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Abstract 

This study aimed to assess the impact of sample size on the robustness of five machine learning classifiers: Support Vector Machine (SVM), 

Random Forest (RF), Naïve Bayes (NB), Decision Trees (DT), and K-Nearest Neighbour (K-NN). Although there are data-balancing techniques 

that aid in addressing data imbalance, they have some limitations which are discussed in this paper. The current study continues the trend in the 

application of these five ML classifiers for credit default detection, but it makes a contribution by examining whether sample size increment can 

better their performance when they are trained using a different imbalanced loan default dataset which has not been the focus of previous studies, 

although most ML algorithms are known to perform well when trained with large datasets. The study used a secondary loan default imbalanced 

dataset from Kaggle.com, where 85% of participants made loan payments and 15% defaulted. Stratified random sampling was used to select 

different sample sizes starting with 2% of the total observations, followed by 5%, then 10% up to 90% of the dataset, with the dependent variable 

being the stratum. The study found no consistent change in the classification metrics with the change in sample size, but RF and DT achieved 

100% performance regardless of sample size and are therefore recommended as the most robust to data imbalance in loan default detection. The 

average classification metrics for NB and K-NN ranged from 72% to 92%, and SVM produced the lowest averages which were between 69% 

and 75%. NB, K-NN and SVM yielded poor sensitivity rates of 0% to 53%, indicating poor loan payments prediction but they had sensitivity 

scores in range of 84% to 86%, indicating good loan default classification. Future studies should consider other sampling methods, deep and 

hybrid learning methods with comparison to RF and DT. 

Keywords: Machine Learning Classifiers, Imbalanced Data, Sample Size, Loan Default 

1. Introduction  

Data classification is a unique data mining technique whose objective is to determine the target class to which a specific 

object belong, and the results of a classification algorithm are generally related to data characteristics [1], such as the 

lack of density or information in the training data, the overlap between the classes, small disjuncts (disjuncts that 

classify few training samples), and noisy data which depend on the class imbalance [2]. In classification studies, the 

more powerful Machine Learning (ML) algorithms should be able to learn complex nonlinear relationships between 

input and output features and ML algorithms are robust to noise, show high variance which means that predictions vary 

based on the specific data used to train them [3].  

One significant challenge in credit risk modelling is dealing with class imbalance, where the number of default 

instances is significantly smaller than the non-default instances [4], which is a prevalent occurrence in loan default 

datasets as less individuals default on their loan payments in comparison to those who made payments. In a binary- 

class problem, the minority class is also realized as the positive class whereas the majority class is the negative class 

[5]. [6] further stated that given the impracticality of manually processing massive volumes of data, ML is the most 

practical way to create classifiers for predicting loan default risks. Classifiers trained with an imbalance dataset tend to 

predict the majority class (frequently occurring) more accurately than the minority class [1].  

According to [1], applying suitable sampling techniques such as oversampling, under sampling and Synthetic Minority 

Oversampling Technique (SMOTE) for reducing class imbalance issues can enhance the classifier’s performance. 

 
*Corresponding author: Tlhalitshi Volition Montshiwa (volition.montshiwa@nwu.ac.za)   

DOI: https://doi.org/10.47738/jads.v6i3.713 

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/). 

© Authors retain all copyrights 

https://orcid.org/0000-0001-8126-2261
https://orcid.org/0000-0003-3168-3441


Journal of Applied Data Sciences 

Vol. 6, No. 3, September 2025, pp. 1830-1849 

ISSN 2723-6471 

1831 

 

 

 

However, these data balancing methods have limitations. SMOTE may bring noise and other problems [7] while [8] 

found that under sampling and Random Under-Sampling (RUS) worked well when the dataset was large, but there was 

a chance of losing valuable information while oversampling and random over-sampling can increase the possibility of 

overfitting the model and more complex computational computing when the size of data is large enough. A possibility 

of losing some instances from the dataset that can affect the accuracy of the model have also been noted [8]. 

These limitations of data balancing methods are the mains problem identified in this study which seeks to explore 

whether sample size increment can improve the ML algorithms’ robustness to data imbalances for future studies to use 

sample size increment as one of the methods of dealing with data imbalances when using ML classifiers. In this study 

we used SMOTE-Tomek data balancing technique for comparison purposes to determine whether the impact of sample 

size variations when the data are balanced will be different from when the data are imbalanced, and whether sample 

size increment alone can improve the accuracy of the competing classifiers. Although the focus of the current study is 

theoretical since the study on the ML algorithms and how their robustness to class imbalances is impacted by the 

change in the sample size, the study also seeks to make a practical contribution to credit default classification. This 

study extends the application of ML in predicting loan default by comparing SVM, RF, NB, DT, and K-NN while 

focusing on identifying the sample size at which these classifiers become more robust to class imbalances, and to 

determine whether the sample size variations impact this robustness to class imbalance as well as identify the ultimate 

ML classifier for loan default prediction from the five. 

2. Literature Review 

According to [6], loan default happens when someone does not make their contractually required payments on time. 

One of the major problem banking sectors faces in this ever-changing economy is the increasing rate of loan defaults, 

and the banking authorities are finding it more difficult to correctly assess loan requests and tackle the risks of people 

defaulting on loans [9], which may result in the financial institutions experiencing significant financial losses when a 

defaulter is mistakenly classified as a non-defaulter during the default prediction process [6]. If an applicant defaults 

on the loan, the bank must act, which consumes time, energy, and money [6]. 

The commonly used classification algorithms from previous studies on loan default dataset or credit default  prediction 

were RF in studies conducted by [6], [10], [11], [12] and [13], Logistic Regression (LR) in studies conducted by [6], 

[12], [13] and [14], DT in studies conducted by [6], [10], [11], [12] and [13], other classifiers employed were K-NN, 

NB, SVM, Neural Networks (NN) and  XGBoost. The current study continues the trend in the application of RF, DT, 

SVM, NB and K-NN for credit default detection but it makes a significant contribution by examining whether sample 

size increment can better their performance when they are trained using a different imbalanced loan default dataset 

which has not been the focus of previous studies.  

Previous studies such as the ones conducted by [8] and [15] showed that RF consistently achieve the highest accuracy 

across all contexts (different datasets), and that RF is unbiased. RF and DT classifiers are known for their ability to 

handle imbalanced datasets effectively by capturing complex decision boundaries, exhibiting robustness to class 

imbalance and handling both minority and majority classes well [4]. [4] also stated that DT algorithm is a popular 

method for loan default prediction due to its simplicity, interpretability and its ability to handle large datasets with high 

dimensionality. NB is a fast and space efficiency classifier which only requires a small amount of training data to 

estimate the parameters required for classification as [16] explains. [17] stated that K-NN is easy to implement and 

understand but has a major drawback of becoming significantly slow as the size of the data in use grows or increases. 

