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Abstract 

Contribution: Progressive Massive Fibrosis (PMF) is a severe form of pneumoconiosis, affecting individuals exposed to mineral dust, such as 

coal miners and workers in the artificial stone industry. This condition causes significant pulmonary impairment and increased mortality. Early 

and accurate detection is vital for effective management, yet traditional diagnostic methods face challenges in differentiating PMF from other 

pulmonary diseases due to variability in clinical presentations and limitations in imaging techniques. Idea: The study introduces a novel diagnostic 

framework that integrates Generative Adversarial Networks (GAN) and Long Short-Term Memory (LSTM) networks to enhance the detection 

and monitoring of PMF. The GAN generates high-fidelity synthetic imaging data to address the issue of limited datasets, while the LSTM network 

captures temporal patterns in patient data, enabling real-time monitoring of disease progression. Objective: The primary objective of this research 

is to develop an AI-driven model that improves the accuracy and efficiency of PMF detection and monitoring, facilitating early diagnosis and 

better treatment planning. Findings: The integrated GAN-LSTM model significantly outperformed traditional diagnostic methods. It proved high 

accuracy, a Dice coefficient of 0.85, and an Area Under the Curve (AUC) of 0.92, showing precise differentiation of PMF from other pulmonary 

conditions, such as lung cancer and tuberculosis. Results: The GAN-LSTM framework achieved an accuracy of 91.3%, suggesting that the fusion 

of GAN and LSTM technologies can effectively address the challenges of limited datasets and heterogeneous disease progression. The model 

showed promise in enhancing the non-invasive detection and ongoing monitoring of PMF. Novelty: This research stands for a significant 

advancement in PMF diagnostics by combining GAN and LSTM technologies in a single framework. This approach improves diagnostic accuracy 

and eases continuous disease monitoring, offering a non-invasive and highly precise solution for PMF detection. 

Keywords: AI-Driven Diagnosis, LST, GAN, PMF Pulmonary Disease 

1. Introduction 

Progressive Massive Fibrosis is the most severe form of lung disease linked to prolonged dust exposure, particularly 

chronic silicosis and CWP. According to [1], PMF is radiographically found by the presence of large opacities with a 

diameter of at least one centimeter. In silicosis cases, fibrotic masses are sometimes classified as PMF when their 

diameter reaches two centimeters or more. These masses, affecting lung tissue and bronchioles, can greatly compromise 

lung function. On chest X-rays, PMF can be mistakenly identified as carcinoma, tuberculosis, or infections caused by 

bacteria. Key consequence issues for PMF include exposure to high concentrations of inhalable coal dust or transparent 

silica, the incidence of smaller opacities, and a record of tuberculosis [2]. 

Recent reports by [3] There is a growing and urgent need for more correct models to detect PMF. Between 1970 and 

2016, 4,679 cases of PMF were reported through the Black Lung Benefits Program, with more than half (2,474) 

occurring after 1996. This increase, particularly in recent decades, suggests that despite advancements in mining safety 

and medical monitoring, PMF stays a significant and possibly worsening health issue among coal miners. The 

concentration of cases in central Appalachia highlights regional disparities and the need for targeted early detection 
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tools. Research from 2001 to 2013 writes down that severe PMF is more common among miners who began working 

after 1970, including younger workers (56 and younger) and elderly miners (80 and older). This underscores the 

limitations of current diagnostic methods and the need for advanced models, such as GAN-LSTM, to detect PMF earlier 

and more accurately. 

Meanwhile, more information from the United States highlights the prevalence of CWP and PMF among various 

groups of coal miners, including those taking part in national physical condition observation programs. These findings 

reveal that PMF continues to be a significant and growing issue among coal miners. In 2015, more than 5% of 

alternative mine worker from mid Appalachia with at least 25 years of mining experience who participated in the 

national health investigation condition were diagnosed with PMF. A separate commentary concentrating on American 

Indian and Alaska Indigenous coalminers, primary [2]. In western United States, inspection conducted from 2014 to 

