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Abstract 

This paper explores the effectiveness of Transformer-based models, specifically the Time-Series Transformer (TST) and Temporal Fusion 

Transformer (TFT), for anomaly detection in streaming data. We review related work on anomaly detection models, highlighting traditional 

methods' limitations in speed, accuracy, and scalability. While LSTM Autoencoders are known for their ability to capture temporal patterns, they 

suffer from high memory consumption and slower inference times. Though efficient in terms of memory usage, the Matrix Profile provides lower 

performance in detecting anomalies. To address these challenges, we propose using Transformer-based models, which leverage the self-attention 

mechanism to capture long-range dependencies in data, process sequences in parallel, and achieve superior performance in both accuracy and 

efficiency. Our experiments show that TFT outperforms the other models with an F1-score of 0.92 and a Precision-Recall AUC of 0.71, 

demonstrating significant improvements in anomaly detection. The TST model also shows competitive performance with an F1-score of 0.88 

and Precision-Recall AUC of 0.68, offering a more efficient alternative to LSTMs. The results underscore that Transformer models, particularly 

TST and TFT, provide a robust solution for anomaly detection in real-time applications, offering improved performance, faster inference times, 

and lower memory usage than traditional models. In conclusion, Transformer-based models stand out as the most effective and scalable solution 

for large-scale, real-time anomaly detection in streaming time-series data, paving the way for their broader application across various industries. 

Future work will further focus on optimizing these models and exploring hybrid approaches to enhance detection capabilities and real-time 

performance. 
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1. Introduction 

The rapid increase in real-time data streams across various domains, such as finance, healthcare, and transportation, 

has urgently needed accurate and scalable anomaly detection methods. Traditional approaches, including statistical 

models and machine learning algorithms, often struggle with complex dependencies, high dimensionality, and the 

evolving nature of streaming data [1]. While Long Short-Term Memory (LSTM) networks have successfully captured 

sequential dependencies, they face limitations in handling long-range correlations efficiently due to their recurrent 

nature and vanishing gradient problem [2]. 

Recent advancements in deep learning have introduced Transformer-based models, such as TST [3] and TFT [4], which 

offer significant improvements over LSTMs for sequence modelling. These models leverage self-attention mechanisms 

to capture long-term dependencies while efficiently processing large-scale streaming data in parallel [5]. This study 

explores the application of Transformer-based models for real-time anomaly detection in streaming environments, 

using the NYC Taxi dataset, to demonstrate their effectiveness compared to LSTM autoencoders. We propose utilizing 

TST and TFT for anomaly detection in streaming data. These models are designed to address the limitations of LSTMs 
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by capturing long-range dependencies using self-attention mechanisms, processing sequences in parallel for improved 

efficiency, and dynamically adapting to changes in data patterns to enhance anomaly detection performance. The TST 

model will process raw time-series data, leveraging self-attention to identify anomalies without predefined feature 

engineering [6]. The TFT model will integrate additional context features, such as temporal trends and categorical 

information, for enhanced anomaly detection [7]. 

The NYC Taxi dataset, containing taxi trip records over six months, will be used for model evaluation. This dataset is 

widely used for anomaly detection research due to its inherent time-series patterns and anomalies related to holidays, 

weather events, and transportation disruptions [8].  To benchmark performance, baseline models will include the LSTM 

Autoencoder, previously used in the existing study for anomaly detection, and the Matrix Profile Algorithm, serving 

as a statistical baseline [9]. The proposed models consist of the TST, which utilizes multi-head self-attention for 

detecting anomalous sequences, and the TFT, which integrates multiple features and dynamic relationships for anomaly 

detection. 

The evaluation process will focus on several key metrics. The F1-score will measure precision and recall trade-offs, 

while Precision-Recall AUC will evaluate anomaly detection effectiveness [10]. Inference time will be assessed to 

determine real-time processing efficiency, and memory usage will be analysed to compare the computational overhead 

of each model [11]. Implementation details involve using PyTorch with Hugging Face's Transformer library, training 

models with the Adam optimiser, and fine-tuning learning rates using Optuna [12]. Anomalies will be detected using 

reconstruction errors for autoencoders and attention scores for Transformers. To benchmark performance, the models 

will be deployed on an NVIDIA GeForce RTX 3080 GPU. 

