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Abstract 

This research proposes to solve the problem of herbal plant classification, which plays a key role in Thai pharmacy and traditional medicine. 

Moreover, there are limitations due to similar physical characteristics of plants and the reliance on specialists to classify herbal plants, which 

hinder the utilization of herbal plants by the general public at the local level. To solve this problem, this research presents a new preprocessing 

framework called P4, which integrates 7 techniques as follow: Image Cropping, Resizing, Normalization (0–1), Data Augmentation, Label 

Noise, Label Cleaning, and Dataset Quality Score (DQS). The prominent point of P4 technique is the combination of intentional mislabeling and 

label cleaning process, as well as, quantitative data quality assessment and additional expert review in order to filter out potentially inaccurate 

data before inputting to Deep Learning model. In the experiment, a dataset of 4,211 herbal images covering 30 herbal plant species is used and 

compared with 3 proposed techniques in previous research (P1–P3) with 5 deep learning architectures, namely DenseNet201, EfficientNetB7, 

ViT, Swin Transformer, and ConvNeXt. The experimental results showed that the P4 technique combined with DenseNet201 model provided 

the highest performance in herbal plant classification, with an Accuracy of 92%, Precision of 92%, Recall of 91%, and a training time of merely 

22.92 minutes. This was a result of combining the good data quality from the P4 technique, which enhanced to increase efficiency in producing 

higher quality and more balanced data. When combined with the structural capability of DenseNet201 that supported feature reuse from previous 

layers, it increased the robustness to mislabeled data and was able to accurately distinguish plants with similar characteristics. The results of this 

experiment are able be applied as a guideline for future application in Thai traditional medicine support system and herbal plant learning system. 
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1. Introduction 

Thai herbs are perceived as exceedingly valuable resources in both economic and traditional Thai medicine including 

the body of knowledge that has been continuously transferred and expanded. The World Health Organization and the 

Department of Thai Planned Medicine and Alternative Medicine has recognized Thai herbs as a considerable 

component of the public health system that participate in treating diseases and improve the quality of local people’s 

life [1]. Traditional medicine holds considerable value in using herbal plants to cure and maintain communal health of 

the community. It is the foundation of traditional Thai medicine that has inherited herbal knowledge for generations. 

It promotes communal self-sufficiency, reduces the use of synthetic medications, and aids in the conservation of herbal 

plants through usage and cultivation. The traditional Thai medicine has been integrated into the public health system, 

such as the use of herbs in hospitals through the Royal Thai Traditional Medicine project. It also contributes to spread 

knowledge and develop community economies through the cultivation and distribution of herbs, making traditional 

medicine a key mechanism for conserving medicinal plants and promoting the use of resources in the country’s health 

system. Currently, Thai herbs are being developed as portions of the medical and health industry, combining traditional 

knowledge with modern technology [2], resulting in innovations that meet the requirements of the world population 

while also serving as a resource for the herbal processing, alternative medical, and biotechnology sectors [3]. However, 

despite the promotion of Thai herbal medicine as a part of the healthcare system and economy, its application at the 
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local level faces many obstacles even now. Especially in the process of plant species identification with similar physical 

characteristics, this results in classification by conventional methods is tent to be prone to errors. This creates the 

necessity to rely on experts in order to distinguish medicinal plants. Therefore, opportunities to acquire and utilize 

herbal knowledge at the community level are still limited [4].  

From such study of the solution approach, it was found that previous research has applied Artificial Intelligence (AI) 

and Deep Learning (DL) technologies, which have garnered a lot of interest in the past several years, especially the use 

of Convolutional Neural Network (CNN) models to extract and analyze the physical characteristics of plants from 

pictures [5]. Aside from CNN, there are other models which are available to be used in image classification, such as 

Vision Transformer (ViT), which is particularly prominent in capturing the spatial structure of pictures [6]. Although 

CNN and ViT models produce accurate results, there are still significant limitations, including the demand for large 

data sets, which is a resource and data collection obstacle [7], [8]. Moreover, CNN models are also sensitive to data 

quality, such as noise and incomplete data [8], [9], [10] and the distribution of imbalanced data [11], [12]. The 

sensitivity is another factor influencing the learning of model. Given these limitations, this research is dedicated to 

enhancing the Data preprocessing step, which is an important step to enhance the quality of data before inputting into 

the model. There is previous research which found that selecting the suitable Data preprocessing technique increased 

the accuracy and reduced the model error [13], [14]. 