2019 revealed that 3% of miners with at least 10 years of experience. Three studies have reported that pneumoconiosis, 

including PMF, also affects surface coal miners in the U.S., mainly showed radiographic evidence of pneumoconiosis, 

while 0.3% displayed findings consistent with PMF. Additional particularly those engaged in activities such as 

schooling, which involve exposure to inhalable crystalline silica, [4]. Moreover, the number of early-detected PMF 

cases is difficult to determine due to several factors, including underdiagnosis, differences in diagnostic criteria, and 

variability in reporting standards across regions and industries. In general, PMF is more often reported in populations 

with a significant history of coal dust or silica exposure, such as coal miners and workers in industries involving 

crystalline silica. To obtain more precise and up-to-date figures on early detected PMF cases, it is necessary to refer to 

recent epidemiological studies or health reports from occupational health organizations and government health 

agencies. These sources can provide specific statistics on the incidence and prevalence of PMF among exposed 

populations. 

Predicting Progressive Massive Fibrosis is challenging due to the wide variation in how the disease presents and 

progresses in different patients. For example, some individuals may experience rapid lung function decline and severe 

breathlessness within a few months, while others may show only mild symptoms that progress slowly over several 

years. Additionally, some patients may respond well to certain treatments, while others do not improve at all. This 

clinical variability—seen in symptom severity, progression rate, and treatment response—makes it difficult to develop 

predictive models that perform consistently across diverse patient populations, [5], [6], [7], [8]. Additionally, medical 

data limitations and inconsistencies are often obstacles, as the data needed to train models is often incomplete or varies 

in quality and format. Environmental and genetic factors that influence PMF further complicate the issue, as specific 

and detailed data is needed to measure their impact. PMF diagnostics require advanced imaging techniques such as CT 

scans or MRIs, as well as in-depth clinical evaluations, which must be properly integrated into prediction models. 

Moreover, the rapid development of technology and algorithms requires models to stay updated with the latest 

techniques, posing a unique challenge. Model validation and generalization are also important, ensuring the model is 

tested across various populations to confirm its reliability in different clinical contexts, [2], [4], [9]. 

The aim of detecting Progressive Massive Fibrosis using Generative Adversarial Networks and LSTM is to improve 

the accuracy and efficiency of early identification and monitoring of the disease's progression. By combining GANs 

and LSTM, the detection system can use the power of deep image analysis and the ability to predict disease progression 

based on patients' historical data. This allows for faster and more accurate medical interventions, reduces the risk of 

misdiagnosis, and automates the process of analyzing medical data. Ultimately, this aims to create an advanced and 

holistic technological solution for PMF detection and management, which not only improves clinical outcomes but 

also enhances the quality of life for patients by enabling more personalized and proactive care [10], [11] [12], [13], 

[14] The urgency of this research on PMF is critical due to the severe impact it has on the health of people exposed to 

dust, particularly workers in the mining industry. PMF is an advanced form of pneumoconiosis that can lead to 

widespread scarring of lung tissue. The high risk of PMF is faced by people who are exposed to dust for prolonged 

periods. More in-depth research on risk factors, prevention, and treatment of PMF is needed to protect the health of 

these workers [15]. 
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2. Related Works  

The aim is to develop an automated model was developed to detect early-stage lung cancer using machine learning 

techniques. The model incorporates nine machine learning algorithms, including NB, LR, DT, RF, GB, and SVM. The 

performance of these classification algorithms was assessed using accuracy, sensitivity, and precision metrics derived 

from the parameters of a confusion matrix. The results showed that the proposed model achieved a maximum detection 

accuracy of 91%. Meanwhile, used support vector machines and applied techniques both with and without 

preprocessing [16]. According to the experimental results, decision trees yielded the most exact results, with an 

effectiveness of 90.24% without image processing, and with preprocessing, the best result was 82.43% effectiveness 

after image processing [17]. 

Furthermore [18], the models shown varying performance levels due to the intrinsic difficulty of the data, with 

precisions ranging from 0.77 to 0.85 and areas under the receiver operating characteristic curve between 0.85 and 0.94. 

