no. Dec., pp. 9469-9482,
2023, doi: 10.1109/ACCESS.2023.3240109.

[31] T. A. Kumari and S. Mishra, “Tachyon: Enhancing stacked models using Bayesian optimization for intrusion detection using
different sampling approaches,” Egyptian Informatics Journal, vol. 27, mno. Dec., pp. 1-20, 2024, doi:
10.1016/j.€1j.2024.100520.

[32] Y. Yin, J. Jang-Jaccard, W. Xu, A. Singh, J. Zhu, F. Sabrina, and J. Kwak, “IGRF-RFE: A hybrid feature selection method
for MLP-based network intrusion detection on UNSW-NBI15 dataset,” arXiv preprint arXiv:2203.16365, vol. 2022, no. Mar.,
pp- 1-12, 2022.

[33] S. U. Jafri, S. Rao, V. Shrivastav, and M. Tawarmalani, “LEO: Online ML-based traffic classification at multi-terabit line
rate,” in Proceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24), vol.
2024, no. Apr., pp. 1573-1591, 2024.

[34] M. Ali, M. Shahroz, M. F. Mushtaq, S. Alfarhood, M. Safran, and 1. Ashraf, “Hybrid machine learning model for efficient
botnet attack detection in IoT environment,” /EEE Access, vol. 2024, no. Dec., pp. 1-12, 2024.

[35] R. Nagarajan, M. Batumalay, and Z. Xu, “IoT-based intrusion detection for edge devices using augmented system,” Journal
of Applied Data Sciences, vol. 5, no. 3, pp. 1412—-1423, 2024.

[36] D. Zegarra Rodriguez, O. Daniel Okey, S. S. Maidin, E. Umoren Udo, and J. H. Kleinschmidt, “Attentive transformer deep
learning algorithm for intrusion detection on IoT systems using automatic explainable feature selection,” PLOS ONE, vol.
18, no. 10, pp. 1-12, 2023, doi: 10.1371/journal.pone.0286652.

[37] U. Sirisha, C. K. Kumar, S. C. Narahari, and P. N. Srinivasu, “An iterative PRISMA review of GAN models for image
processing, medical diagnosis, and network security,” Computers, Materials & Continua, vol. 82, no. 2, pp. 1-14, 2025.

[38] S. P. Praveen, A. Chokka, P. Sarala, R. Nakka, S. B. Chandolu, and V. E. Jyothi, “Investigating the efficacy of deep
reinforcement learning models in detecting and mitigating cyber-attacks: A novel approach,” Journal of Cybersecurity and
Information Management, vol. 14, no. 1, pp. 1-12, 2024.

[39] N. S. Biyyapu, S. B. Chandolu, S. Gorintla, N. R. Tirumalasetti, A. Chokka, and S. P. Praveen, “Advanced machine learning
techniques for real-time fraud detection and prevention,” Journal of Theoretical and Applied Information Technology, vol.
102, no. 20, pp. 1-10, 2024.

[40] S.P.Praveen, S. Lalitha, P. Sarala, K. Satyanarayana, and D. A. Karras, “Optimizing intrusion detection in Internet of Things
(IoT) networks using a hybrid PSO-LightBoost approach,” International Journal of Intelligent Engineering and Systems, vol.
18, no. 3, pp. 1-12, 2025.

[41] D. Pambudi, F. Fadly, M. H. Kurniawan, and H. Haryanto, “The eye’s signature: Innovative approaches to iris
detection,” International Journal of Advances in Artificial Intelligence and Machine Learning, vol. 2, no. 1, pp. 38—43, Mar.
2025, doi: 10.58723/IJAAIML.V211.379.


https://doi.org/10.4018/978-1-7998-7764-6.ch008
https://doi.org/10.4018/978-1-7998-7764-6.ch008
https://doi.org/10.4018/978-1-7998-7764-6.ch008
https://doi.org/10.1109/ACCESS.2023.3240109
https://doi.org/10.1109/ACCESS.2023.3240109
https://doi.org/10.1109/ACCESS.2023.3240109
https://doi.org/10.1016/j.eij.2024.100520
https://doi.org/10.1016/j.eij.2024.100520
https://doi.org/10.1016/j.eij.2024.100520
https://arxiv.org/abs/2203.16365
https://arxiv.org/abs/2203.16365
https://arxiv.org/abs/2203.16365
https://www.usenix.org/conference/nsdi24
https://www.usenix.org/conference/nsdi24
https://www.usenix.org/conference/nsdi24
https://doi.org/10.1371/journal.pone.0286652
https://doi.org/10.1371/journal.pone.0286652
https://doi.org/10.1371/journal.pone.0286652
https://doi.org/10.58723/IJAAIML.V2I1.379
https://doi.org/10.58723/IJAAIML.V2I1.379
https://doi.org/10.58723/IJAAIML.V2I1.379