In addition, SVM had been found to have accuracy advantages at larger datasets as explained by [18] and [19] and has 

outperformed other classifiers in terms of accuracy on some studies [1].   

Literature showed that most of the studies conducted focused only on either the effect of the sample size as in the 

studies conducted by [15], [18], [19], [20] and [21] or on the effect of imbalanced data as in the studies conducted by 

[1], [22] and [23], while other studies mainly sought to determine the performance of ML algorithms when predicting 

loan defaults with examples being  [6], [10], [11], [12] and [13] but not all of these issues in one study. This is therefore 

a gap in literature around ML classifiers. As such, the interest of the current study is on both sample size variations, 

imbalanced dataset as well as the prediction on loan defaults. 
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Literature shows that the use of SMOTE-Tomek to balance the data has some advantages over standalone under 

sampling and oversampling methods hence it was preferred to be used for comparison purposes in the current study. 

[24] explain that under sampling assists in reducing the majority group by randomly eliminating cases or observations 

from the majority class but although it is advantageous since it can improve run time and address storage problems, 

under sampling may eliminate important data potentially making the remaining data biased and to be unable to provide 

class distribution accuracy. [24] compared the performance of the standalone SMOTE and Tomek links to SMOTE-

Tomek when used for balancing the data before implementing NB, K-NN and SVM and found that SMOTE- Tomek 

yielded improved performance across all classifiers. [25] also found that SMOTE-Tomek improved the results of RF 

compared to when the data is not balanced and when using oversampling through the standalone SMOTE. This 

literature supports our choice to use SMOTE-Tomek and not standalone under sampling and oversampling techniques 

in the current study which also implements the RF, NB, K-NN and SVM among the other classifiers that are evaluated 

in the current study. 

3. Methodology 

3.1. Data description 

The study used the Anonymized Loan default dataset which were sourced from Kaggle.com and can be accessed 

through the following link http://www.kaggle.com/datasets/joebeachcapital/loan-default. The data comprises 38477 

observations, and include variables such as the loan amount, term, interest rate, instalment, employment length, home 

ownership, annual income, loan status and purpose as repay_fail (which quantifies loan default). In this study, 

categorical independent variables will be converted to dummy variables in the data analysis phase since the ML 

classifiers used in the study require continuous or dummy features. In this study, the variable repay_fail is used as a 

target variable with repay_fail = 0 denoting loan payments and repay_fail = 1 representing loan defaults. The 

independent variables are Loan amount (loan_amnt), Loan Term (Term) indicating whether the term is 36 or 60 months, 

Loan Interest rate (int_rate), Loan Instalments (installment), Employment length (emp_length) starting from less than 

1 year to 10 years or more with the not applicable option for partcipants who are not in employment, Annual income 

(annual_inc), Home Ownership (home_ownership) indicating whether the applicant is renting or having a mortgrage, 

and purpose of loan with options including car, debt consolidation and house improvement, to mention a few. The 

categorical variables were converted to dummy variables as a data preparation step for the ML classifiers. 

Using stratified random sampling, various samples were selected from the 38477 observations starting with 2% to 90% 

of the data. These samples were drawn for experimental purposes to mimic a situation where there are different sample 

sizes of the same variables to enable the researchers to study how the ML classifiers perform when the sample size 

increases while the dependent variable is imbalanced. Each of the randomly selected samples from were then balanced 

using SMOTE-Tomek to achieve a ratio of loan defaults - to - loan payments of 50: 50, across all sample sizes. This 

data balancing is used for comparison purposes to determine whether the impact of sample size variations when the 

data are balanced will be different from when the data are imbalanced, and whether sample size increment alone can 

improve the accuracy of the competing classifiers.  

The frequencies of the variable repay_fail at different sample sizes before and after implementing SMOTE-Tomek are 

shown in table 1. The table shows the frequency of the variable repay_fail at different sample sizes when the imbalance 

is kept constant across all the sample sizes and the degree of imbalance was kept constant for it not to bias the results. 

That is, the objective was to study how varying sample size impacts the performance of the ML classifiers and not to 

determine how the extent of imbalance affects the performance of the ML classifiers per say. Therefore, if the 

imbalance varied with each sample size, the impact of the extent of imbalance on ML classifiers would have brough 

another aspect that needed to be empirically tested which is beyond the scope of this study which was to determine the 

impact of sample size on the performance of ML classifiers when the data is imbalanced. It also shows that for all the 

samples, the majority class is the loan default class (repay_fail = 1).  

Each of the randomly selected samples from the original data were balanced using SMOTE-Tomek to achieve a ratio 

of loan defaults - to - loan payments of 50: 50, across all sample sizes. This data balancing is used for comparison 

purposes to determine whether the impact of sample size variations when the data are balanced will be different from 

http://www.kaggle.com/datasets/joebeachcapital/loan-default
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when the data are imbalanced, and whether sample size increment alone can improve the accuracy of the competing 

classifiers. The frequencies of the variable repay_fail at different sample sizes after implementing SMOTE-Tomek are 

also shown in table 1. 

Table 1. Frequency table for variable repay_fail by sample size 

Original dataset (Before Balancing) SMOTE-Tomek balanced dataset 

Total Sample size Sample size per each group of Repay_Fail Total Sample 

size 

Sample size per each group of 

Repay_Fail 

0 1 0 1 

2% 770 653 117 806 403 403 

5% 1924 1633 291 1974 987 987 

10% 3848 3265 583 3984 1992 1992 

20% 7695 6530 1165 8108 4054 4054 

30% 11543 9795 1748 12262 6131 6131 

40% 15391 13060 2331 16310 8155 8155 

50% 19239 16325 2914 20284 10142 10142 

60% 23086 19590 3496 24740 12370 12370 

70% 26934 22855 4079 28516 14258 14258 

80% 30782 26120 4662 32724 16362 16362 

90% 34629 29385 5244 36854 18427 18427 

100% 38477 32650 5827 41242 20621 20621 

The data in this study was split into 70% training data and 30% validation data which is a commonly used training- to- 

validation data splitting ratio. The Statistical Package for Social Scientists (SPSS) version 26 was used for stratified 

random sampling and for running descriptive statistics for the data, specifically the frequency tables to show the 

distribution of the dependent variable across the different sample sizes. The main analysis, which is model training and 

evaluation, were done using the following packages in Python 3.12.2: matplotlib, imblearn and sklearn. 