From the issues and relevant study, it has been applied as a guideline of herbal plant classification method which 

focuses on appropriate data preparation techniques and comparing between various deep learning models to obtain the 

most appropriate herbal plant classification system for each problem. This study concentrates on introducing a new 

data preprocessing technique called p4, which incorporates many techniques, including image cropping, image 

resizing, normalization (0-1), data augmentation, label noise [15] , label cleaning and DQS [16]. Those are applied 

along with densenet201 model. When comparing with the data pre-treatment approaches in previous research (P1–P3) 

which focus on basic techniques such as image resizing, normalization, and addressing data imbalance issues such as 

SMOTE and oversampling, the P4 framework proposed in this research is more strategic and increasingly attends to 

data quality. The prominent point of P4, in addition to combining multiple techniques, includes Label Noise Injection 

in order to test the models’ robustness, label cleaning using model loss criteria and expert validation, and dataset quality 

assessment using DQS technique to systematically analyze data balance and label accuracy. The combination of these 

techniques creates a “reverse circuit” data preparation process that emphasizes continuous quality improvement. This 

makes P4 different from traditional approaches in both structure and purpose. Moreover, to evaluate the efficiency of 

presented P4, P4 is compared to 3 Data preprocessing methods which have been used in the previous study. The 3 

methods include P1 (Image Resizing, Data Augmentation, Normalization and One-Hot Encoding) [17], [18], P2 (Image 

Resizing, Normalization, Data Augmentation and SMOTE) [19], [20] and P3 (Image Resizing, Normalization, Data 

Augmentation, and Oversampling) [21] In addition, the DenseNet201 model is compared with 4 other deep learning 

architectures which are EfficientNetB7, ViT, Swin Transformer, and ConvNeXt. This study utilizes 4,211 pictures of 

dataset which divides the type of herbal plants into 30 types. The model performance evaluation consists of Accuracy, 

Precision, Recall, and Confusion Matrix values. This study aims to present the performance of P4 Data preprocessing 

technique into DenseNet201 model by emphasizing on enhancing the accuracy of herbal plants classification and 

endurance of the model [3]. 

2. Related work 

2.1. Data preprocessing 

Previously, many studies have applied preprocessing techniques to advance the performance of Deep Learning and 

Machine Learning models in image classification and imbalanced data analysis. It typically involves data augmentation 

techniques such as random flip, shear transformation, zoom, rotation, horizontal/vertical flip, brightness 

transformation, shift, and shear, which are the processes that applied to maximize the diversity of the dataset and 

minimize model overfitting [17], [18], [22], [23], [24], [25]. Furthermore, Normalization is also achieved via Min-Max 

scaling, Z-score normalization, and mean substitution to normalize feature values within a proper range for model 

learning [17], [19], [26], [27] to correct for data imbalance.  From the study, it was found that oversampling techniques 

such as SMOTE (Synthetic Minority Oversampling Technique), SMOTE-ENN and CTGAN-MOS have been applied. 
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It generated synthetic data for small sample sizes, particularly in plant disease classification, healthcare data analysis, 

and cyber intrusion detection [16], [19], [26], [27]. In the meantime, there has been also the study that utilized Random 

Oversampling (ROS) technique to balance the cluster distribution in image datasets. For example, the usage of ROS 

technique with data augmentation has been applied to develop a classification model for poultry diseases using chicken 

feces images, which ameliorated the detection accuracy. The study showed that the usage of Data preprocessing 

technique alongside with others encouraged the model to be able to learn from the dataset which went through the 

adjustment. It helped in bettering the classification accuracy even under the situations with data limitations and 

imbalanced class distribution [28]. 

2.2. Deep Learning Models 

DenseNet201, EfficientNetB7, ViT, Swin Transformer and ConvNeXt are Deep Learning models which are widely 

used for plant classification and plant disease diagnosis. The DenseNet201 model excels in deep feature learning via 

Dense Connections, which improves the accuracy of tea cultivar classification [29] and herbal plants classification 

[30].  The result showed that the accuracy rate was as high as 99.64%. In addition, the EfficientNetB7 model which 

utilized hybrid scaling improved performance in olive cultivar classification [31] and rose leaf disease detection [32] 

achieving an accuracy greater than 98%. Furthermore, the ViT model, which involved a self-attention mechanism, was 

ideal for analyzing complex and detailed structures, and the result indicated that it outperformed CNN models on all 

datasets in rice, corn, and tea disease classification tasks. [33], [34] Moreover, there was Swin Transformer model that 

served as an improved Transformer model with hierarchical feature representation and sliding window mechanism. 

The result demonstrated that there was high accuracy in identifying the soybean seedling growth stages [35] and 

outperformed former CNN model [36], and the ConvNeXt model, an improved CNN model, which was designed to 

contend with the ViT model, achieved a Top-1 accuracy of 87.80% on ImageNet-1K [36]. Additionally, improvements 

were provided in MCCM-ConvNeXt, granting a 3.38% increased in accuracy in classifying chili leaf disease compared 

to the traditional ConvNeXt [37]. These studies accentuated the effectiveness of these models, certifying the improved 

efficiency and accuracy for applications in further smart agriculture and plant image analysis. 

