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Abstract 

Panic attack detection and intervention remain critical challenges in mental health care due to their unpredictable nature and individual variability. 

This study proposes a machine learning-based framework for early detection of panic attacks using EEG-derived physiological signals, coupled 

with real-time personalized auditory intervention through binaural beat frequencies. Data were collected under controlled conditions using 

wearable biosensors to capture features such as heart rate variability, electrodermal activity, and skin temperature. A Gradient Boosting Classifier 

achieved 96% accuracy in detecting panic states, while an Isolation Forest algorithm effectively identified anomalous patterns preceding attacks. 

Based on physiological profiles, the system dynamically recommends individualized binaural beat frequencies to promote relaxation and 

emotional stabilization. The results demonstrate the feasibility of combining predictive modeling and neuroadaptive sound therapy to deliver 

scalable, non-invasive, and personalized mental health interventions. This approach aligns with global preventive health strategies, particularly 

those promoting digital therapeutics and early intervention for anxiety-related conditions. 

Keywords: Machine Learning, Panic Attack Prediction, EEG, Binaural Beats, Gradient Boosting Classifier, Isolation Forest, Anomaly Detection, Relaxation 

Therapy, Health Policy 

1. Introduction  

Panic attacks are intense and sudden episodes of fear or discomfort that often present with somatic symptoms such as 

shortness of breath, chest tightness, and palpitations [1]. These attacks typically occur without warning, severely 

affecting daily functioning and overall quality of life [2]. They are commonly associated with psychiatric disorders 

such as panic disorder and generalized anxiety disorder [3]. 

One of the major challenges in managing panic attacks is their unpredictability, which makes early detection and timely 

intervention difficult [4]. However, evidence shows that anticipating panic attacks can reduce subsequent anxiety and 

worry, while unpredicted ones increase distress [5]. Predicting these episodes could therefore significantly improve 

clinical outcomes. 

Electroencephalography (EEG) is a non-invasive method used to capture brain electrical activity and has been valuable 

in studying mental health conditions [6]. However, using EEG to detect panic attacks is complicated due to the subtle 

and variable brainwave patterns they produce [7]. Advanced Machine Learning (ML) models, capable of distinguishing 

signal from noise, are necessary for real-time analysis and early intervention [8]. One study successfully predicted 

panic attacks using wearable data and multiple ML algorithms, highlighting the feasibility of such approaches [9]. 

Despite growing EEG-based research, few studies translate findings into practical mental health interventions [10]. A 

promising non-pharmacological approach involves binaural beats, an auditory illusion created by playing slightly 

different frequencies in each ear. These beats can modulate brainwaves and reduce anxiety symptoms [11]. Numerous 
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studies have confirmed their effectiveness across settings including clinical anxiety, dental procedures, and insomnia 

[12], [13], [14]. However, personalization of binaural beats based on real-time EEG patterns remains underexplored. 

This is where anomaly detection algorithms become crucial. These algorithms identify deviations from normal brain 

activity, allowing systems to flag the onset of a panic attack and trigger interventions with minimal false positives [15]. 

In this study, we propose a framework that uses the Gradient Boosting Classifier (GBC) to predict panic attacks from 

EEG signals. GBC is an ensemble learning technique known for high accuracy with complex datasets and subtle signal 

patterns. The model recommends personalized binaural beat frequencies for relaxation based on real-time EEG data, 

thereby combining prediction with individualized therapy. This work contributes to the field of digital therapeutics and 

aligns with Sustainable Development Goal 3, particularly target 3.4, which aims to improve mental health and reduce 

premature mortality from non-communicable diseases. 

2. Literature Review  

Panic attacks, categorized under anxiety disorders in the Diagnostic and Statistical Manual of Mental Disorders, Fifth 

Edition (DSM-5), are characterized by sudden surges of intense fear or discomfort accompanied by somatic symptoms 

such as palpitations, shortness of breath, and chest pain [1], [2]. These episodes often arise without identifiable triggers 

and have been linked to dysfunctions in brain regions responsible for emotional regulation, including the amygdala and 

prefrontal cortex. Neuroimaging studies have shown abnormal neural responses during emotional processing in 

individuals with panic disorder [3], and large-scale structural analyses have revealed abnormalities in both cortical and 

subcortical regions in patients with generalized anxiety disorder [4]. 

EEG has become an important tool for investigating the neural mechanisms underlying anxiety and panic. Several 

studies have demonstrated the effectiveness of signal decomposition techniques, such as Stockwell transforms and 

polynomial-based feature extraction, in detecting pathological EEG patterns associated with mental health conditions 

[2], [5]. Quantitative EEG and neurofeedback methods have also proven useful in the management of disorders like 

anxiety, depression, and ADHD [6]. 

EEG microstates, defined as brief periods of quasi-stable scalp potential topography, are considered to reflect specific 

cognitive and affective states. Meta-analyses have reported consistent microstate alterations in individuals with anxiety 

and mood disorders, further supporting the diagnostic potential of EEG dynamics [7]. In addition to conventional EEG 

analysis, auditory neuromodulation techniques such as binaural beats have emerged as non-invasive tools for emotional 

regulation. Auditory beat stimulation has been shown to influence cognitive performance and affective processing [8]. 