This study explores the advantages of Transformer-based models over traditional LSTMs for real-time anomaly 

detection in streaming data. By leveraging self-attention mechanisms, these models improve accuracy, scalability, and 

efficiency [12]. The experimental results will highlight the strengths of TST and TFT in detecting anomalies, paving 

the way for future research in deploying Transformers for real-time applications across various industries. 

2. Literature Review  

Anomaly detection in time-series data has traditionally relied on statistical models such as ARIMA, Holt-Winters, and 

Gaussian processes, alongside classical machine learning algorithms like k-nearest neighbors, support vector machines, 

and isolation forests. While effective in stationary or low-dimensional settings, these methods are often inadequate for 

high-dimensional, non-linear, and dynamic environments due to their limited capacity to model complex temporal 

dependencies and adapt to evolving data distributions. 

The emergence of deep learning brought significant progress, particularly through Long Short-Term Memory (LSTM) 

networks. LSTM architectures are capable of learning long-term dependencies in sequential data due to their internal 

gating mechanisms—input, forget, and output gates—that selectively update and retain relevant information across 

time steps. This structure allows LSTMs to avoid vanishing gradient issues common in vanilla RNNs and to effectively 

model long-range temporal relationships. The core update equations are typically formulated as: 

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒: 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

Input gate: 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

Candidate memory: �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

Output gate: 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4) 

Hidden state: ℎ𝑡 = 𝑜𝑡 ∙ tanh (𝐶𝑡) (4) 

Here, 𝑥𝑡 represents the input at time 𝑡, ℎ𝑡 the hidden state, and 𝐶𝑡 the memory cell. The sigmoid function σ regulates 

gate activation, while the tanh function introduces non-linearity and bounds the memory values. 

Despite their success, LSTMs exhibit several limitations, particularly for real-time and large-scale applications. Their 

sequential nature prevents full parallelization during training, leading to slower convergence times. Additionally, their 
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memory requirements scale poorly with long sequences, limiting their feasibility in environments with strict latency 

and resource constraints [2], [12]. 

To overcome these challenges, Transformer-based architectures have gained attention due to their superior scalability 

and modeling flexibility. Unlike RNNs, Transformers dispense with recurrence entirely, instead using multi-head self-

attention mechanisms to model relationships between all-time steps in parallel. This enables them to efficiently capture 

both short-term and long-range dependencies across time without being constrained by sequence order [3], [5]. 

Recent advancements in Transformer-based models, such as the TST and TFT, have achieved state-of-the-art results 

in forecasting and anomaly detection across domains like finance, healthcare, and industrial monitoring [4], [6], [7]. 

These models offer improved scalability and interpretability, often incorporating additional components such as gating 

mechanisms, variable selection networks, and static covariate encoders to enhance prediction fidelity and domain 

adaptation [7]. 

Furthermore, comparative studies show that Transformer-based models outperform LSTM-based Autoencoders in 

anomaly detection tasks, achieving higher F1-scores, precision-recall AUC, and inference efficiency. These advantages 

are particularly notable in noisy, high-dimensional, and multi-sensor data streams [9], [10]. The attention mechanism's 

ability to focus on relevant portions of the sequence allows it to detect subtle or irregular deviations that traditional 

methods might overlook. 

The increasing adoption of Transformer architectures marks a paradigm shift in sequential modeling. Rather than 

replacing LSTM models entirely, hybrid approaches that integrate attention-based mechanisms with recurrent or 

statistical components are emerging. These combinations aim to leverage the contextual awareness of LSTMs with the 

global dependency modeling and parallelization benefits of Transformers, creating more adaptive and robust anomaly 

detection pipelines [11]. As research in this domain progresses, future work is likely to focus on improving the 

efficiency, robustness, and explainability of Transformer-based systems, particularly for deployment in streaming, 

imbalanced, or real-time environments. 