3. Methodology 

Figure 1 demonstrates the overview of this study which was implemented in the systematic learning process of machine 

for herbal plant classification by applying Deep learning. The process consists of data collection, preprocessing, model 

selection, evaluation, and testing. The details of each process are described as follows:  

 

Figure 1. Overview of methodology 

3.1. Data Collection  

This study is carried out by the team to gather the pictures to support herbal classification. The dataset consists of 4,211 

images (resolution 6,000 × 4,000 pixels) taken with a DSLR camera. All pictures are captured under natural light in 

actual environment. The dataset consists of pictures with 2 types of backgrounds: white background and natural 

background in actual environment. The dataset includes 30 herbal plants with different physical characteristics (codes 

of herb class used to develop the model were H1–H30) with varying number of pictures per herb species. Subsequently, 

the data are divided into training and testing sets in the ratio of 70:30. The example of herbal pictures are illuminated 

in figure 2.  
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Figure 2. Example of the herbal plant dataset 

3.2. Data Preprocessing  

This study targets to propose a data preprocessing framework designed to enhance model performance. The proposed 

approach integrates different techniques as illustrated in figure 3. The detailed workflow is outlined as follows:  

 

Figure 3. Proposed data preprocessing process (P4) 

3.2.1. Image Cropping  

The process is to eliminate the unnecessary part out of the picture by keeping only the necessary parts for classification 

such as leaves or flowers of the herbal plants. This method diminishes the noise and enhances the prominence of salient 

features which is significant for the model. Then, this allows to learn more about the relevant features. In addition, 

cropping the picture decreases the data size, resulting in much faster processing by the model and reducing the 

computational burden in the step of distinguishing irrelevant data [38].  

3.2.2. Resizing  

This method is to resize the picture to be line with the requirement of Deep Learning model. In this study, image 

resizing was utilized while maintaining the aspect ratio. This process enhances the image size to be consistent since 

Deep Learning models require a constant input size. In this study, the pictures are resized to 224×224 pixels. In addition, 

resizing minimizes the computational burden in terms of memory usage and increases the speed of model training. 
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3.2.3. Normalization (0-1)  

This is a process of adjusting image pixels to the range of [0,1], by converting the original pixels from [0,255] to be 

compatible with Deep Learning models. This process enhances the stability of the computation and minimizes the data 

variance. Besides, it as well accelerates the model training because values within the range of [0,1] allow Gradient 

Descent to perform much better. Equation (1) is applied for the calculation. 

𝑋𝑛𝑜𝑟𝑚𝑎𝑖𝑙𝑧𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (1) 

3.2.4. Data Augmentation  

The process involves the increase of diversity data by modifying the original pictures using various techniques to enable 

the model to learn from a wider range of samples, decrease overfitting, and increase the generalization ability of models. 

This study applies image rotation within ±30 degrees, horizontal and vertical shifts of up to 20%, shear up to 20%, 

internal zoom of 20%, and horizontal flip, with missing pixel values being fulfilled by applying the “nearest” process 

[39], [40]. The equation (2) is utilized for calculation. 

𝐼′(𝑥, 𝑦) = 𝐼 (𝑟𝑜𝑢𝑛𝑑(𝑥), 𝑟𝑜𝑢𝑛𝑑(𝑦))   (2) 

3.2.5. Label Noise   

This process randomly converts the labels (H1-H30) of some data samples to increase the model’s robustness to 

mislabeled data. This study applies the add label noise (labels, noise ratio=0.1) function to randomly select 10 percents 

of all data samples and replace the labels with classes that are different from the original labels. This process allows 

the model to learn from the data with noise and reduce the risk of overfitting [15]. The proportion of randomly changed 

samples is calculated using equation (3). 

𝑁𝑛𝑜𝑖𝑠𝑦 = 𝑁 ×  𝑟   (3) 

3.2.6. Label Cleaning   

This process requires expert’s review to correct the potential mislabeled data. The process consists of applying a 

baseline model and loss-base filtering to identify samples with potential labeling errors by detecting scenarios when 

the model has poor confidence or cross-entropy loss values that exceed a specified threshold which is calculated by 

using equation (4). where 𝐿 represents loss value, 𝑦𝑖 represents actual value of the class at 𝑖, �̂�𝑖 represents the probability 

predicted by the model and 𝐶 represents the total number of classes (30 classes in this dataset). In this research, the 

loss value is calculated for each sample data. Furthermore, mean value (𝑢) and standard deviation (𝜎) of all loss values 

in the dataset are calculated to set the standard criteria as 𝑢 + 𝜎 . Samples with loss values higher than this criterion 

are considered to have high uncertainty and are forwarded to a botanical expert to examine each herbarium images 

against a validated database and adjust the labels accordingly. In this experiment, the mean and standard deviation of 

the loss values were 0.42 and 0.19, respectively, resulting in a screening criterion of 0.61 [41].  