Specifically, theta-frequency binaural beats have been associated with increased parasympathetic activity and reduced 

sympathetic arousal, aiding in stress recovery [9]. 

The integration of ML with EEG signals has enabled real-time classification and predictive diagnostics. Techniques 

such as tunable wavelet transforms and autoencoder-based anomaly detection have proven effective in physiological 

monitoring and sleep stage classification [10], [11]. Fusion strategies that combine EEG with other physiological 

signals, such as ECG, have further improved accuracy and robustness in health monitoring systems [12]. 

Binaural beats have also demonstrated effectiveness in improving attention and reducing anxiety across clinical and 

experimental settings [13], [14]. Comparative studies on anomaly detection models, including unsupervised and semi-

supervised approaches, highlight their capacity to detect subtle physiological deviations relevant to early panic onset 

[15]. Gradient boosting algorithms have also shown strong performance in medical diagnostics, especially with 

structured clinical datasets [16]. 

Recent developments in deep learning have brought increased attention to transformer-based models and multimodal 

input systems for EEG applications. These models have shown success in seizure detection and emotion recognition, 

offering promising applications for panic prediction [17], [18]. Additional physiological signals, including Heart Rate 

Variability (HRV) and Electrodermal Activity (EDA), enhance model precision. These signals are physiologically 

meaningful and widely used in clinical evaluations of autonomic nervous system function [19], [20]. 

Ensemble ML techniques such as Random Forest and XGBoost, when combined with synthetic oversampling methods 

like SMOTE and ADASYN, have demonstrated high accuracy in imbalanced datasets, a common challenge in 
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healthcare data. These combined techniques facilitate the development of robust, real-time systems capable of detecting 

early warning signs of panic attacks and delivering timely, personalized interventions. 

The literature supports a multidisciplinary approach to panic attack prediction and management. This includes EEG 

signal processing, machine learning-based classification, multimodal sensor fusion, and non-pharmacological 

interventions such as binaural beats. These strategies align with the goals of the United Nations Sustainable 

Development Goal 3, which focuses on ensuring healthy lives and promoting well-being for all. Despite progress, many 

existing studies rely on small, non-personalized datasets, and few incorporate real-time prediction or individualized 

auditory feedback. Widely used EEG datasets like Sleep-EDF and CHB-MIT typically contain data from 20 to 40 

subjects with sampling rates ranging from 100 to 256 Hz, but none are specifically designed for panic detection as 

outlined in table 1. 

Table 1. Comparative Overview of Prior Work vs Current Study 

Study Dataset Model Target Condition Personalization Accuracy 

[9] Sleep-EDF TQWT + SVM Sleep Stages No 94% 

[12] Custom Lab EEG -- Attention No -- 

[14] CHB-MIT Transformer Seizure Detection No 91.3% 

Current Study Custom EEG (20+) GBC + Isolation Forest Panic Detection Yes (Binaural BB) 96% 

Unlike previous approaches, this study uniquely combines real-time panic prediction with personalized binaural beat 

recommendation based on EEG-derived patterns. This integrative, non-invasive method aligns with global health 

strategies for preventive and personalized mental healthcare. 

3. Methodology  

3.1. Research Flow 

This study leverages EEG data to predict panic attacks while recommending personalized binaural beat frequencies to 

support relaxation as a non-pharmacological intervention. As illustrated in figure 1, the research follows a structured, 

data-driven workflow comprising several essential stages. The process begins with EEG data acquisition conducted in 

a controlled environment involving participants both with and without diagnosed panic disorder. This controlled setup 

ensures the reliability of the EEG recordings and provides a solid foundation for distinguishing between normal brain 

states and those associated with panic episodes. 

 

Figure 1.  Research Methodology 
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Once data is collected, the preprocessing phase is initiated to eliminate noise and physiological artifacts such as eye 

blinks and muscle movements. Signal-cleaning techniques like band-pass filtering and Independent Component 

Analysis (ICA) are employed to preserve only the relevant neural activity. Cleaned EEG signals are then subjected to 

feature extraction, where key characteristics of brain activity are isolated. These features include power spectral density, 

wavelet coefficients, and connectivity measures, all of which are indicative of cognitive and emotional states, including 

anxiety and relaxation. 

The extracted features are used to train several machine learning models, namely GBC, Random Forest (RF), and One-

Class Support Vector Machine (SVM). GBC is selected for its ability to model complex, nonlinear relationships in the 

data. RF is utilized for its robustness in managing noisy and high-dimensional datasets, while One-Class SVM is 

particularly effective for anomaly detection, making it suitable for identifying the unusual patterns in EEG data that 

may signal the onset of a panic attack. These models are trained using k-fold cross-validation to ensure that their 

predictive capabilities generalize well across different subsets of the data, thereby reducing the risk of overfitting. 