3. Methodology 

We propose utilizing TST and TFT for anomaly detection in streaming data. These models are designed to address the 

limitations of LSTMs by capturing long-range dependencies using self-attention mechanisms, processing sequences in 

parallel for improved efficiency, and dynamically adapting to changes in data patterns to enhance anomaly detection 

performance. The TST model will process raw time-series data, leveraging self-attention to identify anomalies without 

predefined feature engineering [13]. The TFT model will integrate additional context features, such as temporal trends 

and categorical information, for enhanced anomaly detection [14]. The methodology of this study consists of four major 

components: data preprocessing, model implementation, training process, and evaluation metrics. Figure 1 illustrates 

the complete research workflow for implementing Transformer-based models, specifically the TST and TFT, for real-

time anomaly detection in streaming data. The process begins by defining the research objective and proposing TST 

and TFT as solutions to overcome the limitations of traditional models such as LSTMs. The workflow then proceeds 

to data preprocessing using the NYC Taxi dataset, where missing values are handled through interpolation, features 

are normalized using Min-Max scaling, and temporal context features like hour and holiday indicators are added before 

splitting the dataset into training and testing subsets. Next, three modeling paths are explored in parallel: TST, TFT, 

and two baselines, namely LSTM Autoencoders and the Matrix Profile algorithm. These models are trained using the 

PyTorch framework and optimized with the Adam optimizer and Optuna-based hyperparameter tuning, with early 

stopping applied to prevent overfitting. After training, model performance is evaluated using F1 score, precision-recall 

AUC, inference time, and memory usage. Based on the evaluation results, the best-performing model is either deployed 

directly or, if performance is unsatisfactory, the workflow loops back for model refinement or hybrid design. The final 

stage focuses on deployment, where the selected model is optimized using quantization techniques and integrated into 

a real-time detection system, resulting in a robust and efficient solution for anomaly detection in high-throughput, time-

sensitive environments. 
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Figure 1. Research Flow 

3.1. Data Preprocessing 

The NYC Taxi dataset is selected for anomaly detection due to its complex and dynamic nature, containing various 

anomalies related to holidays, extreme weather events, and traffic conditions. To prepare the data for modelling, we 

apply several preprocessing steps. First, the dataset is cleaned by handling missing values using interpolation 

techniques to maintain the continuity of time-series data [15]. Next, data normalization uses Min-Max scaling to bring 

all features to a standard range, enhancing model convergence and stability. Additional time-based features, such as 

hour, day-of-week, and holiday indicators, are generated to provide richer contextual information for the models. 

Finally, the dataset is split into training (55%) and testing (45%) subsets, ensuring that anomalous events appear in 

both sets for robust performance evaluation. Table 1 summarizes the key preprocessing operations applied to the NYC 

Taxi dataset, highlighting their relevance in stabilizing the training process and enriching the dataset with temporal 

context. These operations are essential to ensure that both Transformer and baseline models receive high-quality input 

data, ultimately enhancing anomaly detection accuracy and consistency. 

Table 1. Summary of Preprocessing Techniques for NYC Taxi Dataset 

Preprocessing Step Description Purpose 

Missing Value Handling Linear interpolation Maintains continuity of time series 

Normalization Min-Max scaling Improves training stability 

Temporal Feature Addition Hour of day, day of week, holiday indicator Adds contextual signals 

Data Splitting 55% training / 45% testing Ensures anomalies are in both subsets 

3.2. Model Implementation 

Two Transformer-based models are implemented: TST and TFT. TST processes time-series data using self-attention 

mechanisms, capturing dependencies across multiple time steps while maintaining computational efficiency. This 

allows for the identification of anomalies based on deviations from learned patterns. On the other hand, TFT extends 

TST's capabilities by incorporating external variables such as seasonal variations and categorical data, improving 

anomaly detection performance in complex environments. These models are compared against two baseline 

approaches: LSTM Autoencoders and the Matrix Profile Algorithm [16], [17]. LSTM Autoencoders reconstruct input 

sequences and flag high-reconstruction-error points as anomalies. The Matrix Profile Algorithm detects anomalies 

based on the similarity between subsequences, offering a statistical approach to anomaly detection. Table 2 show the 

architecture for each model that used in this research. 
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Table 2. Architecture Features of Compared Models 