𝐿 = − ∑ 𝑦𝑖 log  (�̂�𝑖)𝐶
𝑖=1   (4) 

3.2.7. Dataset Quality Score (DQS)   

This process includes the quality assessment of the dataset by evaluating the balance of class and the label correctness. 

Each data sample is evaluated based on Class Balance Score (CBS) [16]. These consist of 3 parts as follows: Class 

Balance Score (CBS), Label Consistency Score (LCS), and Label Noise Score (LNS). CBS is calculated from equation 

(5), which is the standard deviation divided by mean of the number of samples in each class and subtracted from 1 to 

assess inter-class balance. If the dataset has a similar number of samples in each class, the CBS value approaches 1. 

For example, if 𝑢(𝑛)=140 and 𝜎(𝑛)=21 then CBS=1-(21/140) = 0.85. The LCS, utilizing equation (6), is calculated as 

the ratio of the number of samples correctly predicted by the model, e.g. if the model correctly predicts 3,790 out of 

4,211 samples, LCS =3,790/4,211 ≈ 0.90 is obtained Whereas LNS from equation (7) is the proportion of samples that 

are randomly relabeled to model the noisy data, e.g. LNS= 421/4,211 ≈ 0.10. Lastly, The DQS score is calculated from 
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equation (8) by summing all 3 values, e.g. DQS = (0.85+0.90-0.10)/2 = 0.825, which indicates a high level of quality 

of the dataset. In general, a DQS value greater than 0.80 indicates balanced and reliable data, while values below 0.50 

is capable of reflecting imbalances or label errors that require to be addressed. 

𝐶𝐵𝑆 = 1 − 
𝜎 (𝑛)

𝜇 (𝑛)
  (5) 

𝐿𝐶𝑆 =  
∑ 1(�̂�𝑖=𝑦𝑖)𝑁

𝑖=1

𝑁
  

(6) 

𝐿𝑁𝑆 =
𝑁𝑛𝑜𝑖𝑠𝑦

𝑁
  (7) 

𝐷𝑄𝑆 =  
𝐶𝐵𝑆 + 𝐿𝐶𝑆−𝐿𝑁𝑆

2
  (8) 

3.2.8. Synthetic Minority Over-sampling Technique (SMOTE) 

This process is designed for tabular data, but in this work, it is applied to images, to create new samples for a small 

number of classes. The procedure starts by loading images from the training set and resizing them via an 

ImageDataGenerator, with pixel values converted to the range [0,1] (as known as Normalization). Furthermore, all 

image data and labels are extracted from the generator and the labels are converted from one-hot to integer labels for 

use in SMOTE. Each image is transformed from a 3D structure (224×224×3) to a one-dimensional vector and fed into 

the SMOTE process to generate new samples from a small number of classes. Afterwards, the SMOTE results are 

converted back to 224×224×3 images and the labels are converted back to one-hot encoding for further model training 

[42], [43].  

3.2.9. Random Oversampling 

It is a technique for balancing a dataset by randomly re-sampling the minority class to equal the majority class. This 

technique is unable to generate new data, but there is ability to increase the frequency of original data to solve the class 

imbalance problem. In this experiment, images from the training dataset are loaded and resized with 

ImageDataGenerator with normalization performed. Then, all image data and labels are then loaded into memory and 

the labels are converted from one-hot to integer labels so that they are able to be used with RandomOverSampler. Each 

image is converted to a one-dimensional vector before being fed into an oversampling step to randomly add samples 

from lesser classes. Afterwards, the results are converted back to a 224 × 224 × 3 image and the labels are converted 

back to one-hot encoding for further model practice [44]. 

3.3. Train Model 

The structure of the Deep Learning model architecture for herbal plants classification operates through a sequential 

process. The RGB picture is processed via feature extraction, dimensionality reduction, classification, and fully 

connected layers to generate the final prediction. Figure 4 demonstrates the structure and the details of model structure 

in each hierarchy are as follows: 

 

Figure 4. DenseNet201 architecture 

3.3.1. Feature Extractor   

This research applies the DenseNet201 network which undergoes the training on the ImageNet dataset as a feature 

extractor, with only the upper layers tuned for herbal plant image classification. Meanwhile, the lower layers are fixed 

to preserve basic features such as edges, patterns, and shapes, The network consists of a Conv2D layer that applies a 
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small (3×3) kernel to slide over the image to extract spatial features. This is followed by Batch Normalization to adjust 

the feature values to an appropriate range and ReLU activation, in which Conv2D calculates the feature map values 

according to Equation (9). 