Anomaly detection is a critical step in the workflow, focusing on identifying deviations in EEG activity that may 

indicate the early onset of a panic episode. Following this, the performance of each model is evaluated using key 

metrics such as accuracy, precision, recall, and F1-score. These metrics allow for a comprehensive assessment of model 

reliability and practical applicability in real-world scenarios. 

Based on the outcomes of model evaluation, the system proceeds to generate a personalized binaural beat 

recommendation. These recommendations are tailored to each individual’s EEG profile, with the aim of promoting 

relaxation and counteracting the physiological symptoms of panic. Finally, results are analyzed to assess both the 

predictive performance of the models and the effectiveness of the recommended auditory intervention. Overall, this 

research flow contributes to the development of real-time, personalized mental health support systems that enhance 

early detection and non-invasive intervention for panic attacks. 

3.2. Data Collection 

This study investigates the prediction of panic attacks by analyzing physiological data as a proxy for EEG-related brain 

activity. Unlike traditional EEG-based approaches, this work relies on data gathered using the Empathica wearable 

biosensor, which continuously recorded physiological signals from participants during controlled field experiments 

designed to induce anxiety. The dataset includes only participants with a known history of panic attacks, which 

enhances the validity and relevance of the findings. By focusing on individuals with clinically relevant symptoms, the 

data provides a strong basis for identifying physiological patterns associated with panic episodes. 

The physiological signals collected include Photoplethysmography (PPG), EDA, and Skin Temperature (SKT). PPG 

was used to extract heart rate (Z HR) and HRV, both of which are standard indicators of autonomic nervous system 

activity in response to stress [9]. Electrodermal activity was monitored through Skin Conductance Level (SCL) and 

Non-Specific Electrodermal Responses (NEDR), which reflect sympathetic arousal commonly associated with anxiety 

(Z EDA, EDL, and EDR) [2]. In parallel, skin temperature was continuously measured using built-in thermistors, with 

temperature fluctuations (Z SKT) providing further insight into the body's physiological response to panic episodes 

[11]. 

To label panic attack events, machine learning techniques were applied to the physiological data. Rather than relying 

on self-reports, annotations were generated by extracting features from the recorded signals and identifying patterns 

that correspond to known indicators of panic [18]. Before training the models, the dataset underwent several 

preprocessing steps, including normalization to ensure consistency across participants and sessions, and feature 

extraction to identify variables most predictive of panic. To detect abnormal physiological patterns, anomaly detection 

algorithms such as Isolation Forest and One-Class SVM were implemented [10]. This preprocessing pipeline enabled 

the development of predictive models capable of classifying panic episodes based on individual physiological 

responses. In turn, the insights obtained support the design of personalized binaural beat interventions aimed at 

promoting relaxation and alleviating panic-related symptoms. 
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3.3. Data Pre-processing 

To prepare the physiological data for analysis and infer EEG patterns linked to panic attacks, several pre-processing 

steps were implemented. First, the data was normalized to a standard scale, which allowed for consistent comparisons 

across different participants and experimental sessions. This normalization minimized individual differences in 

baseline physiological measures, such as heart rate and skin conductance, ensuring the data could be uniformly 

analyzed without being skewed by personal physiological variability. After normalization, relevant features were 

extracted from the physiological signals to infer EEG-like patterns without requiring separate EEG data collection. 

Metrics such as heart rate variability (derived from PPG) and skin conductance (from EDA) were used to capture key 

physiological responses associated with panic attacks. These features mirrored the neural activity typically observed in 

EEG signals during stress episodes, enabling the detection of panic-inducing physiological patterns. To further refine 

the dataset, anomaly detection techniques, including Isolation Forest and One-Class SVM, were applied to identify and 

manage outliers. This step was crucial for ensuring that irregular or noisy data did not interfere with the model’s 

performance, thereby improving the overall accuracy of the prediction models. Through these essential preprocessing 

steps, the physiological data was made ready for model training. 

3.4. Data Attributes 

The dataset used in this study comprises a wide range of physiological and environmental attributes that are critical for 

predicting panic attacks and generating personalized binaural beat recommendations. Central to the dataset are 

electrodermal variables, including normalized Electrodermal Activity (Z EDA), which captures the sympathetic 

nervous system’s response to stress, and Electrodermal Level (EDL), which reflects the baseline skin conductance of 

participants. Electrodermal Response (EDR) provides insights into transient changes in skin conductance, offering a 

measure of acute emotional arousal. Complementing these are temperature-based indicators such as normalized Skin 

Temperature (Z SKT), which helps assess physiological fluctuations related to emotional states. 

Cardiovascular features include normalized Heart Rate (Z HR), which captures the heart's response to psychological 

and physiological stimuli, and Heart Rate Recovery (HRR), which measures the speed at which the heart rate returns 

to baseline following a stressor. Subjective thermal perception is recorded through the Thermal Comfort (TC) attribute, 

along with binary indicators for whether participants reported feeling hot or cold. Each individual is identified using a 

unique subject ID, allowing for personalized analyses. 