Model Core Technique Feature Support Sequential Processing 
External 

Variables 

LSTM Autoencoder Recurrent Neural Network Manual Features Yes No 

Matrix Profile Statistical Similarity Raw Time Series No No 

Time-Series Transformer Self-Attention Mechanism Learned Features No (Parallel) No 

Temporal Fusion Transformer Self-Attention + Gating Dynamic Selection No (Parallel) Yes 

3.3. Training Process 

The models are trained using PyTorch with the Adam optimizer for efficient parameter updates. Hyperparameter tuning 

uses Optuna, an automated optimization framework that searches for the best learning rate, batch size, and attention 

head configurations. Training is performed for a fixed number of epochs, ensuring convergence without overfitting. 

Early stopping is applied based on validation loss trends to improve model generalization [18]. LSTM Autoencoders 

rely on reconstruction error thresholds for anomaly detection, while Transformer models utilize attention scores to 

identify outliers. Attention scores highlight unusual behavior in data streams, making Transformers particularly suited 

for real-time anomaly detection. 

3.4. Evaluation Metrics 

Performance evaluation is based on multiple metrics to comprehensively assess the models' capabilities. The F1 score 

measures the balance between precision and recall, ensuring that false positives and negatives are considered. 

Precision-Recall AUC evaluates anomaly detection effectiveness across varying decision thresholds. Inference time is 

recorded to analyze real-time processing efficiency, which is crucial for streaming applications [19]. Finally, memory 

usage is compared across models to determine computational feasibility in large-scale deployments. 

3.5. Implementation and Deployment 

All models are implemented using PyTorch and the Hugging Face Transformer library. Experiments are conducted on 

an NVIDIA GeForce RTX 3080 GPU to benchmark training and inference speeds. The models are optimized for real-

time deployment using quantization techniques, reducing memory footprint while maintaining accuracy. The 

deployment strategy focuses on integrating the models into a real-time anomaly detection system capable of flagging 

anomalies in an industrial setting with minimal latency [20], [21], [22]. This study explores the advantages of 

Transformer-based models over traditional LSTMs for real-time anomaly detection in streaming data. These models 

provide improved accuracy, scalability, and efficiency by leveraging self-attention mechanisms. The experimental 

results will highlight the strengths of TST and TFT in detecting anomalies, paving the way for future research in 

deploying Transformers for real-time applications across various industries. 

4. Results and Discussion 

The preprocessing phase significantly improved data quality, enabling more accurate anomaly detection. Addressing 

missing values through interpolation ensured a smooth time-series representation, preventing disruptions in model 

training. Normalization played a key role in stabilizing learning rates, preventing models from being biased toward 

extreme values. Feature engineering efforts, such as adding temporal attributes, provided essential contextual signals, 

which led to a noticeable improvement in model performance. 

4.1. Data Preprocessing 

The preprocessing phase was essential in preparing the NYC Taxi dataset for anomaly detection. The dataset, spanning 

six months of taxi trip records, required handling missing values, normalization, and feature extraction to enhance the 

accuracy of the models. Missing values were addressed through linear interpolation, ensuring data continuity without 

introducing artificial distortions. Min-max scaling was applied to standardize numerical features, bringing all values 

within a defined range to improve model stability and convergence. Figure 2 shows the dataset and its outlier plotting. 
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Figure 2. Dataset and its outlier plotting 

Feature engineering played a crucial role in enriching the dataset. Additional temporal attributes, such as the hour of 

the day, the day of the week, and holiday indicators, were extracted to provide valuable contextual information. These 

features helped the models understand cyclical taxi demand patterns, improving anomaly detection performance. The 

dataset was then split into training (55%) and testing (45%) subsets, ensuring that anomalies were present in both sets 

to facilitate robust evaluation. 

4.2. Model Creation and Training  

The TST and TFT are advanced models designed explicitly for time-series forecasting tasks, utilizing the attention 

mechanisms from Transformer architecture. These models can capture long-range dependencies in time-series data, 

making them practical for stock price forecasting, sales predictions, or weather forecasting. The TST follows an 

encoder-decoder structure, where the encoder processes the input sequence, and the decoder generates the forecasted 

output. It employs a self-attention mechanism, allowing the model to capture temporal dependencies at various lags in 

the sequence. Positional encoding is used to retain the temporal order of the data, as time series does not inherently 

have an order. The model also incorporates normalization layers to stabilize training and improve overall performance. 