𝑂𝑖,𝑗 = ∑ ∑ 𝐼𝑖+𝑚,𝑗+𝑛 . 𝐾𝑚,𝑛 + 𝑏𝑘−1
𝑛=0

𝑘−1
𝑚=0   (9) 

3.3.2. Feature Reduction   

Feature Reduction is implemented via the Transition Layer, which is interposed between Dense Blocks, with a 1X1 

convolution in order to reduce the number of feature channels, followed by a 2x2 AveragePooling2D to reduce spatial 

size. It decreases model tightness without loss of critical data by utilizing DenseNet, continuous feature connectivity 

within each Dense Block. the results from all previous layers in the same block are taken to combined with 

Concatenation type. This combination of features is calculated by using Equation (10). 

𝐹𝑐𝑜𝑛𝑐𝑎𝑡 = [𝐹1, 𝐹2, … , 𝐹𝑛]  (10) 

3.3.3. Classifier   

This step utilizes GlobalAveragePooling2D to convert the spatial feature map from the final layer of DenseNet201 into 

a smaller statistical vector without relying on a large number of Fully Connected layers. The result vector undergoes a 

dropout process at 0.5 followed by a 256-unit Dense layer that implements ReLU stimulation function and enters the 

last layer that uses Softmax in order to classify herbal images into 30 categories by calculating the average value of 

each channel in the GlobalAveragePooling process from Equation (11). 

𝐺𝑐 =
1

𝐻×𝑊
∑ ∑ 𝐹𝑐  (𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1   (11) 

3.3.4. Fully Connected   

After feature downsizing with GlobalAveragePooling2D, the data is fed into the 256-unit Dense Layer, which serves 

as a Fully Connected layer by converting the feature vector to suit the final classification. Each neuron computes the 

output value by weighting the inputs and biasing them according to equation (12). Furthermore, the result is transmitted 

via the ReLU function, which enhances nonlinearity according to equation (13) and finally, the resulted value enters 

the dropout layer with a rate of 0.5 to disable some random neurons during the model’s ability to infer results according 

to equation (14).   

𝑧𝑖 = ∑ 𝑤𝑖𝑗 𝑥𝑖 + 𝑏𝑖
𝑛
𝑗=1   (12) 

𝑎𝑖 = max (0, 𝑧𝑖)  (13) 

 �̃�𝑖 = {
0, 𝑖𝑓 𝑟𝑖 < 𝑝
𝑎𝑖 𝑖𝑓 𝑟𝑖 ≥ 𝑝 

 𝑤ℎ𝑒𝑟𝑒 𝑟𝑖 ∼ 𝑢(0,1)  
(14) 

3.3.5. Output   

This Output is the final process of model, which applies a Dense Layer with Softmax activation function to classify the 

herb pictures into 30 classes. The output values from the Fully Connected Layer are converted to class probabilities 

via the Softmax function to ensure that all values are in the range of [0,1] and the sum is equal to 1. This allows the 

model to accurately determine the probability of each class. Equation (16) is used for calculation, and the class with 

the highest probability is selected as the final output. 

�̂�𝑖 =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗30

𝑗=1

  (16) 

3.3.6. Hyperparameter Configuration   

Table 1 illuminates Hyperparameters which is specified in the training of 5 models for herbal plants classification. 

Such Hyperparameters are the values which directly affects to the performance and learning process of the models. 
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Table 1. Model Training Hyperparameters 

No Hyperparameter Description Current Value 

1 Input Size The size of the input image fed into the model. 224 x 224, 3 

2 Batch Size Number of images processed together in one training step. 32 

3 Optimizer Algorithm used to adjust model weights to minimize loss. Adam 

4 Loss Function that measures difference between predicted and actual values. Categorical Cross-Entropy 

5 Learning Rate 
Step size that determines how much the model updates weights in each 

iteration. 
0.00001 

6 Epochs Number of times the entire dataset is passed through the model during training. 50 

7 Dropout Rate Fraction of neurons randomly disabled during training to prevent overfitting. 0.5 

3.4. Evaluation Metrics 

Evaluation Metrics for the classification models are as follows: Accuracy, which represents the proportion of samples 

that the model is able to correctly classify relative to the total number of samples associated with the positive class, 

both correctly predicted (TP predicts yes and actually yes) and incorrectly predicted (FP predicts yes but actually no 

and FN predicts no but actually yes), is calculated using Equation (17), and example of correctly predicted (TP) image 

is shown in figure 5. Precision is the proportion of the number of samples that the model correctly predicts as positive 

compared to the total number of samples that the model predicts as positive, calculated using Equation (18); Precision 

which is the proportion of sample number that the model correctly predicts as positive compared to the total number 

of samples that the model predicts as positive, calculated by using Equation (18); Recall which is the proportion of 

total number of positive samples correctly classified by the model compared to the total number of true positive samples 

and is calculated by using Equation (19); and Confusion Matrix, which is presented as a table for evaluating the 

performance of classification models by comparing actual and predicted labels. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  (17) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (18) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (19) 

 

Figure 5. True positive classification for herbal plant identification. 