Hybrid approaches that integrated dimensionality reduction with feature selection algorithms achieved the highest 

evaluation scores. Despite this, all machine learning models performed well, underscoring the potential of Raman 

spectroscopy as a robust tool for future in vitro lung cancer diagnostics, [19].Previous research also aimed to improve 

the accuracy of detection and speed up the process compared to earlier studies. According [20], proposed model, which 

is composed of seven convolutional layers, three pooling layers, and two fully connected layers for feature extraction. 

A Support Vector Machine (SVM) classifier was employed to classify nodules as benign or malignant. The 

experimental assessment was performed using the publicly available Lung Nodule Analysis 2016 as benchmark dataset. 

The proposed model achieved an accuracy of 87.64%, sensitivity of 86.37%, and specificity of 89.08%. Additionally, 

a comparative analysis was performed to evaluate the performance of the proposed Lung Net-SVM model against 

existing state-of-the-art methods for lung cancer classification. 

PMF is one of the progressive diseases that is difficult to figure out precisely due to several factors, including a lack of 

diagnosis, differences in diagnostic criteria, and variations in reporting standards across regions and industries. In 

general, PMF is more often reported in populations with a significant history of exposure to coal dust or silica, such as 

coal miners and workers in industries involving crystalline silica, [4]. Research by [5], [21], [22]  explained that that 

Progressive Massive Fibrosis with typical features is often misdiagnosed as lung cancer. While reports have described 

the typical characteristics of PMF, they often only include a brief review of the literature. They presented two cases of 

solitary PMF occurring without main simple pneumoconiosis or instant progression in a typical location, both of which 

were initially mistaken for lung cancer. According to [25], LSTM has memory cells and gate inputs (input gate, forget 

gate, cell gate, and output gate). 

In forget gates, received data is treated, and the gate decides which information to preserve and which to abandon. It 

uses a sigmoid activation function, where a value of 1 show that the data is kept, and a value of 0 signifies that the data 

is discarded. The formula Eq. (1), is used for the forget gate [23], [24]. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

Next, in the input gate, two steps are taken: first, finding which values to update using the sigmoid activation function, 

followed by a tan function that creates new values stored in the memory cell. Eq. (2), (3) for the input gate is [14]:  

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝑐̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3) 

Then, in the cell gate, the previous memory cell value is replaced with a new value by combining the values obtained 

from the forget gate and the input gate:  

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̂𝑡 (4) 

Lastly, in the output gate, the memory cell value is selected using the sigmoid activation function, and the memory cell 

value is passed through the tanh activation function. The result of these two processes is multiplied to produce the final 

output: 
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𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡tanh⁡(𝑐𝑡) (6) 

2.1. Generative Adversarial Networks  

Generative Adversarial Networks are a deep learning framework where two neural networks compete to generate 

realistic data, such as creating new images from an image dataset or original music from songs, [11], [25]. As further 

explained by  [26], the computational process is formed by complex mathematical equations, but here is a simplified 

explanation of how GANs work:  The generator neural network analyses the training set and shows data attributes. The 

discriminator neural network also examines the original training data and independently distinguishes between various 

attributes. The generator introduces random variations to the data attributes, and the discriminator evaluates whether 

the generated output originates from the original dataset, providing feedback to help the generator refine the noise in 

next iterations. 

The generator aims to increase the likelihood of errors made by the discriminator, while the discriminator focuses on 

minimizing these mistakes. Over multiple training iterations, both networks refine their performance, competing until 

they reach stability. At this point, the discriminator can no longer distinguish between real and generated data, 

signalling the end of the training process. GANs are considered adversarial because they involve training two networks 

that compete against each other. One network generates new data by changing the input data, while the other evaluates 

the authenticity of the generated data, continuously refining it until the discriminator cannot reliably tell real from fake, 

[11], [27]. 

The architecture of Generative Adversarial Network, a groundbreaking approach in AI and machine learning. The 

GAN consists of two neural networks: the Generator and the Discriminator. The Generator takes random noise (z) as 

input and generates synthetic data that closely resembles real samples. Both fake and real samples are then passed to 

the Discriminator, which classifies them as real or fake. The Discriminator calculates a loss value (discriminator loss) 

that reflects how well it distinguishes between the two. Simultaneously, the Generator minimizes its own loss (generator 

loss) to deceive the Discriminator. This iterative process refines both networks, resulting in highly realistic generated 

data. 