The training of the TST involves minimizing a loss function such as Mean Squared Error (MSE) or Mean Absolute 

Error (MAE), with performance being evaluated using metrics like RMSE (Root Mean Squared Error), MAE, and R2 

score. 

The TFT is a more advanced version of the TST, designed to handle univariate and multivariate time-series data more 

effectively. One of the key features of TFT is its Variable Selection Network (VSN), which dynamically selects the 

most relevant features at each time step to improve forecasting accuracy. Additionally, TFT utilizes a gating 

mechanism, which helps decide whether the model should rely on past information (memory) or recent inputs. This 

feature allows TFT to capture both short-term and long-term dependencies in the data. TFT is beneficial for multivariate 

time-series forecasting and offers better interpretability, helping users understand how specific input features contribute 

to the final forecast. Figure 3 shows the training and validation loss function on training processing. 

 

Figure 3. Training and validation loss function 

4.3. Results and Evaluations 

The TST shows an 8.24% improvement in anomaly detection accuracy over the LSTM Autoencoder, with an F1-score 

of 0.88 compared to 0.85 for the LSTM Autoencoder. The TFT offers an even more significant improvement, with an 

F1-score of 0.92, resulting in an 8.24% improvement compared to the LSTM Autoencoder, as shown in table 3. Figure 

4 shows the comparison of F1-score results. Table 3 displays the F1 scores for the LSTM Autoencoder, Matrix Profile, 

TFT, and TST models. These scores represent the classification performance of each method on a time-series anomaly 

detection task or forecasting problem. Higher F1 scores indicate better overall model performance (a balance between 

precision and recall). The TFT achieved the highest Precision-Recall AUC score of 0.71, reflecting its superior anomaly 

detection performance by better distinguishing between anomalous and normal points in the time-series data. 
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Table 3. The comparison of F1-score results. 

Model F1-Score Precision-Recall AUC Significant Improve Anomaly Detection Rank 

LSTM Autoencoder 0.85 0.54  3rd 

Matrix Profile 0.75 0.50  4th 

TFT 0.92 0.71 8.24% 2nd 

TST 0.88 0.68 3.53% 1st 

The TST follows closely with a Precision-Recall AUC score of 0.68, performing better than the LSTM Autoencoder 

and Matrix Profile. The LSTM Autoencoder achieved a Precision-Recall AUC score of 0.54, lower than both 

Transformer-based models. The Matrix Profile model performed the weakest with a Precision-Recall AUC of 0.50, 

indicating its relatively poor anomaly detection capabilities compared to the others. These AUC scores reinforce the 

findings that Transformer-based models, particularly the TFT, perform better in both F1-score and Precision-Recall 

AUC, indicating their higher efficiency in anomaly detection tasks. 

 

Figure 4. The comparison of F1-score results 

4.4. Discussion 

Regarding inference time, Transformer-based models demonstrated superior efficiency over traditional approaches. 

The TST model processed streaming data nearly 30% faster than LSTMs, showcasing the advantages of parallel 

processing inherent in Transformer architecture. Similarly, the TFT achieved a 25% reduction in inference time 

compared to the LSTM Autoencoder, further underscoring the efficiency of Transformers in real-time applications. 

The ability to process data in parallel, as opposed to the sequential processing of LSTMs, contributed significantly to 

the speed improvements, making Transformer models particularly well-suited for streaming environments where low 

latency is crucial. Table 4 quantifies the practical performance aspects of each model in terms of latency and resource 

efficiency. It demonstrates the advantage of Transformer-based models (especially TST and TFT) in real-time 

applications where inference speed and memory usage are crucial. 