3.2. Methodology of ML Classifiers Used in the Current Study 

3.2.1. SVM 

SVM is a generalized linear supervised classifier that can perform binary classification on data, and its decision 

boundary is the maximum margin hyperplane that solves the learning sample [26]. The method can be employed for 

high dimensional data and generally leads to accurate classification when coping with small sample size in comparison 

to the other ML methods [27]. SVM draws margins between classes such that the distance between the margin and the 

classes is maximum hence minimizing the classification error [17]. The performance of SVM largely depends on the 

suitable selection of a kernel function that generates the dot products in the higher-dimensional feature space [28]. The 

SVM classifier is built from a training set of 𝑁 samples which are described by: 

(X1,Y1)…(Xi,Yi),...(XN,YN), (1) 

For n-dimensional space, input data belongs to class 1 or class 2 and the associated labels be -1 for class 1 and +1 for 

class 2 such that 𝑦𝑖𝜖{−1,1} [29]. If the input data can be separated linearly, the separation hyper plane can be shown 

by Equation 2. This equation finds a maximum margin to separate the positive class from negative class, explain [30], 

as cited by [29]. 

f(x)=wTx+ b, (2) 

𝑤 is 𝑛-dimensional weight vector, 𝑏 is scalar multiplier or bias value. The decision function is shown in Equation 3. 

f(x)=sgn(w
T
x+ b) (3) 
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If two classes can be separated linearly, the hyper plane that satisfies maximum margin between two classes is found 

by solving the following [29]: 

Minimise     
1

2
‖w‖

2
+C ∑ εi

n
i=1  (4) 

with 
1

2
‖w‖

2
    being the margin between two lines wTx+ b=1 and wTx+ b=-1  and Equation 4 is maximised subject to: 

y
i
(wixi+b)≥0. (5) 

When the parameters of SVM are well tuned, classification performance is increased [29]. SVM training is performed 

by solving the optimisation problem in Equation 6: 

L(α)= ∑ αi-
1

2

k

i=1

∑ αi

k

i,j=0

αjyi
y

j
k(xixj) (6) 

Subject to: ∑ y
i
αi=0 k

i=1 , αi≥0      for  i=1…. k,  k(xixj) is kernel function, 𝛼𝑖  are Lagrange multipliers. 

When the data cannot be separated linearly, kernel function mapping changes according to Equation 7. 

k(xixj)=k(xixj)+
1

C
δij (7) 

A restriction-delimiting parameter 𝐶 (a parameter that controls the amount of penalty during the SVM optimisation) is 

used to control penalization when training instances are classified incorrectly [31]. For a high value of 𝐶, the SVM 

tends to generate a smaller margin at the risk of overfitting [31]. A small value of 𝐶 results in more erroneous 

classifications at the expense of training precision [32]. The ability to apply new kernels rather than linear boundaries 

also increases the flexibility of SVMs for the decision boundaries, leading to a greater classification performance [28]. 

In a study conducted by [33], their results demonstrated that the gamma 𝛾 , 𝐶, class and weight values (𝑤) were key 

hyperparameters that could be used to train the most optimal SVM model using the RBF kernel for imbalanced data.  

Both hyperparameters work as inverse regularization terms. A large 𝐶 will place emphasis on lowering the number of 

support vectors since each one of them contributes to the ∑ 𝜀𝑖
𝑛
𝑖=1  cost in the optimization. A lower 𝐶 will allow more 

support vectors, resulting in larger margins [34]. The 𝛾 parameter controls how fast the “influence” of a point decreases 

with distance. The kernel value for two points will decrease as 𝛾 increases. As 𝛾 increases, the decision surfaces become 

more” curvy” and fit closely to the training data. A smaller 𝛾 will generate decision surfaces that are flatter, and thus a 

simpler model [34]. SVM with an RBF kernel is usually one of the best classification algorithms for most datasets, but 

it is important to tune the two hyperparameters 𝐶 and 𝛾 to the data itself [34]. SVM has been found to have advantages 

of accuracy at larger datasets like in the studies by [35] and [36] so the authors of this research wanted to determine 

whether this will still be true when the dataset is imbalanced. However, SVM is known to be sensitive to imbalanced 

dataset and decision boundary have bias towards minority class [37]. Therefore, it was worth including in this study to 

enable the researchers to determine whether this bias may decrease as the sample size increases or not. 

3.2.2. DT Classifier 

DT classifier is a tree-based technique in which any path beginning from the root is described by a data separating 

sequence until a Boolean outcome at the leaf node is achieved as explained by [38], [39] and [40]. The tree consists of 

three types of nodes, a root node, child node (decision node) and leaf node (terminal node) [41]. Each node in a decision 

tree represents a feature in an instance to be classified, and each branch represents a value that the node can assume 

[42]. The methodology for deriving a DT classifier discussed in this subsection was sourced from [43] unless otherwise 

specified. A score measure is defined to evaluate each variable and select the best one at each split using Equation 8: 

score(S.T)=I(S)- ∑
Ni

N
I(Si),

p

i=1

 (8) 
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𝑇 is the candidate node that splits the input sample of 𝑆 with size 𝑁 into 𝑝 subsets of 𝑁𝑖 (𝑖 = 1, … . , 𝑝)  and 𝐼(𝑆) is the 

impurity measure of the output for a given 𝑆. Entropy, which is a measure of impurity or disorder in a set of data used 

to evaluate the quality of the split based on a certain feature, and Gini index which calculates the amount of probability 

of a specific feature that is classified incorrectly when selected randomly are two of the most popular impurity measures 

and are described in Equations 9 and 10: 

Ientropy(S)=- (
N+

N
log

N+

N
) - (

N-

N
log

N-

N
) (9) 

𝐼𝑔𝑖𝑛𝑖(𝑆) = [
𝑁+

𝑁
(1 −

𝑁+

𝑁
)] + [

𝑁−

𝑁
(1 −

𝑁−

𝑁
)], 

(10) 

𝑁+ represent the number of manipulated samples in each subset, and 𝑁 represents the number of non-manipulated 

samples in each subset. In the current study the Gini index is used to calculate the amount of probability of a specific 

feature that is classified incorrectly when selected randomly. The process is repeated on the resulting nodes until it 

reaches a stopping criterion. That is, depending on the test outcome, the classification algorithm branches towards the 

appropriate child node where the process of test and branching repeat until it reaches the leaf node. The leaf or terminal 

nodes correspond to the decision outcomes [43]. 

The DT algorithm is a popular method for loan default prediction due to its simplicity, interpretability and its ability to 

handle large datasets with high dimensionality [44]. RF and DT classifiers are known for their ability to handle 

imbalanced datasets effectively by capturing complex decision boundaries and handling both minority and majority 

classes well [44]. The study by [44] also found that RF and DT classifiers outperformed other ML algorithms employed 

in their study, exhibiting robustness to class imbalance. Therefore, RF and DT are worth including in the current study, 

which is also about robustness of the ML classifiers to class imbalance. 