However, despite its potential, the GAN-based approach for detecting PMF has several limitations. One significant 

challenge is mode collapse, a common issue in GAN training where the generator produces limited or repetitive outputs, 

reducing the diversity of synthetic images needed for robust model learning. Additionally, combining GANs with 

LSTM architectures demands high computational resources and prolonged training times, which can be impractical in 

clinical settings with limited infrastructure. The model’s effectiveness also heavily relies on the quality and 

representativeness of the original dataset [12]. Moreover, stated by [28] that given the scarcity and variability of 

annotated PMF data, generating realistic and clinically meaningful synthetic images can be difficult. Furthermore, like 

many deep learning models, the GAN-LSTM approach lacks interpretability, making it challenging for healthcare 

professionals to trust or confirm its decisions. Ethical and legal concerns may also arise on the use of synthetic medical 

images, particularly in relation to patient privacy and data governance. Another risk is that the model may be overfit to 

artifacts introduced during data generation rather than learning clinically relevant features.  

2.2. LSTM 

According to [29] Recurrent Neural Networks (RNNs) have proven significant effectiveness in modelling dynamic 

systems that manage time- and sequence-reliant data, such as video, audio, and other sequential inputs. Long short-

term memory, a specialized variant of RNN, incorporates state memory and a multilayer cell structure to enhance its 

performance. The hardware speeding up of LSTM with memristor paths has appeared as a growing research focus. 

This work examines the historical context and motivation behind the development of LSTM networks, provides a 

tutorial-style overview of existing LSTM methodologies, and highlights recent advancements in flexible LSTM 

architectures. Furthermore [13] said that the hyperparameters of all LSTM variants for each task were individually 

improved using random search, and their significance was evaluated through the robust functional Analysis of Variance 

(ANOVA) framework. In total, the study summarizes findings from 5,400 experimental runs (equivalent to 

approximately 15 years of CPU time), making it the largest investigation of its kind on LSTM networks. The study 
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shows that none of the LSTM variants significantly outperform the standard LSTM. It also highlights the forget gate 

and productivity initiation as key components, with hyperparameters being mostly independent. 

To improve the LSTM model for PMF detection, key strategies applied to ensure effective learning from sequential 

image data. First, deep features are extracted from PMF images using a CNN such as ResNet or VGG. These features 

are then used as sequential inputs for the LSTM, preserving important spatial information. The LSTM architecture is 

carefully designed, often using a stacked or bidirectional LSTM (BiLSTM) to capture both past and future 

dependencies in the image sequences. The number of hidden units is tuned—typically ranging from 64 to 256—based 

on performance during validation, with dropout regularization applied between layers to prevent overfitting [14], [30], 

[31]. Hyperparameter tuning is crucial for improving model performance, involving adjustments to the learning rate, 

batch size, and sequence length using methods like grid search or Bayesian optimization. Learning rates are fine-tuned 

within a range of 0.001 to 0.00001 using adaptive optimizers. Batch size and time steps are designed for faster 

convergence and improved accuracy. The model is trained with binary or categorical cross-entropy loss and evaluated 

using metrics such as accuracy, Dice coefficient, and AUC. 

The traditional LSTM network design, highlighting interactions among the cell state (Ct), hidden state (ht), and three 

gates: forget, input, and output. The forget gate (ft), governed by a sigmoid activation, decides which information to 

discard. The input gate (it) decides what current information to keep, updating the cell state with sigmoid and tanh 

activations. The output gate (Ot) selects relevant parts of the updated cell state, combining sigmoid and tanh functions 

to produce the hidden state (ht). [32], [33] . Moreover, it illustrates the internal structure of a LSTM cell, which is 

specifically designed to capture and keep long-term dependencies in sequential data. At the core of the LSTM is the 

cell state (Ct), a pathway that flows through the cell and allows information to be carried forward with minimal 

alterations. This mechanism enables the network to preserve memory over extended sequences. The LSTM cell uses 

three primary gates to regulate the flow of information: the forget gate, input gate, and output gate. 