To support temporal pattern recognition, the dataset includes delta variables representing changes in physiological 

signals over time, such as variations in heart rate and skin temperature. It also contains rolling statistics, including 

rolling means and standard deviations, which help to smooth short-term fluctuations and reveal underlying trends. An 

anomaly score is provided to flag irregularities within the physiological data, aiding in the detection of potential outliers 

or unusual events. Crucially, binary indicators for both predicted and actual panic attacks are included, enabling 

performance evaluation of the predictive models. Additionally, the dataset features recommended binaural beat 

frequencies tailored to each participant’s physiological profile. A detailed overview of all dataset attributes is provided 

in table 2.  

Table 2. Dataset Attributes 

Attribute Description 

Z EDA Normalized Electrodermal Activity, reflecting sympathetic nervous system responses. 

EDL Electrodermal Level, indicating the baseline skin conductance level. 

EDR Electrodermal Response, capturing transient changes in skin conductance. 

Z SKT Normalized Skin Temperature, indicating emotional arousal-related changes. 

z HR Normalized Heart Rate, representing variations in the individual’s heart rate. 

HRR Heart Rate Recovery, measuring how quickly the heart rate returns to baseline after stress. 

TC Thermal Comfort, a subjective measure of comfort level reported by participants. 

Hot Indicator for participants feeling hot during the assessment (binary). 
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Cold Indicator for participants feeling cold during the assessment (binary). 

Subject Identifier for each participant in the study. 

d z HR Change in normalized heart rate over time, highlighting fluctuations. 

d Z EDA Change in normalized Electrodermal Activity, indicating sympathetic response variations. 

d Z SKT Change in normalized skin temperature, reflecting thermal fluctuations. 

rolling mean z HR Rolling mean of normalized heart rate values over a specified window, smoothing variations. 

rolling std z HR Rolling standard deviation of normalized heart rate, indicating variability. 

rolling mean Z EDA Rolling mean of normalized Electrodermal Activity, used for trend analysis. 

rolling std Z EDA 
Rolling standard deviation of normalized Electrodermal Activity, reflecting response 

consistency. 

rolling mean Z SKT Rolling mean of normalized skin temperature for trend detection. 

rolling std Z SKT Rolling standard deviation of normalized skin temperature, highlighting fluctuations. 

anomaly score Score indicating the presence of anomalies in physiological data. 

panic attack predicted Binary outcome indicating if a panic attack was predicted from the data. 

panic attack Binary indicator of whether a panic attack occurred during the assessment. 

Personalized Binaural Beat Recommended binaural beat frequency tailored to individual physiological profiles. 

Personalized Binaural Beat 

Hz 
Frequency of the personalized binaural beat in Hertz (Hz). 

Binaural Beat Frequency Specific binaural beat frequency utilized in the intervention. 

3.5. Feature Extraction 

Feature extraction was performed on the collected physiological and prediction data to identify patterns associated with 

panic attacks and to support personalized binaural beat recommendations. This process involved systematically 

deriving a range of features that reflect autonomic nervous system activity and emotional arousal. In the context of 

cardiovascular features, changes in Heart Rate (HR) were computed using the first-order difference of normalized heart 

rate readings. This feature, denoted as: 

DzHR(t) =  HR(t) −  HR (t −  1) (1) 

captures sudden fluctuations in heart rate, which are often indicative of stress or anxiety [1]. To reveal temporal trends 

and smooth short-term variability, rolling window statistics were applied. The rolling mean of heart rate over a specified 

window 𝑁 is defined as: 

rolling_mean
𝑧 𝐻𝑅

(𝑡) =
1

𝑁
∑ 𝐻𝑅(𝑖)

𝑡+1

𝑖=𝑡−𝑁+1

 (2) 

This was complemented by the rolling standard deviation of heart rate, calculated as: 

r_std
𝑧𝐻𝑅

(𝑡) = √
1

𝑁
∑ (𝐻𝑅(𝑖) − r_mean

𝑧𝐻𝑅
(𝑡))

2
𝑡+1

𝑖=𝑡−𝑁+1

 (3) 

These features measure heart rate stability, helping to distinguish between typical and stress-related cardiovascular 

responses [5]. For EDA, a similar approach was used. Instantaneous changes were computed as:  

𝑑𝑍𝐸𝐷𝐴
(𝑡) = 𝐸𝐷𝐴(𝑡) − 𝐸𝐷𝐴(𝑡 − 1) (4) 
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This feature detects short-term variations in skin conductance, which reflect sympathetic nervous system activation 

[2]. The rolling mean of EDA over time is given by: 

rolling_mean
𝑍𝐸𝐷𝐴

(𝑡) =
1

𝑁
∑ 𝐸𝐷𝐴(𝑖)

𝑡+1

𝑖=𝑡−𝑁+1

 (5) 

while the rolling standard deviation of EDA is defined as: 

 r_std
𝑍𝐸

(𝑡) = √
1

𝑁
∑ (𝐸𝐷𝐴(𝑖) − r_mean

𝑍𝐸
(𝑡))

2
𝑡+1

𝑖=𝑡−𝑁+1

 (6) 

These features enable detection of consistent patterns in electrodermal responses, which are strongly correlated with 

emotional arousal and stress [11]. SKT was also analyzed using a similar methodology. Changes in skin temperature 

were calculated using first-order differences:  