3.2.3. NB Classifier  

Naive Bayes is a probabilistic classifier which works based on the Bayes theorem to solve classification problems, by 

determining the probability of each feature occurring in each class and returning the most likely class. This classifier 

assumes that a particular feature in a class is not directly related to any other feature and that each feature makes an 

equal, individual contribution to the output, although features for that class could have interdependence among 

themselves [45]. Further stated that NB has a certain advantage over other classifiers as it requires only a small amount 

of training data.  The Bayes rule is defined as follows [45]:  

P(A|B)=
P(B|A)P(A)

P(B)
 (11) 

𝐴 and 𝐵 represent class and features respectively, 𝑃(𝐴|𝐵) represents the probability of belonging to class 𝐴 with all 

given features of 𝐵(Likelihood), 𝑃(𝐵) denote the probability of all features used for normalisation (Predictor prior 

probability), 𝑃(𝐴)is the class prior probability, and 𝑃(𝐵|𝐴) represents the probability of belonging to 𝐵 feature with 

all given classes of 𝐴. The stages of the NB algorithm in classifying datasets are as follows [46]: Read training data; 

Calculating probability in the following way; Calculates the average of each parameter with the following formula:  

μ=
∑ xi

n
i=1

n
 (12) 

𝜇 represents mean 𝑥𝑖   is the sample value 𝑖, 𝑎𝑛𝑑 𝑛 is the number of samples. 

Calculates the standard deviation of each parameter with the following formula: 

𝜎2 =
1

𝑛 − 1
∑(𝑥𝑖 − 𝜇)2 (13) 

𝜎 is the standard deviation, expresses the variance of all attributes, 𝑛 is the amount of data in the same class,  𝑥𝑖 is the 

value of attribute to 𝑖,𝜇 is the mean. 
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Look for probability values using the following formula: 

𝑃(𝑋𝑖 = 𝑥𝑖|𝑌𝑖 = 𝑦𝑖) =
1

√2𝜋𝜎𝑖𝑗

𝑒
−(𝑥𝑖−𝜇)2

2𝜎2 , (14) 

𝜎 is the standard deviation, which expresses the variance of all attributes, 𝑥𝑖 is the value of attribute to 𝑖,  𝜇 : mean,    𝑋𝑖 

is attribute to 𝑖, 𝑌𝑖is the class sought and,  𝑦𝑖 is the 𝑌 sub-class searched. 

Step 2 is repeated until the probability of all parameters is calculated. The calculation process will stop when the 

probability value of all parameters of each attribute has been calculated. NB is known to be a fast and space efficiency 

classifier which only requires a small amount of training data to estimate the parameters required for classification, as 

[47] explain. So, its inclusion in the current study was to enable the researcher to determine whether it will outperform 

the other classifiers under study for smaller sample sizes even when the data is imbalanced.  

3.2.4. K-NN Classifier 

The K-NN classifier is a simple algorithm that assigns the majority vote of 𝑘 training samples that are most like the 

new sample [48]. The 𝑘 is a limitation for adjusting the classification algorithms as stated in the study by [49].  The K-

NN is commonly used with the Euclidean distance since the linear time complexity of the Euclidean distance 

(𝑂(𝑛))makes it an ideal choice for large datasets [50]. Therefore, the Euclidean distance is used in this study. The 

Euclidean distance is used to measure the distance between samples, and the inverse distance square weighting method 

is applied to calculate the sample weight [50]. The Euclidean distance is defined as follows [51]: 

d= ∑(xi-yi
)

2
,

k

i=0

 (15) 

where 𝑘 is the number of nearest neighbours, 𝑥𝑖 is the data point, 𝑦𝑖 is the neighbouring point and 𝑑 is the distance. 

The K-NN is implemented using data from an original sample class. 𝐾 data is chosen, which is the closest neighbour 

to the new data to be decided which sample class it should be added. The distance of the new data to be included in 

any of the original sample class groups is taken from the data showing the 𝐾 nearest neighbouring property [22]. The 

following are the steps followed in K-NN classification and are adapted from [51]. Consider the following to be the 

training set of data 

ℒ = (𝑋, 𝑌)𝑛×(𝑝+1), (16) 

𝑋𝑛×(𝑝+1) is a matrix with 𝑝 features and 𝑛 sample points and Y is a binary categorical response. Let X1×P
0  be a test 

sample point with 𝑝 values and it is needed to predict the output class i.e. �̂� for 𝑋1×𝑃
0 . Suppose 𝐵 bootstrap samples are 

drawn from the training data ℒ , each with a random subset of 𝑝′ ≤ 𝑝 features such that,   S
n×(p'+1)
b

 , where b=1,2,3,…,B 

and X
1×p'
0

 is a subset of p'≤p corresponding values from X1×P
0 . The distance formula is given as:  

𝛿𝑏 ( 𝑋1×𝑝′
𝑖−1 , 𝑋1×𝑝′

𝑖 ) 𝑚𝑖𝑛 = [∑ | 𝑋𝑗
𝑖−1 − 𝑋𝑗

𝑖|
𝑞𝑝′

𝑗=1 ]

1

𝑞
, i=1, 2, 3, …, k. (17) 

In each base model, the distance formula given in Equation 16 is used to determine the sequence of distances as follows: 

δb ( X
1×p'
0

, X
1×p'
1 ) min, δb ( X

1×p'
1

, X
1×p'
2 ) min, δb ( X

1×p'
2

, X
1×p'
3 ) min, . . . , δb ( X

1×p'
k-1

, X
1×p'
k ) min 

This sequence suggests that X
1×p'
i

 is the nearest observation to X
1×p'
i-1

 where, i=1, 2, 3, …, k. The corresponding response 

values of X
1×p'
1

 , X
1×p'
2

 , X
1×p'
3

 , . . . , X
1×p'
k

 are y1 ,  y2 , y3, . . . , yk, respectively, and the predicted class of test point 

 X1×P
0  for the b

th
 base model is Ŷ

b
 is the majority vote of (y1 ,  y2 , 𝑦3, . . . , 𝑦𝑘), where 𝑏 = 1, 2, 3, … , 𝐵. The final 
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The final label of sample xi is obtained by applying the following decision rule: 

f(xi)= {
1,  and if ∑ y

i

nk(xi)

c=1
≥0

-1,  and if ∑ y
i

nk(xi)

c=1
<0,

,  (18) 

𝑛𝑘(𝑥𝑖) expresses the indexes of the k-nearest observations. The most similar samples are calculated by using various 

distance algorithms. K-NN is known to have higher possibilities of observations from the majority class of an 

imbalanced dataset [37], so the current study ought to determine whether this is impacted by the sample size or not. 

3.2.5. RF Classifier  

RF is a set of tree classifiers {h(x,θk),k=1,2…., n}, where h(x,θk) determines the growth of each decision tree, and 𝑥 

is the input vector of the classifier [52]. Compared with other classifiers, RF has the advantages of being less prone to 

overfitting and reducing the impact of outliers, leading to higher accuracy of the classification in many studies [26], 

hence it is considered in this study. The following steps are followed in training the RF classifier [41]: Start by creating 

a combination of trees which each will vote for a class, then let 𝑘 be the number of sampling groups, ni and mi be the 

number of data and variables in a group where i= 1, 2...𝑘. Each sampling group is as follows: ni data where ni ≤ N are 

selected randomly from N. 𝑚𝑖 variables where mi ≤ M are selected randomly from M. A tree is grown and gives a 

prediction class. After Step 1 to 3 are repeated for 𝑘 times, these trees become a forest. Then the classification will be 

selected by a majority vote of all trees in the forest [45]. 