4. Results and Discussion 

The results are divided into 2 parts as follows: 4.1) Impact of Data Preprocessing on the model performance and; 4.2) 

the comparative results of the model performance. The details of the experimental results are presented in the following 

sections: 
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4.1. Impact of Data Preprocessing 

The impact of Data Preprocessing on the models’ performance displays in figure 6. The results are showed that the 

selection of 4 Data Preprocessing methods (P1-P4) directly affected to accuracy and capability of models’ learning for 

herbal plants classification. Therefore, the results are concluded as follows: 

Preprocessing method P1 consists of Image Resizing, Data Augmentation, Normalization, and One-Hot Encoding. This 

creates an impact on DenseNet201 and Swin Transformer models. Especially, DenseNet201 with Dense Connectivity 

structure [45] is capable of making use of the enhanced data [46]. This allowed the test accuracy to be 90% show in 

figure 6 (a) while Swin Transformer was at 76% which caused by the exceeding requirement of data variety show in 

figure 6 (c) [47]. Nevertheless, EfficientNetB7 and ViT were negatively affected which EfficientNetB7 achieved the 

test accuracy only at 58%. This showed that the model was unable to take advantage of the addition of fake data show 

in figure 6 (d). ViT model achieved the test accuracy of 77%, however, it was still lower than P3 or P4 with better 

oversampling and label cleaning steps show in figure 6 (b). Finally, the ConvNeXt model had the lowest test accuracy 

of 7%, indicating that the model structure was unable to utilize the data augmentation featured as well as other CNNs 

or Transformer models. In the context of this study show in figure 6 (e), it was concluded that P1 was suitable for 

DenseNet201 and Swin Transformer, but not for EfficientNetB7, ViT, and ConvNeXt.  

  

(a) DenseNet201 (b) ViT 

  

(c) Swin Transformer (d) EfficientNetB7 

 

(e) ConvNeXT 

Figure 6. Performance Comparison Across Data Preprocessing Stages for Each Model 

Preprocessing method P2 involves Image Resizing, Normalization, Data Augmentation, and SMOTE techniques with 

different models, giving a variety of results. DenseNet201 achieved high accuracy 90% show in figure 6 (a) and ViT 
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achieved the highest accuracy of 91%, indicating that both structures were able to support the augmentation of artificial 

data well [48] show in figure 6 (b). Meanwhile, the swing transformer was at 80% show in figure 6 (c), however, 

EfficientNetB7 dropped to 12%, indicating a difference between oversampling techniques and model design show in 

figure 6 (d). Ultimately, the ConvNeXt model achieved the lowest accuracy of 7% show in figure 6 (e), suggesting that 

oversampling and data augmentation methods impacted the model’s capacity to identify significant features [49] show 

in figure 6 (e).  

Preprocessing method P3 includes Image Resizing, Normalization, Augmentation, and Oversampling techniques for 

preprocessing data before inputting data from the model. The results indicated that DenseNet201 and ViT fully utilize 

these technologies, with test accuracy of 91% show in figure 6 (a) and (b). For Swin Transformer section, the test 

accuracy was at 81% show in figure 6 (c), but EfficientNetB7 merely achieved 48% show in figure 6 (d). These test 

results showed that the simulation architecture was believed that it responded as well to Oversampling and 

Augmentation techniques as other architectures [50]. The ConvNeXt model had the lowest accuracy of 7% show in 

figure 6 (e), demonstrating its limitations in using artificial data [49]. Conversely, CNNs using Dense and Transformer 

demonstrated higher performance in extracting features from auxiliary data [51]. 

Preprocessing method P4, proposed in this study, contains Image Cropping, Resizing, Normalization (0-1), Data 

Augmentation, Label Noise, Label Cleaning and DQS assessment for data preparation before model training. It was 

found that DenseNet201 achieved the highest accuracy of 92% show in figure 6 (a). This result emphasized its 

effectiveness in taking benefit from the enhanced data quality via both of Label Cleaning and Data Augmentation [52]. 

Even though, ViT had a high accuracy of 88% with similar accuracy show in figure 6 (b), Swin Transformer had an 

accuracy of 77%, which was lower than other data preparation techniques but still satisfactory show in figure 6 (c). 

The EfficientNetB7 model achieved an accuracy of 44% show in figure 6 (d), which showed the limitation of using 

data processed using Labeled Noise and Augmentation methods. Finally, the ConvNeXt model achieved the lowest 

accuracy of 7% show in figure 6 (e), indicating a mismatch between the model architecture and the label tuning and 

cleaning steps, as well as the formation of Label Noise, which is capable of having even more negative impact on 

ConvNeXt’s learning than other models. 