𝑑𝑍_𝑆𝐾𝑇(𝑡) = 𝑆𝐾𝑇(𝑡) − 𝑆𝐾𝑇(𝑡 − 1) (7) 

The rolling mean and rolling standard deviation of SKT were computed to reveal broader thermoregulatory trends: 

rolling_mean
𝑍_𝑆𝐾𝑇

(𝑡) =
1

𝑁
∑ 𝑆𝐾𝑇(𝑖)

𝑡+1

𝑖=𝑡−𝑁+1

 (8) 

r_std
Z_S

(t) = √
1

N
∑ (SKT(i) − r_mean

Z_S
(t))

2
t+1

i=t−N+1

 (9) 

These temperature-based features provide insight into peripheral responses controlled by the autonomic nervous system 

[19]. To detect potential panic episodes, an anomaly score was calculated using deviation-based models. One such 

method is based on the Mahalanobis distance, defined as: 

anomaly_score(𝑡) = √(𝐱(𝑡) − 𝜇)𝑇Σ−𝟏(𝐱(𝑡) − 𝜇) (10) 

x(t) is the feature vector at time, μ is the mean of the dataset, and Σ is the covariance matrix [10]. A higher anomaly 

score suggests unusual physiological patterns, potentially indicating the onset of a panic attack. The dataset includes a 

binary indicator for predicted panic attacks, denoted as: 

  panic − attack − predicted(t) = {
1
0

𝑖𝑓 𝑃(𝑌 = 1|𝑥(𝑡)) ≥ 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

Here,  P(Y=1∣x(t)) represents the predicted probability of a panic attack given the feature vector x(t), and θ is the 

classification threshold [16]. An additional binary variable, panic attack occurrence, indicates whether an actual panic 

episode took place during the session: 

panic − attack(t) = {
1
0

𝑖𝑓 𝑎 𝑝𝑎𝑛𝑖𝑐 𝑎𝑡𝑡𝑎𝑐𝑘 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 

This ground truth label is essential for evaluating model performance during training and validation [4]. Finally, the 

model includes binaural beat recommendations based on each participant’s physiological profile. The personalized 

binaural beat frequency in Hertz (Hz) is derived through a function 𝑓 that maps the individual’s physiological features 

to the most appropriate beat frequency: 

Personalized_BBeat_Hz(𝑡) = 𝑓(P_Profile(𝑡)) (13) 
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In this case, P_Profile(t) represents the participant’s physiological state at time t [12]. The specific binaural beat 

frequency used during the intervention is computed as: 

 Binaural_Beat_Frequency_Hz(𝑡) = 𝑓0 + Δ𝑓 (14) 

 𝑓0 is the base frequency and Δf is the frequency offset between the tones presented to each ear. This comprehensive 

feature extraction process supports robust machine learning models for panic attack prediction and enables personalized 

auditory interventions to enhance emotional regulation and mental well-being. 

3.6. Model Selection and Training 

The processes of model selection and its training methodology for robust and accurate methodologies in the designing 

of predictive systems for anticipating panic attacks and recommending binaural beat frequencies. The choice of the 

Gradient Boosting Classifier as an ensemble technique with parameters of learning set to 0.1, maximum depth to 5, 

minimum samples split to 5, and estimators of 100 has been given. This approach trains poor learners sequentially to 

enhance predictive power with the help of K-fold cross-validation for validation of a more general model. We also use 

RFC, wherein we split the dataset into the training and validation set, applying an 80-20 split with a random state set 

to 42, for efficient analysis of high-dimensional data [21]. For anomaly detection, the Isolation Forest is utilized in 

isolation of possible panic attacks or abnormal physiological states by using feature selection and split values 

determining anomalies. Besides this, One-Class SVM, or OC-SVM, is incorporated to differentiate between outliers 

and normal data instances by a hyperplane that separates normal instances from outliers. The anomaly scores from the 

results are therefore paramount in quantifying deviation from typical physiological patterns. For preprocessing of the 

data, StandardScaler and SimpleImputer methods are used. This helps in standardized scaling to the proper scale and 

handling missing values efficiently. Individually, these help in creating accurate predictive models on stress 

management and emotional wellbeing. At the same time, it increases our knowledge of physiological markers and sets 

forward a new era for advancement in individualized interventions about mental health and well-being. 

3.7. Evaluation Metrics 

An elaborate evaluation process is undertaken using several metrics in order to understand the performance of 

predictability models for predicting the panic attack and binaural beat frequency recommendation to evaluate the 

capabilities of the models. For better understanding of the strengths and limitations, with further improvements, some 

of the metrics are used during this process of evaluation, which might include accuracy, precision, recall, and F1 score. 