RF is the algorithm of interest because based on previous studies, it is the most recommended, and its classification 

performance for imbalanced data was high and more accurate, irrespective of sample sizes, as compared to other 

classification algorithms, outperforming other supervised classification approaches even at large sample sizes as 

explained [8], [53] and [54]. That is, previous studies showed that RF consistently achieved the highest accuracy across 

all contexts (different datasets), and previous studies showed that RF is unbiased with examples of such studies being 

[8] and [54]. 

3.2.6. Methodology of SMOTE-Tomek  

Hybrid resampling methods has been proposed as a more effective way to handle imbalanced data [55]. Hybrid 

sampling achieves an optimal balance by removing examples in the majority class and replicating some examples in 

the minority class as a result it neither loses too much information from the under-sampling process nor does it overfit 

the classifier through the over-sampling process [56]. Therefore, due to these advantages of a hybrid sampling 

algorithm, the current study will use SMOTE-Tomek hybrid sampling to balance the data to determine the impact of 

sample size variations on the performance of ML classifiers when data is balanced compared with the classification 

performance of the ML classifiers when the data is imbalanced. 

According to [57] SMOTE-Tomek combines SMOTE with Tomek links under-sampling technique to balance data 

[58]. SMOTE is first used to oversample the dataset [56]. Then to create better-defined class clusters, Tomek links can 

be applied to the over-sampled training set as a data cleaning method [59].  As stated by [60], the Tomek links can be 

formulated in a binary classification task as follows: Xmaj and Xmin denote a majority class and minority class sample 

respectively, and d(Xmaj,Xmin) denotes the distance between them. If there is no observation y , which is any Xmaj or 

Xmin such that  d(Xmaj,z)<d(Xmaj,Xmin)  or d(z,Xmin)<d(Xmaj,Xmin), then d(Xmaj,Xmin) is called a Tomek link. 

SMOTE +TOMEK LINKS then corrects SMOTE data by finding pairs of minimally distanced nearest neighbours of 

opposite classes. It then identifies and removes Tomek links to produce a balanced dataset with well-defined classes 

[61].  

3.3. Evaluation of the Classifiers 

The classification performance for all the algorithms used in the current study was assessed using overall classification 

accuracy, sensitivity/recall, specificity, precision and F1-score. These metrics have been frequently used to predict loan 

defaults by previous studies such as those by [14], [10], [11] and [13], while studies such as [1], [62] and [63] used 
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them on different datasets. The higher the value of the classification metrices, the better the performance of the model 

[8].  

The five-classification metrics are computed from the confusion matrix. A confusion matrix is useful in computing 

model recall or sensitivity, specificity, accuracy and precision [64]. Considering the “Loan default” class as a (Positive) 

and “Loan payment” class being a (negative), the True Positives (TP) is the number of cases that are predicted as loan 

defaults" by the model and are indeed loan defaults In the dataset, True Negatives (TN) is the number of cases that are 

predicted as loan payments and are actually loan payments in the dataset, False Positives (FP) are cases that the model 

incorrectly predicted as loan defaults but are actually loan payments in the dataset whereas False Negatives (FN) are 

cases that are incorrectly predicted as loan payments, are actually loan defaults in the datasets. Therefore, the metrics 

can be calculated as shown in Equation 19 up to Equation 23. 

Overall Classification Accuracy=
(TP +FN)

(TP+TN+FP+FN)
,  (19) 

Precision=
TP

(TP+FP)
,  (20) 

Recall/sensitivity=
TP

(TP+FN)
,  (21) 

F1-score=
2×Precision×Recall

(Precision + Recall)
,  (22) 

Specificity= 
TN

(TN+FP)
,  (23) 

Further simplified the performance matrices as follows: when both recall and precision are high then it is a good model, 

when both recall and precision are low then it is a poor model, when recall is low and precision is high then the model 

cannot detect the classes, but it is highly trustable when it does, and when recall is high and precision is low then the 

model can detect the classes but includes points of other classes in it [63]. 

4. Data analysis and interpretation of results 

4.1. Comparison of the competing classifiers across sample sizes 

Figure 1 shows a comparison of classifiers based on the overall classification accuracy. The figure does not show a 

steady increase in the overall classification accuracy of DT, RF, K-NN and NB as sample size increases. However, 

SVM shows an increase in performance between sample sizes n = 15391 up until n = 26934 and at larger sample sizes 

as sample size increases. This imply that the results do not show any evidence that increasing the sample size can 

improve the classifiers’ ability to classify the cases (both loan payments and defaults) out of all the cases in the testing 

dataset except for SVM at some sample sizes. All the classifiers generally gave high values of overall classification 

accuracy of at least 74% and at most 100%. Figure 1 shows that in general, RF and DT classifiers are best performers, 

both achieving 100% across all sample sizes, followed by K-NN and NB while SVM achieved the lowest overall 

classification accuracy. The overall classification accuracy of DT and RF was stable at 100% across all sample sizes, 

this indicates that DT and RF correctly classified 100% of the cases (both loan defaults and loan payments) out of all 

the cases in the testing data.  
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Figure 1. A Comparison of Classifiers Based on the Overall Classification Accuracy 

Figure 2 shows a comparison of classifiers based on the sensitivity/recall. The figure does not show a steady increase 

in the sensitivity of all competing classifiers as the sample size increases. This implies that the results do not show any 

evidence that increasing the sample size can improve the classifiers’ ability to correctly classify the positives (loan 

defaults) out of all the positive cases in the testing dataset. All classifiers generally gave high sensitivity of at least 

84%. This implies that all the classifiers classify the loan defaults (positives) quite well, even though loan default is a 

minority class. Figure 2 shows that between n=11543 and n=38477 the sensitivity/recall of K-NN and SVM is equal. 

Figure 2 also shows that in general, the DT and RF classifier are the best performers in terms of sensitivity/recall since 

the two classifiers share the highest values of 100% across all sample sizes, followed by NB and K-NN while SVM 

achieved the lowest classification performance and was outperformed by K-NN in two sample sizes. Sensitivity/recall 

of DT and RF was stable at 100% which implies that DT and RF correctly classified all (100%) of the positives (loan 

defaults) out of all the loan defaults that are there in the testing dataset.  