The overall test results indicated that the proposed P4 data preparation process was the most suitable for DenseNet201, 

achieving the highest accuracy of 92%. Although ViT and Swin Transformer outperformed the P3 data preparation 

process 91% and 81%, respectively, EfficientNetB7 was the most proper for P1, achieving an accuracy of 58%, 

outperforming the other processes. Ultimately, in the case of ConvNeXt, despite its low performance in all data 

preparation processes, P4 achieved the highest Precision, Recall and Accuracy = 7% compared to the other processes. 

This was possibly because the sequential convolutional learning structure was unable to handle data with similar visual 

characteristics, such as groups of herbs with similar shapes. Therefore, the future research should consider learning 

approaches that focus on comparing the relationships between images. Figure 7 demonstrates the models’ execution 

time in minute unit of the 5 models under 4 preprocessing conditions. The performance values of Precision, Recall, and 

Accuracy for each condition are shown in table 2.  

 

Figure 7. Execution time comparison of 5 models across four data preprocessing stages (P1–P4) 
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DenseNet201 was the best performing model, especially under P4, with an Accuracy of 92% for only 22.92 minutes of 

training and a good balance between accuracy and time cost. ViT performed less well, especially P2  and P3 , with an 

Accuracy of 91% for 43–47 minutes of training. However, in P4, the performance dropped to 88%, possibly due to the 

effects of overfitting or over-modified label data. Although Swin Transformer achieved a relatively good maximum 

accuracy of 81% in P3 , it was the model that took the longest training time which was approximately 137  minutes. 

Across all preprocessing runs, EfficientNetB7 showed inconsistent results, with a maximum Accuracy of only 58% in 

P1 and decreasing to only 12% in P2, even at a moderate training time of 30 minutes. This demonstrated that the model 

was sensitive to changes in preprocessing. Ultimately, ConvNeXt was the model with the lowest classification 

performance with an Accuracy of only 7% in all preprocessing stages. This indicated a learning problem of the model. 

Even with a training time of up to 82 minutes in some cases, its performance still was not improved. 

Table 2. Comparison of performance across 5 models and 4 data preprocessing 

Model 
Preprocessing Precision Recall Accuracy Time Execution 

(Min) 

DenseNet201 

P1 0.90 0.89 0.90 27.95 

P2 0.89 0.88 0.90 18.97 

P3 0.91 0.90 0.91 26.34 

P4 0.92 0.91 0.92 22.92 

EfficientNetB7 

P1 0.57 0.56 0.58 33.14 

P2 0.09 0.11 0.12 30.74 

P3 0.49 0.46 0.48 20.78 

P4 0.44 0.42 0.44 30.21 

ViT 

P1 0.81 0.78 0.77 39.40 

P2 0.91 0.91 0.91 47.75 

P3 0.91 0.92 0.91 43.14 

P4 0.88 0.88 0.88 45.13 

Swin Transformer 

P1 0.74 0.77 0.76 137.82 

P2 0.78 0.81 0.80 130.30 

P3 0.79 0.82 0.81 137.50 

P4 0.75 0.78 0.77 137.94 

ConvNeXt 

P1 0.06 0.07 0.07 82.83 

P2 0.06 0.07 0.07 43.79 

P3 0.06 0.07 0.07 43.44 

P4 0.07 0.07 0.07 68.36 

4.2. Model Performance Comparison Results 

This section compares the performance of different Deep Learning models on herbal plant classification. The analysis 

covers Validation Loss, Test Accuracy, Time Execution, and Confusion Matrix evaluation. The details of the 

experimental results at each step are presented as follows: 

4.2.1. Training and Testing Loss for Each Model   

DenseNet201 earned the lowest loss (training loss = 0.05, testing loss = 0.33), indicating that the model was capable 

of good learning and testing ability [53]. Meanwhile, the ViT and Swin Transformer models achieved balanced loss 

values (ViT: 0.40, 0.29, Swin Transformer: 0.58, 0.62), indicating that no overfitting or underfitting problem was 

available at this point. On the contrary, EfficientNetB7 achieved higher testing loss compared to the training loss (0.92, 

1.63), which stood a chance of overfitting. Meanwhile, ConvNeXt achieved the highest loss values (3.34, 3.34), which 

could be the result of underfitting or inappropriate model structure for the dataset in this study. The experimental results 

concluded that DenseNet201 was the most effective model for herbal plants classification in this study. The 

experimental results are presented in figure 8. 
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Figure 8. Training and Validation Loss for Each Model 

4.2.2.  Comparison of Model Test Accuracy and Execution Time 

Figure 9 illuminates the model performance in terms of Accuracy and Execution Time. The experimental results 

indicated that DenseNet201 was the most cost-effective model with an accuracy of 92% but only 22.92 minutes of 

training time, which was possibly due to the Dense Connectivity structure, which enabled the model to learn and 

distinguish complex characteristics of similar herbal plants well [46].  