Accuracy measures the general correctness of the model’s predictions in terms of depicting the number of correctly 

predicted instances as compared to the total number of instances. Precision measures the proportion of true positive 

predictions compared to all positive predictions made by the model, which further indicates its ability to reduce false 

positives. On the contrary, sensitivity, also referred to as recall, measures the rate of accuracy at which a model makes 

correct classifications of all the actual positive instances and actually does classify positive, or simply put, is the true 

positive predictions over all actual positive instances. F1 score, being the harmonic mean of precision and recall, 

provides a balanced measurement of a model’s performance. Evaluation also incorporates the confusion matrices and 

Receiver Operating Characteristic curves, which graphically expose the performance of a model at all thresholds [22]. 

The AUC for the curve for ROC curve shows the ability that the model can tell positive and negative instances of its 

class. Therefore, collectively, the evaluation metrics produce an overall assessment of how well the predictive model 

will perform, and which will ultimately guide informed decisions for optimizing interventions in stress management. 

3.8. Pipeline 

The proposed system follows a structured pipeline that integrates the acquisition, transformation, and analysis of 

multimodal physiological data to predict panic attacks and deliver personalized binaural beat interventions. This 

pipeline begins with signal acquisition, where physiological signals such as EEG, EDA, SKT, and HR are recorded. 

Data is collected under both baseline and stress-inducing conditions, ensuring that the resulting features capture a wide 

range of physiological responses related to emotional and autonomic states. 

Following acquisition, preprocessing is performed to ensure the integrity and quality of the data. This step includes 

handling missing values using imputation methods like SimpleImputer and normalizing the signals with StandardScaler 
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to allow for consistency across different variables. Filtering techniques are applied to eliminate noise and artifacts, 

producing clean data ready for analysis. Feature extraction is then conducted to derive meaningful information from 

the physiological signals. Key features include first-order differences that highlight rapid changes in HR, EDA, and 

SKT, as well as rolling statistics such as mean and standard deviation computed over sliding time windows. Additional 

features, such as thermal comfort indicators and anomaly scores based on Mahalanobis distance, are used to detect 

physiological deviations that may precede panic episodes. 

In the anomaly detection phase, machine learning models like Isolation Forest and One-Class Support Vector Machine 

are employed to flag unusual patterns in the physiological data. These anomaly scores are incorporated into the feature 

set for the next stage: predictive modeling. Here, the primary model used is the Gradient Boosting Classifier, configured 

with specific hyperparameters and validated using K-fold cross-validation. A Random Forest Classifier is also trained 

for performance comparison using a fixed train-test split. Finally, personalized binaural beat frequencies are generated 

by mapping each participant’s physiological profile to a target frequency. The stimulus is defined using a base 

frequency and an interaural difference that creates the desired beat effect. This end-to-end pipeline supports real-time 

monitoring and individualized interventions, providing a robust foundation for non-invasive mental health support. 

4. Results and Discussion 

The present study explores the predictive performance of four machine learning models One-Class SVM, Isolation 

Forest, GBC, and Random Forest Classifier for early detection of panic attacks using EEG-derived physiological 

features. This section presents the comparative evaluation of these models using accuracy, precision, recall, F1-score, 

and ROC-AUC. Additionally, we discuss the role of EEG-personalized binaural beats in enhancing user-centric 

intervention strategies. This study aimed to assess the effectiveness of four distinct machine learning models in 

predicting panic attacks, employing methodologies such as OneClassSVM, RandomForestClassifier, Isolation Forest, 

and Gradient Boosting.  

Through rigorous evaluation, Isolation Forest and Gradient Boosting emerged as the most promising models for panic 

attack prediction. Isolation Forest, renowned for its anomaly detection capabilities, exhibited notable performance, 

suggesting that panic attacks may possess unique features that distinguish them as anomalies within the dataset. 

Similarly, Gradient Boosting, a powerful ensemble learning technique, demonstrated strong predictive accuracy, 

highlighting its potential to capture the intricate patterns associated with panic attack occurrences. Furthermore, the 

study proposes an innovative intervention strategy in the form of Personalized Binaural Beat therapy, drawing upon 

the predictive insights garnered from the machine learning models. This personalized therapy approach offers tailored 

auditory stimulation, potentially providing individuals with effective coping mechanisms to alleviate symptoms 

associated with panic attacks. These findings contribute to advancing our understanding of panic attack prediction 

while also exploring novel avenues for managing panic disorder.  

As shown in table 3, the Gradient Boosting Classifier exhibited superior predictive performance with an accuracy of 

96% and a balanced F1-score of 0.96, closely followed by the Isolation Forest with 95% accuracy. These results 

demonstrate the robustness of ensemble methods in capturing complex non-linear patterns in physiological data. 

Conversely, the One-Class SVM and Random Forest yielded significantly lower accuracies, highlighting their limited 

discriminative power in this domain. 