The forget gate (ft) finds which parts of the earlier cell state (Ct−1) should be discarded. It uses a sigmoid activation 

function, which takes as input the previous hidden state (ht−1h_{t-1}ht−1) and the current input (xtx_txt), and outputs 

values between 0 and 1—where 0 means "completely forget" and 1 means "completely retain." 

The input gate (it) decides which current information should be added to the cell state. It uses a sigmoid function to 

decide which values to update and a tan function to generate candidate values (C~- ~t) to be added to the memory. The 

updated cell state is obtained by combining the retained information from the forget gate with the newly generated 

candidate values. Finally, the output gate (ot) determines the output of the LSTM unit. It uses a sigmoid activation to 

select parts of the updated cell state (Ct), which is then passed through a tan function to produce the new hidden state 

(ht). These gated mechanisms work together to allow the LSTM to manage long-term information and effectively 

model complex time-dependent patterns in data. 

3. Methodology  

3.1. Data Collection 

The data used in this analysis will be obtained from a medical lung imaging dataset that includes patients diagnosed 

with PMF and lung cancer. This dataset, collected from Kaggle.com, has a total of 5,840 chest X-ray images: 624 for 

testing and 5,216 for training. The dataset included, Positive Cases (PMF): 1,500 images, Negative Cases (No PMF): 

3,500 images. Training/Validation/Test Split: 70% training, 15% validation, and 15% testing. The data used in this 

analysis is sourced from a publicly available medical lung imaging dataset hosted on Kaggle.com, forming a total of 

5,840 chest X-ray images. Of these, 5,216 images are distributed for training and validation, while 624 images are 

reserved for testing. The dataset includes two primary classes: positive cases (patients diagnosed with PMF), totaling 

1,500 images, and negative cases (individuals without PMF), making up 3,500 images. The data is divided into training, 

validation, and testing sets using a 70:15:15 split. Although the dataset is moderately balanced, the higher number of 

negative samples may introduce class imbalance bias during model training, potentially leading to an overestimation 

of specificity.  
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3.2. Research Steps 

This research conducted through several structured and systematic stages to ensure that every aspect of developing the 

detection model for PMF using GAN and LSTM is properly addressed. Below is a breakdown n of the stages that will 

be conducted. Figure 3 illustrates the stages of proposed method. Figure 3 illustrates a comprehensive series of stages 

for developing a robust detection model for PMF using deep learning. The process begins with a literature review to 

gather extensive references related to progressive disease imaging and earlier studies. This is followed by problem 

analysis to evaluate the significance of the research and show the methods and tools. Image data is sourced from 

Kaggle.com and undergoes preprocessing, which includes noise removal, handling of missing values, and 

normalization to ensure high data quality. The pre-processed data is then augmented to increase variability and enhance 

model generalization. Subsequently, the dataset is divided into training and testing subsets. 

 

Figure 1. Research Steps 

The model development phase GANs and LSTM networks, as shown in table 2. GANs are used to generate synthetic 

image data, enriching the dataset, while LSTMs capture temporal patterns, enhancing the model's ability to detect 

disease progression. After the model is built, it undergoes training and testing to assess its learning performance. 

Finally, the model is evaluated using various performance metrics, including accuracy, precision, recall, F1-score, and 

the area under the ROC curve (AUC). This structured workflow ensures a systematic and effective approach to 

developing a high-precision PMF detection model. Figure 1 outlines the research process, starting from dataset 

development and preprocessing to augmentation, GANs-LSTM training, evaluation, and result generation. 

Figure 5 illustrates the training architecture, where the GAN’s generator—integrated with LSTM layers—produces 

synthetic sequences from a noise vector. These are evaluated by a discriminator, also LSTM-based, which learns to 

distinguish between real and synthetic sequences. Both networks are iteratively trained using a loss function and 

backpropagation to improve generation and classification accuracy. The combined GAN-LSTM model is trained on 

both real and synthetic datasets and evaluated using metrics such as accuracy, AUC, and the Dice coefficient. This 

integrated approach enhances early-stage detection and reduces false negatives, offering a more dynamic and reliable 

method for PMF diagnosis. Ultimately, this model supports clinicians in improving early intervention and patient 

outcomes by leveraging both spatial and temporal patterns within the data. 