 

Figure 2. A Comparison of Classifiers Based on the Sensitivity/Recall 

Figure 3 shows a comparison of classifiers based on the specificity. The figure shows that there is a slow increasing 

trend for NB and K-NN, which indicates that the specificity of NB and K-NN can be improved with an increase in 

sample size. This implies that the results show evidence that increasing the sample size can improve the classification 

ability of NB to correctly classify the negatives (payments) out of all the negative cases in the testing dataset. RF and 

DT are the best performing classifiers in terms of specificity due to their high values, both achieving 100% specificity 

across all sample sizes which implies that both RF and DT correctly classified all (100%) of the individuals who made 

payments on their loans which was the majority class. Therefore, DT and RF were the best performing classifiers 

followed by NB and K-NN while SVM achieved the lowest classification performance across all sample sizes.  
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Figure 3. A Comparison of Classifiers Based on Specificity 

Figure 4 shows a comparison of classifiers based on the F1-score. The figure does not show a steady increase in the 

F1-score for DT, RF, K-NN and NB as the sample size increases. However, SVM’s F1-score showed an increase with 

an increase in sample sizes between n=15391 up to n=26934. This implies that the results do not show any evidence 

that increasing the sample size can improve the classifiers’ ability to correctly classify the positives (loan defaults) out 

of all the positive cases in the testing dataset except for SVM. All classifiers generally gave high values of F1-score of 

at least 85%. This implies that all the classifiers classify the loan defaults (positives) quite well, even though loan 

default is a minority class. Figure 4 shows that in general, the DT and RF classifiers are the best performers in terms 

of F1-score since the two classifiers share the highest value of 100% F1-score, followed by K-NN and NB while SVM 

has the lowest values of F1-score on most of the sample sizes. RF and DT are the most stable classifiers in terms of 

F1-score since they have a value of 100% across all the sample sizes.  

 

Figure 4. A Comparison of Classifiers Based on the F1-Score 

Figure 5 shows a comparison of classifiers based on precision. The figure does not show a steady decrease or increase 

in the precision of DT, RF, K-NN and NB as the sample size increases. However, SVM’s precision showed an increase 

with an increase in sample sizes between n=15391 up to n=26934. This implies that the results do not show any 

evidence that increasing the sample size can improve the classifiers’ ability to correctly classify the positives (loan 

defaults) out of all the positive cases in the testing dataset except for SVM. All classifiers generally gave high values 

of precision of at least 85%. This implies that all the classifiers classify the loan defaults (positives) quite well, even 

though loan default is a minority class. Figure 5 shows that in general, RF and DT are the best performers in terms of 

precision since both models yielded 100% precision across all sample sizes, followed by K-NN and NB while SVM 

yielded the lowest precision. RF and DT are the most stable classifiers in terms of precision since its classification 

ability was stable across all sample sizes while NB was constant from n=23086 up until the largest sample size.  
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Figure 5. A Comparison of Classifiers Based on Precision 

Figure 6 shows a comparison of classifiers based on the average classification ability. It is noticeable from figure 6 that 

SVM has the lowest average classification ability for all samples, followed by K-NN which has the second lowest 

average value of classification metrices from the third smallest sample size (n = 3848) onwards based on the averages 

of classification accuracy, precision, specificity, sensitivity/recall and F1-Score. RF and DT have the highest average 

classification ability across all sample sizes, so the two models are the best classifiers on average, followed by NB 

which has the highest average for ten out of twelve samples. Therefore, the classifiers can be listed in ascending order 

of average classification performance as follows: RF and DT, NB, K-NN, SVM. It is also worth noting that a slow 

upward trend in the average performance of NB, K-NN and SVM is evident as the sample size increases, implying that 

increasing the sample size slightly improved the average classification performance of NB, K-NN and SVM. 

 

Figure 6. Comparison of the Classifiers Based on the Average Classification Ability 

4.2. Classification evaluation of the classifiers trained with SMOTE-Tomek balanced dataset  

Table 2 shows that the classification performance of the SVM when data was balanced using SMOTE-Tomek decreased 

in terms of overall classification accuracy, F1-score and precision by the negative values across all sample sizes. 

However, it is evident from the output that specificity, although low, showed an improvement between 1 and 20% at 

some sample sizes when data was balanced using SMOTE-Tomek. Also, in terms of sensitivity/recall, the classification 

performance of SVM improved with 1 to 4%, leading to sensitivity values of 82 to 89%. This indicates that the 

application of SMOTE-Tomek improved the classification performance of SVM with regards to sensitivity/recall and 

specificity, but it decreased overall classification accuracy, specificity, F1-score and precision.  

Table 2. Comparison of classification metrics for SVM and SVM with SMOTE-Tomek, [balanced – imbalanced] 

Sample 

size 

Overall classification accuracy 

(%)  

Sensitivity or recall 

(%)  

specificity 

(%)  

F1 Score 

(%)  

Precision 

(%)  

806 59 [-26] 89 [4] 20 [20] 71 [-21] 59 [-41] 

1974 54 [-31] 85 [0] 15 [15] 68 [-24] 59 [-44] 

3984 46 [-38] 82 [-2] 14 [14] 59 [-32] 46 [-54] 
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8108 49 [-27] 83 [-1] 14 [1] 62 [-23] 50 [-37] 

12262 63 [-22] 86 [1] 17 [17] 63 [-29] 50 [-50] 

16310 51 [-23] 85 [0] 15 [-1] 64 [-21] 51 [-34] 

20284 52 [-27] 86 [2] 17 [1] 65 [-22] 52 [-39] 

24740 51 [-29] 85 [1] 16 [0] 64 [-25] 51 [-43] 

28516 51 [-32] 85 [0] 16 [-5] 64 [-27] 51 [-46] 

32724 52 [-24] 85 [0] 15 [-2] 65 [-21] 52 [-35] 

36854 49 [-25] 84 [-1] 15 [1] 62 [-23] 49 [-36] 

41242 51 [-26] 85 [1] 16 [0] 45 [-41] 52 [-39] 

Table 3 compares the classification metrics for NB and NB trained with data that has been balanced with SMOTE-

Tomek. The table shows that like SVM trained with that data that has been balanced using SMOTE-Tomek, the 

classification performance of the NB after balancing the data with SMOTE-Tomek decreased in terms of overall 

classification accuracy, F1-score and precision across all sample sizes. However, in terms of specificity, at smaller 

sample sizes the classification performance improved (n =806 and n=3984) while the rest of the sample sizes showed 

a decrease in classification performance of at most 33%. There was an improvement in sensitivity/recall of 7 to 11% 

across all sample sizes which imply that SMOTE-Tomek improved the performance of NB with regards to 

sensitivity/recall.  