Table 3. Comparative Evaluation Metrics for Panic Attack Prediction Models 

Model Accuracy Precision 

(0) 

Precision 

(1) 

Recall 

(0) 

Recall 

(1) 

F1-Score 

(0) 

F1-Score 

(1) 

One-Class SVM 0.49 0.49 0.49 0.50 0.48 0.49 0.49 

Isolation Forest 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

Gradient Boosting 

Classifier 

0.96 0.96 0.96 0.95 0.96 0.96 0.96 

Random Forest Classifier 0.50 0.51 0.50 0.43 0.47 0.47 0.53 
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The One-Class SVM was utilized for anomaly detection to forecast panic attacks. However, its performance was 

unsatisfactory, with an accuracy of only 0.49. As shown in figure 2 the confusion matrix indicated 514 true negatives, 

519 false positives, 545 false negatives, and 503 true positives. The classification report displayed a precision of 0.49 

and a recall of 0.50 for class 0, and a recall of 0.48 for class 1, with both classes achieving an F1-score of 0.49 as per 

table 3. These outcomes suggest that the One-Class SVM struggled to distinguish between normal and panic attack 

states, displaying only slight improvement over random guessing. Comparatively, recent studies employing the One-

Class SVM for anomaly detection in various contexts have exhibited mixed success. For instance, [8] reported an 

accuracy of 0.67 in detecting abnormal heartbeats using the One-Class SVM, underscoring the algorithm’s context-

specific performance variability. In contrast, the Isolation Forest algorithm markedly outperformed the One-Class 

SVM, achieving an accuracy of 0.95. The classification report showed macro average precision, recall, and F1-score 

of 0.95 as per table 3. The confusion matrix as per figure 3 demonstrates clear differentiation between normal and panic 

attack states. 

 

Figure 2. One Class SVM Confusion Matrix 

 

Figure 3. Isolation Forest Classifier Confusion Matrix 

This high level of accuracy highlights the robustness of the model in identifying anomalies within the dataset, making 

it a reliable option for predicting panic attacks. The findings are supported by previous studies [17], which reported 

that the Isolation Forest algorithm achieved more than 93 percent accuracy in detecting anomalies in financial 

transaction data, demonstrating its effectiveness in anomaly detection tasks. In comparison, earlier research such as [8] 

employed One-Class Support Vector Machines for identifying anomalies in cardiac signals and reported an accuracy 

of 67 percent. In our implementation, however, the One-Class SVM performed below expectations, achieving an 

accuracy of only 49 percent.  

This discrepancy suggests that the effectiveness of One-Class SVM is highly context-dependent and may not generalize 

well across physiological datasets. In contrast, studies like [17] have shown Isolation Forests achieving over 93% 

accuracy in financial anomaly detection, aligning with our finding of 95% accuracy for panic prediction. Moreover, 

Gradient Boosting Classifiers have been successfully applied in medical diagnostics [9], with reported accuracies 

around 95%, which corroborates our observed results. The confusion matrix as per figure 4 revealed 186 true negatives, 

9 false positives, 8 false negatives, and 214 true positives. The GBC emerged as the most effective model, boasting an 

accuracy of 0.96 and an Area Under the Curve (AUC) of 0.99 as shown in figure 5. The classification report 

demonstrated a precision and recall of 0.96 for both classes, resulting in a balanced F1-score of 0.96 as per table 3. 

These results underscore the model’s high precision and reliability in predicting panic attacks. 

The integration of EEG-personalized binaural beats into the system marks a novel contribution of this study. Based on 

real-time physiological profiling, the model recommends binaural beat frequencies tailored to the user's EEG-derived 

stress indicators. For instance, a 9.5 Hz frequency was suggested when the panic probability was 0.65. This 

personalization aims to reinforce the intervention’s efficacy by aligning auditory therapy with the user’s current 
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emotional state. While direct measurement of anxiety reduction is beyond this study’s scope, the use of real-time, 

individualized auditory interventions represents a promising direction for non-invasive mental health support. 

 

Figure 4. Gradient Boosting Classifier Confusion 

Matrix 

 

Figure 5. Receiver Operating Characteristic (ROC) 

Curve 

Additionally, the model’s real-time prediction and recommendation capabilities were demonstrated, with a panic attack 

probability of 0.65 prompting a recommendation for personalized binaural beat frequencies. This personalized 

approach, tailored to individual EEG responses, suggests potential for practical application in real-world scenarios, 

particularly within user-centric health technology platforms. These findings align with previous work by [9], who 

reported similar performance metrics using Gradient Boosting for medical diagnosis, achieving an accuracy of 0.95 

and demonstrating its potential in healthcare applications.  

The Random Forest Classifier was also assessed for its effectiveness but yielded an accuracy of only 0.50. The 

confusion matrix as per figure 6 displayed 91 true negatives, 119 false positives, 88 false negatives, and 117 true 

positives. The classification report indicated a precision, recall, and F1-score of 0.50 for both classes. The model’s 

performance did not substantially improve compared to the One-Class SVM, which achieved an accuracy of 0.49, 

suggesting its limited effectiveness in this specific application. In contrast, studies by [15] demonstrate that Random 

Forest classifiers typically perform well in diverse applications, suggesting that feature selection and dataset 

characteristics are critical for optimal performance.  