 

Figure 9. Comparison of Test Accuracy and Execution Time Across Five Models 

Since the model architecture was able to pass through and reuse features from all previous layers at any level, this 

dense connectivity results in a model that was robust to label noise by relying on redundant feature paths to compensate 

for skewed label information. When combined with label cleaning process and using balanced data, DenseNet201 was 

able to extract features with consistency and good discrimination between each class [54]. ViT resulted with similarity 

which showed an Accuracy of 91% , but took longer to train at 43 .14  minutes, due to the combination of pixel-level 

image adjustment and data balance. Applying the Random Oversampling technique reduced the problem of class 

imbalance, it allowed the Self-Attention mechanism to distribute the focus to data from all classes equally, without 

biasing towards the class with more data. The diverse availability and balanced data, which was augmented and 

oversampled, enhanced the strengths of the ViT architecture in dealing with complex image structural features such as 

herbaceous leaf patterns [55], [56], [57].  Conversely, Swin Transformer exhibited a large cost that was incongruous 

with the results gained, taking 137.50 minutes to complete, despite its moderate accuracy of 81%. Meanwhile, 

EfficientNetB7 achieved an accuracy of 58% in 33.14 minutes. Despite training time being similar to the other models, 

the accuracy was low by dropping to only 12% in P2  using the SMOTE technique. This reduction indicated the 

sensitivity of EfficientNetB7 was compound scaling architecture to unrealistic or structurally discontinuous image data. 

Finally, ConvNeXt was the poorest performing model, with an accuracy of only 7% but a training time of 68.36 

minutes. This was likely due to the model’s tendency to rely more on texture bias than shape, which prevented it from 
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differentiating across classes similar characteristics. Additionally, ConvNeXt was designed to work on large datasets 

such as ImageNet, so it may not be appropriate for small datasets with limited images per class [58], [59]. 

4.2.3. Confusion Matrix analysis   

From figure 10, the Confusion Matrix shows the results of the herb classification accuracy test. The number of samples 

that the model classified into each class is displayed in each column. The diagonal column from the top left to the 

bottom right displays the number of samples that the model classified correctly (True Positive). In this experiment, 

there were 30 classes of herb images, each class had a different number of images.  

  

(a) Confusion Matrices of DenseNet201 (b) Confusion Matrices of ViT 

  

(c) Confusion Matrices of EfficientNetB7 (d) Confusion Matrices of Swin Transformer 

 

(e) Confusion Matrices of ConvNeXT 

Figure 10. Confusion Matrices of the Five Models 

The overall herb image classification performance of the 5 models was able to be described as follows: From the 

analysis of the data of all 5 models, it showed that the 5 classes that was possible to be classified most accurately overall 

are H3, H15, H25, H13 and H8, with an average accuracy in the range of 73–88%. On the other hand, the most 

frequently misclassified class was H20, misclassified into classes H25, H26, H28 and H29, which recurs in many 

models, such as DenseNet201, ViT and EfficientNetB7. This suggested that the H20 class dataset from similar classes 
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should be improved. The large number of misclassifications, especially in EfficientNetB7 and ConvNeXt, which tended 

to highly predict H20 class as other classes, reflected the limitation of the model in recognizing the characteristics of 

herbs in this class with very similar physical characteristics. Therefore, deep image feature analysis in the similar 

classes should be performed to improve the accuracy in the classification process. 

5. Conclusion 

This study proposed the framework of P4 Data Preprocessing to enhance the performance of Deep Learning models in 

classification of 30 herbal plants. Such P4 consists of Image Cropping, Resizing, Normalization (0-1), Data 

Augmentation, Label Noise, Label Cleaning and DQS techniques. The performance of P4 is evaluated against the 

preprocessing techniques used in previous studies (P1-P3) and tested against 5 Deep Learning architectures: 

DenseNet201, EfficientNetB7, ViT, Swin Transformer, and ConvNeXt. The experimental results were found that P4 

combined with DenseNet201 delivered the best results with a maximum accuracy of 92% and the lowest testing loss 

of 0.33 compared to other data processing techniques and models. This study emphasized the significant role of P4 in 

enhancing the efficiency of Data Preprocessing and Deep Learning model techniques for herbal plant classification. 

The usage of appropriate Data Preprocessing technique not only improved the accuracy but also enabled the model to 

manage with the data limitations and characteristics of herbal plants. The results showed that although data 

preprocessing improved the accuracy of herbal image classification in the DenseNet201 model, the same effect was 

unavailable as all other models, especially ConvNext, which exhibited low performance in all data preprocessing 

techniques. Furthermore, there was significant limitation which was class classification of plant with very similar 

physical characteristic. It then showed that most of the models tended to incorrectly predict for such class. Therefore, 

future research should focus on developing data preprocessing techniques that take into account the specific 

characteristics of each type of model architecture, and designing contrastive learning or class-wise embedding methods 

to systematically and specifically enhance the ability to distinguish similar classes. 
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