Table 4. Inference Time and Memory Usage Comparison 

Model Inference Time Reduction Memory Usage Rating Notes 

LSTM Autoencoder Baseline High Slowest, due to sequential updates 

Matrix Profile Fastest Lowest Weakest in anomaly detection 

Time-Series Transformer ~30% faster than LSTM Moderate Efficient and accurate 

Temporal Fusion Transformer ~25% faster than LSTM Moderate Most efficient with best accuracy 
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When evaluating memory usage, the Matrix Profile Algorithm required the least memory, but its performance was 

suboptimal, as reflected in the lower F1-score of 0.75 and the Precision-Recall AUC of 0.50. Despite its lower memory 

footprint, the Matrix Profile struggled with accurately detecting anomalies. On the other hand, the LSTM Autoencoder 

exhibited higher memory consumption due to its reliance on recurrent computations, which require storing intermediate 

states. This higher memory usage, coupled with lower performance (F1-score of 0.85 and **Precision-Recall AUC of 

0.54), makes LSTM Autoencoders less suitable for large-scale anomaly detection tasks in real-time applications. 

The Transformer models—specifically TST and TFT—struck a balance between computational efficiency and high 

performance. The TST model achieved an F1-score of 0.88 and a Precision-Recall AUC of 0.68, while the TFT model 

outperformed with an F1-score of 0.92 and the highest Precision-Recall AUC of 0.71. These models' ability to capture 

long-term dependencies through self-attention mechanisms and to process data efficiently through parallelism makes 

them ideal candidates for large-scale anomaly detection tasks, especially in environments requiring real-time decision-

making. 

These results reinforce the effectiveness of Transformer-based models for anomaly detection in streaming data. By 

leveraging the power of self-attention, both the TST and TFT models offer improved accuracy, scalability, and 

efficiency, addressing the challenges of detecting anomalies in dynamic, evolving datasets. The ability to handle long-

range dependencies and adapt to changes in data patterns further enhances their robustness, making them a scalable 

solution for various industries where real-time anomaly detection is critical. 

Future research will further optimize Transformer architectures to improve inference time and memory usage while 

maintaining high performance. Additionally, integrating Transformer models with hybrid approaches may enhance 

their detection capabilities, combining the strengths of Transformers with other techniques to achieve even greater 

accuracy and efficiency. This study highlights the strengths of TST and TFT compared to traditional models like LSTM 

Autoencoders and Matrix Profile for anomaly detection tasks. These Transformer-based models pave the way for future 

research aimed at deploying them in real-time applications, where their efficiency, accuracy, and scalability will be of 

utmost value across industries such as finance, healthcare, and IoT. 

5. Conclusion 

This study demonstrates the significant advantages of Transformer-based models, specifically the TST and TFT, in 

real-time anomaly detection for streaming data. The experimental results highlight that Transformer models achieve 

superior performance in terms of F1-score and Precision-Recall AUC and excel in inference time and computational 

efficiency. The TFT model, with an F1-score of 0.92 and Precision-Recall AUC of 0.71, outperformed both traditional 

methods, such as the LSTM Autoencoder (F1-score: 0.85, AUC: 0.54) and the Matrix Profile (F1-score: 0.75, AUC: 

0.50), indicating its strong capability for high-accuracy anomaly detection. 

The Transformer models' ability to process data in parallel, capture long-range dependencies through self-attention 

mechanisms, and maintain efficiency in memory usage positions them as highly effective tools for large-scale anomaly 

detection tasks. Additionally, the TST model's 30% faster processing and the TFT model's 25% reduction in inference 

time highlight the importance of these models for real-time applications, where latency and scalability are critical. 

While the Matrix Profile algorithm requires less memory, its weaker performance limits its suitability for anomaly 

detection in complex, dynamic datasets. Similarly, the LSTM Autoencoder, although a powerful model for sequential 

data, struggles with higher memory consumption and longer inference times, making it less efficient in real-time 

anomaly detection tasks compared to Transformer-based models. 

The TST and TFT provide a robust, scalable, and efficient solution for anomaly detection in streaming environments, 

leveraging Transformers' power to improve performance and operational efficiency. Future research will focus on 

optimizing these models further to enhance their application in real-world scenarios, with the potential for integrating 

hybrid approaches to boost detection capabilities and address challenges like memory usage and real-time decision-

making. The findings from this study pave the way for the broader adoption of Transformer models in time-series 

analysis, with significant implications across industries such as finance, healthcare, and IoT. 
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