Table 3. Comparison of classification metrics for NB and NB with SMOTE-Tomek, [balanced – imbalanced] 

Sample 

size 

Overall classification accuracy 

(%)  

Sensitivity or recall 

(%)  

specificity 

(%)  

F1 Score 

(%)  

Precision 

(%)  

806 49 [-36] 92 [7] 20 [20] 59 [-33] 43 [-57] 

1974 51 [-33] 94 [8] 21 [-10] 61 [-30] 45 [-51] 

3984 67 [-15] 96 [11] 30 [4] 77 [-13] 64 [-32] 

8108 58 [-26] 95 [10] 24 [-4] 68 [-23] 53 [-45] 

12262 47 [-38] 93 [8] 20 [-21] 57 [-34] 41 [-58] 

16310 45 [-39] 95 [10] 20 [-16] 53 [-38] 37 [-61] 

20284 66 [-18] 95 [10] 29 [-3] 76 [-15] 63 [-35] 

24740 53 [-31] 95 [10] 23 [-20] 63 [-28] 47 [-52] 

28516 44 [-41] 94 [9] 20 [-33] 53 [-38] 37 [-66] 

32724 54 [-31] 95 [10] 22 [-23] 64 [-27] 48 [-51] 

36854 47 [-37] 94 [9] 20 [-12] 56 [-35] 40 [-59] 

41242 50 [-34] 95 [10] 22 [-19] 59 [-32] 43 [-56] 

Table 4 compares the classification metrics for K-NN and K-NN with SMOTE-Tomek (K-NN on a balanced dataset). 

The table shows that the K-NN trained with data that has been balanced with SMOTE-Tomek decreased in terms of 

overall classification accuracy, F1-score and precision across all sample sizes. At n=3984 and n=8108, the specificity 

improved by 19% and 2% however experienced a decrease for the rest of the sample sizes. There was an improvement 

in sensitivity/recall of at most 2%. Most of the sample sizes showed an improvement in classification performance with 

regards to sensitivity/recall while some sample sizes experienced no difference, which is an indication that SMOTE-

Tomek generally only improved the sensitivity/ recall and specificity in relatively few samples, and decreased the other 

classification metrics, so it did not assist to mitigate the impact of data imbalances on the K-NN. 

Table 4. Comparison of classification metrics for K-NN and K-NN with SMOTE-Tomek 

Sample size Overall classification accuracy (%)  Sensitivity or recall (%)  specificity (%)  F1 Score (%)  Precision (%)  

806 61 [-24] 86 [0] 17 [-50] 73 [-19] 64 [-35] 
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1974 62 [-23] 86 [1] 16 [-84] 75 [-17] 67 [-33] 

3984 63 [-21] 86 [2] 19 [19] 75 [-16] 66 [-34] 

8108 64 [-21] 85 [0] 15 [2] 77 [-15] 70 [-30] 

12262 66 [-18] 85 [0] 17 [-4] 79 [-12] 73 [-26] 

16310 66 [-18] 86 [1] 17 [-5] 78 [-13] 72 [-27] 

20284 66 [-18] 85 [1] 17 [-9] 78 [-13] 72 [-28] 

24740 67 [-17] 86 [1] 19 [-10] 79 [-12] 73 [-27] 

28516 67 [-17] 85 [0] 18 [-15] 79 [-12] 73 [-26] 

32724 67 [-18] 86 [1] 17 [-6] 79 [-12] 73 [-26] 

36854 66 [-19] 86 [1] 18 [-14] 78 [-14] 72 [-28] 

41242 66 [-18] 85 [1] 18 [-13] 78 [-13] 72 [-27] 

5. Discussion of Result 

The aim of this study was to determine the impact of sample size variations on the robustness of ML classification 

algorithms (SVM, RF, NB, DT and K-NN) to data imbalance, as well as to identify the ultimate ML classifier for loan 

default prediction from the five. The classification ability of the five ML algorithms was compared in terms of overall 

classification accuracy, sensitivity/recall, specificity, F1-score and precision. [15] found that effects of sample sizes 

differ with the different classifiers which was evident in this study as the classification performance of the classifiers 

was impacted differently by sample size variations. This study found that as sample size increased, for both specificity 

and on average classification of NB, SVM (at larger sample sizes) and K-NN showed a slow increasing trend in 

classification performance however showed no trend that increasing the sample size improved the sensitivity/recall of 

the classifiers. When SMOTE-Tomek was applied, both K-NN and NB exhibited an upward trend in terms of overall 

classification accuracy and the F1-score of SVM also increased with an increase in sample size. These findings by the 

study are similar to those made by [19] where the authors found that NB was among the classifiers whose classification 

criteria improved as sample size increased while [18] found that SVM and K-NN had accuracy advantages for larger 

references datasets, while [15] found that the classification performance of the classifiers improved with an increase in 

sample size.  

This study found that on average, sample size increments did not improve classification performance of most of the 

classifiers, in most of the sample sizes. Based on these findings, it can be noted that the results did not show that 

increasing the sample size while the imbalance ratio is constant can improve the performance of the models. So, the 

study recommends that increasing the sample size does not improve the ML classifiers’ robustness to data imbalances. 

However, it is worth noting that this recommendation is based on the results of the empirical analysis conducted in this 

study, which also has some limitations. For instance, only stratified random sampling was implemented whereas other 

sampling methods such as   systematic random sampling or cluster sampling could have been used. This is because a 

comparison of sampling methods was not an objective of the current study, and the use of stratified sampling for ML 

is justified. For example, [65] explain that finding representative samples is made easy by stratification which ensures 

that the number of samples for each class is balanced and that the variation of the data within each class is taken into 

account to maintain a balance in the number of samples for the majority and minority classes which aids in maintaining 

the original data structure feature information. The authors add that stratified sampling works best when data is 

distributed unevenly, which was the case in the current study. Another scope limitation is that one dataset was used, so 

future studies on the impact of sample sizes on the robustness of ML classifiers to data imbalances should consider 

using various datasets simultaneously to compare the performance of the classifiers across different datasets. The 

current study also was limited to 12 sample sizes, with a 10% difference so a future study with a lower percentage 

difference between the samples (meaning more samples than the 12) may enable the authors to better observe the trend 

in the performance of the ML classifiers as the sample size increases. 
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DT and RF achieved 100% classification performance across all sample sizes when the minority class was loan_default 

= 1 on all classification metrics similar to the results obtained by [13] where RF was among the classifiers trained on 

an imbalanced loan default dataset and the author found that RF was the best performer across all metrics, contrary to 

the findings by [10] where the authors found that RF outperformed DT in terms of classification ability.  Although 

studies by [21] and [66] employed different datasets to the one used in this study which is loan default dataset, the 

results obtained in this study in terms of the best performing models are supported by studies by [21] and [66] where 

both studies also found that RF consistently achieved the highest performances and provided the best classification 

ability, while [15] found RF to be the best all-rounder classifier outperforming competing classifiers in their study 

similar to the results obtained in this study. Therefore, this is an indication that RF has superior classification ability 

even when trained on different types of datasets both balanced and imbalanced datasets. 