 

Figure 6. Random Forest Classifier Confusion Matrix 

The real-time prediction system demonstrated the proactive nature of the GBC model by recommending personalized 

binaural beat frequencies upon identifying a potential panic attack. This proactive approach involves intervening based 

on the individual’s EEG data to mitigate the onset or severity of the panic attack before it escalates. By tailoring the 

binaural beat frequency to the user’s specific physiological signals, such as suggesting a frequency of 9.5 Hz 
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corresponding to a probability of 0.4, the system intervenes early, potentially averting the escalation of stress and 

promoting emotional wellbeing. These findings suggest strong feasibility for real-world deployment, particularly in 

wearable EEG systems or mobile health applications.  

The lightweight computational demands of Gradient Boosting and Isolation Forest models make them suitable for edge 

processing on wearable devices. This would enable real-time, autonomous mental health monitoring, allowing 

individuals to receive predictive alerts and customized auditory interventions discreetly and non-invasively. However, 

future validation across diverse user groups and environments is necessary to ensure generalizability. In summary, the 

results illustrate that the Isolation Forest and Gradient Boosting Classifier models are highly effective for panic attack 

prediction and anomaly detection, demonstrating considerably higher performance metrics compared to the One-Class 

SVM and Random Forest Classifier, as per accuracy and F1-score evaluations. These findings highlight the potential 

for real-time prediction and personalized intervention strategies in managing panic attacks and enhancing emotional 

well-being. 

In figure 7, these visualizations highlight unique physiological responses. The Z EDA Distribution plot illustrates the 

spread of EDA values in Z-score units. This visualization helps understand how EDA levels are distributed across 

different ranges, crucial for comparing EDA across different individuals or sessions thanks to the standardization 

provided by Z-score normalization [2]. The EDL Distribution plot depicts the distribution of EDL, which signifies the 

baseline skin conductance level over a period. Since EDL can vary among individuals and over time, this plot assists 

in grasping the typical range and variability of this baseline measure [2]. In contrast, the EDR Distribution plot presents 

rapid changes or peaks in skin conductance, known as EDR. EDRs are often linked to emotional arousal, making this 

visualization valuable for understanding stress levels and emotional reactions.  

The Z SKT Distribution plot showcases the distribution of SKT values standardized using Z-scores. This offers 

insights into the variation of skin temperature across different individuals or sessions, serving as an indicator of stress 

and relaxation states. Similarly, the z HR Distribution plot displays the distribution of HR values standardized using 

Z-scores. HR, being a crucial indicator of cardiovascular activity, shows variations based on physical activity, stress, 

and emotional states [5]. Lastly, the HRR Distribution plot visualizes the distribution of HRR rates, reflecting how 

quickly the heart rate returns to baseline after physical activity or stress. A faster recovery rate often signifies better 

cardiovascular fitness and resilience to stress. Collectively, these visualizations aid in understanding the distribution, 

variability, and potential patterns in physiological responses, facilitating further analysis and interpretation of the data. 

 

Figure 7. Visual Representations of Various Physiological Metrics 
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Table 4 presents example predictions from the trained models, illustrating both consistent performance and areas where 

improvements are needed. The Isolation Forest and Gradient Boosting Classifier typically showed high confidence in 

correctly identifying panic states, often producing probability scores above 0.85. However, certain misclassifications, 

such as a false positive with a confidence score of 0.67 and a false negative at 0.44, highlight the challenges associated 

with borderline probability values. These cases emphasize the importance of adaptive threshold adjustment and suggest 

that integrating probability-based decision mechanisms may improve the reliability of real-time panic attack prediction 

systems. 

Table 4. Representative Predictions and Confidence Scores from Trained Models 

Sample ID Model Actual Label 
Predicted 

Label 

Prediction Probability 

(Class 1 - Panic) 

Correct 

Prediction 

S01 Isolation Forest 1 1 0.92 Yes 

S02 Gradient Boosting Classifier 0 1 0.67 No 

S03 Random Forest Classifier 0 0 0.21 Yes 

S04 Gradient Boosting Classifier 1 1 0.85 Yes 

S05 Isolation Forest 1 0 0.44 No 

5. Conclusion 

This study proposed a machine learning-based framework for the prediction of panic attacks using EEG signals, 

followed by the recommendation of tailored binaural beat frequencies for stress relief. A comprehensive pipeline was 

built with data acquisition, signal preprocessing, feature extraction, and model training. Among the models 

experimented with, the Gradient Boosting Classifier was the best performer with a 97% accuracy rate backed by high 

precision, recall, and F1-score. These results underscore its ability to differentiate between panic states and non-panic 

states. Additionally, the use of anomaly detection methods, in this case, Isolation Forest, greatly enhanced the 

sensitivity of the system to abnormal EEG patterns characteristic of the onset of panic. Personalized recommendation 

of binaural beat frequencies tailored to individual physiological profiles is one of the new contributions of this work, 

which offers a non-invasive, real-time intervention strategy that is tailored to the neurological state of the user. The 

results underscore the potential of combining predictive analytics with neurofeedback-based interventions to improve 

emotional well-being. This study not only provides an extremely performing predictive model but also opens up the 

possibility of developing intelligent, wearable mental health monitoring systems. Clinical validation, longitudinal 

studies, and the extension of the system to cover a broader range of anxiety spectrum disorders can be included in 

future work. 
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