[23] and [15] where both studies found RF had the highest overall classification accuracy, RF achieved the highest 

overall classification accuracy while [11] found that when trained on an imbalanced loan default dataset, RF achieved 

the highest precision like the results obtained by this study. [4] found that when trained on a credit default dataset, RF 

and DT gave good performances emphasizing their robustness to class imbalance when credit default prediction was 

the objective which is what the results of this study has proven. [10] also found that RF was a better option for loan 

default prediction. The best performance of RF in the current study could be because it is known to have a good 

classification performance for imbalanced data like in previous studies such as the ones conducted by [8], [53] and 

[54]. Therefore, based on these results, this study recommends the use of RF and DT classifiers for loan default 

detection, mainly due to the classifiers’ superior classification performance regardless of sample sizes when the data 

was imbalanced across all sample sizes. Future studies should further explore their performance by conducting a 

comparison study to determine the best performer between the two classifiers when data is imbalanced. 

The classifiers can be listed based on average classification performance from best performing to the worst performer 

as follows; RF and DT, K-NN, NB and lastly SVM. Contrary to the results obtained by [64] which showed that SVM 

had the highest classification efficiency and was the best classifier for highly imbalanced data as well as a study by 

[19] where the authors found that SVM outperformed across all sample sizes, this study found that on average SVM 

was the worst performing classifier. These results obtained by this study are supported by those obtained by [21] where 

the authors found that SVM significantly achieved lower performances. SVM is also known to be sensitive to 

imbalanced dataset and decision boundary have bias towards minority class [37] and this could be the reason for its 

poor performance in the current study. This study also found that K-NN was the second worst performing classifier on 

average classification.  

These findings by the study are similar to those made by [64] and [19] where although trained on a different dataset to 

the one used in the current study, the studies found that K-NN achieved the least classification performances and these 

findings where further supported by [13] where the author found that when trained on a credit default dataset K-NN 

was the worst performing classifier, contradictory to the results by [6] where K-NN was found to be the best model for 

credit prediction due to its high classification performance. Therefore, this study recommends further research on the 

impact of sample sizes on the classification performance of ML classifiers to imbalanced data, future studies can extend 

the scope of the current study by performing a comprehensive hyperparameter tuning for their classifiers in an attempt 

to maximize the performance of each classifier instead of being limited to default classifiers as well as considering 

decreasing the imbalance ratio of the data that would be employed for their studies, and testing the classifiers’ 

performance asymptotically in terms of sample size.  

The results of this study showed that SMOTE-Tomek negatively affected the average performance of the models 

compared to when the data was imbalanced. This study found that SMOTE-Tomek only improved the sensitivity/recall 

of SVM by 1 to 4%, and the specificity of this classifier improved by 1 to 20%, but noticeably decreased overall 

classification accuracy, F1-score and Precision for this classifier. Sensitivity for NB only increased by 7 to 10% across 

all sample sizes, and the specificity by 4 and 20% for only two sample sizes after SMOTE-Tomek, but all other metrics 

decreased noticeably. Sensitivity for K-NN remained unchanged in some samples, increased by 1% in most samples 

and the specificity by 2 and 19% for only two sample sizes after balancing the data with SMOTE-Tomek whereas other 

classification metrics decreased noticeably similar to the finding by [59] where the authors noticed that the ML models 
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used in their study experienced a decrease in performance when implementing the class imbalance correction 

techniques.  

 [1] and [8] indicated that the use of sampling methods may improve the performance of the classifiers, i.e. 

oversampling followed by under sampling methods while [55] and [67] found that hybrid sampling methods (SMOTE-

Tomek, SMOTE-RUS, SMOTE-ROS and SMOTE-ENN) showed the best classification performance among ML 

techniques and both studies found that when combined with SMOTE-Tomek the classification performance of the 

classifiers improved and [59] found hybrid techniques to give better competitive results, while [68] found that SMOTE 

with a combination of ENN technique was the best algorithm. Therefore, future studies should extent the scope of this 

study by employing hybrid sampling methods such as SMOTE+ENN with the aim of improving the classification 

performances of the ML algorithms and comparing the findings to SMOTE-Tomek results of the current study on a 

loan default dataset. 

As sample size increased, SVM experienced the most fluctuations in classification performance in most metrics than 

the other four competing classifiers, therefore although it wasn’t the best performing classifier, it was more impacted 

by sample sizes than NB, DT, RF and K-NN. SVM, NB and K-NN performed well in terms of Sensitivity/recall of at 

least 84% across all the samples but they performed poorly with regards to specificity, which was 0% across all the 

samples for SVM, but ranged from 0 to 53% for NB whereas in ranged between 0 to 100% for K-NN. This was an 

indication that when trained using imbalanced data, SVM, NB and K-NN correctly classified positives (those who 

indeed defaulted on their loans as loan defaults which was the minority group) which was the, minority class but poorly 

classified negatives (those who indeed made payments on their loans as having made payments on their loans which 

was the majority group) which was the minority class (sensitivity/recall was higher than specificity). 

6. Recommendations 

The results of this study RF and DT showed superior performance regardless of the sample size so we recommend that 

for loan default detection, these two ML classifiers are the most robust to the data imbalance in this dataset and should 

be used instead of SVM, K-NN and NB. This study was limited to exploring the classification ability of only five ML 

classifiers (RF, SVM, NB, DT and K-NN) on loan default dataset, therefore future researchers should use a different 

set of ML classifiers particularly ones which outperformed RF and DT in previous studies when predicting loan defaults 

such as Extreme trees classifier which outperformed all the classifiers used in the study when trained with loan default 

data [11] and XGBoost which outperformed RF, LR, K-NN, DT when trained on a loan default dataset [12] so as to 

determine the classifier with the most predictive powers or add to the ones used in the current study. As [10] found that 

combining ensemble methods with hybrid sampling techniques produces optimal classification results. Also, the scope 

of the current study was limited to traditional ML classifies and eminent studies including deep learning techniques 

such as Recurrent Neural Networks (RNNs) in their empirical analysis of the impact of sample size on the performance 

of these algorithms when trained with imbalanced data may be conducted to extend the scope of the current study. 

Since SMOTE-Tomek decreased the performance of the ML classifiers under study, it is recommended that feature 

studies should consider other data imbalance handling methods such as the Balanced Bagging Classifier, Adaptive 

Synthetic Sampling (ADASYN), combining SMOTE-N with Edited Nearest Neighbours (SMOTEENN), Bi-phasic 

SMOTE (BP-SMOTE) and compare it with SMOTE-Tomek for datasets that are similar to the ones used in the current 

study. The current study did not use advanced feature selection methods, and the base parameters were used to train 

the ML classifiers. Therefore, feature studies may explore various feature selection and hyperparameter tuning 

approaches when evaluating the performance of the ML classifiers when trained with imbalanced data. A combination 

of samples size, data balancing methods and other ML and deep learning methods recommended herein can also be 

explored in a future study. 
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