This study introduces a novel approach for detecting Progressive Massive Fibrosis, a severe lung condition often caused 

by prolonged exposure to coal or silica dust. Early diagnosis is essential for effective treatment, yet conventional 

methods face limitations due to small datasets and the complex progression of the disease. To address these challenges, 
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the research integrates GAN and LSTM networks into a hybrid deep learning framework. GANs are employed to 

generate synthetic chest X-ray images, augmenting the limited real-world dataset. This synthetic data increases the 

diversity and volume of training samples, enabling the model to learn more robust visual features associated with PMF. 

Meanwhile, LSTM networks, known for processing sequential data, analyses the progression of fibrosis by evaluating 

image sequences or time-series clinical data. This allows the model to predict PMF development based on historical 

trends. 

Figure 2 shows the proposed LSTM-GAN method generating sequential data from noise, classifying it, computing 

loss, and updating models. The GAN-LSTM model effectively addresses the diagnostic challenges associated with 

PMF by using its dual architecture to enhance both data generation and temporal prediction. Traditional diagnostic 

methods, such as radiography and CT scans, often struggle to differentiate PMF from visually similar conditions like 

lung cancer or tuberculosis due to overlapping radiographic features. The GAN part mitigates this issue by generating 

high-quality, synthetic imaging data, thereby enriching and diversifying the training dataset. This augmentation enables 

the model to learn more discriminative features specific to PMF, ultimately improving diagnostic accuracy. 

 

Figure 2. The Proposed Method 

Additionally, the scarcity of annotated PMF datasets and the heterogeneity in disease progression hinder the 

development of dependable predictive models. The LSTM part addresses this challenge by capturing sequential 

patterns and temporal dependencies within patient data, allowing for a more nuanced understanding of disease 

progression. This temporal modelling is especially important for distinguishing PMF from other chronic pulmonary 

conditions that evolve differently over time. By combining the GAN’s ability to generate diverse training data with the 

LSTM’s strength in modelling time-dependent clinical features, the GAN-LSTM framework provides a robust solution 

that directly addresses the limitations of traditional diagnostic approaches—enhancing both the accuracy and 

generalizability of PMF detection [34]. 

4. Results and Discussion 

4.1. Data Preprocessing 

Dataset Preprocessing Steps are essential to prepare raw data for machine learning models, ensuring consistency, 

quality, and compatibility. The process typically involves the following key steps: resize and Normalization: Adjusting 

the image size to be uniform and normalizing pixel values. Editing and Cropping: Cropping images if there are specific 

requirements. Naming and Labelling: Preparing labels for images as either NORMAL or PNEUMONIA. An example 

of X-Rays images can be examined on figure 3. 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2298-2311 

ISSN 2723-6471 

2305 

 

 

 

 

Figure 3. X-Rays Images 

The purpose of data augmentation is to expand and enrich the dataset with variations of images produced through 

transformations such as rotation, flip, zoom, and other changes, without having to collect more data. Data augmentation 

will help make our model more robust and reduce overfitting. Below is the code for data augmentation using Image 

Data Generator.  The data are trained with random transformations, such as rotation, shifting, and zooming, to make 

the model more generalized. Therefore, displaying examples of augmented data to ensure that the data variation is 

working properly. Figure 4 shows that more diverse training data was produced, which helped the model learn more 

effectively. When this approach works well, modeling can be continued using GANs and LSTM. 

 

Figure 4. Augmented X-Rays Examples 

This stage will build a Progressive Massive Fibrosis detection model using a combination of Generative Adversarial 

Networks to generate more varied data and Long Short -Term Memory to analyze the temporal development of the 

disease based on historical data. Figure 5, describes defining the architectures of GANs then combining them to create 

a complete model. 

 

Figure 5. Integrating GAN and LSTM 

Integrating GAN and LSTM, after creating GAN and LSTM separately, the next step is to integrate them effectively. 

GAN is used to generate other synthetic data to train LSTM in predicting disease progression based on image data.  

GAN generator   produced synthetic images of lung disease, then LSTM processed sequence data from patients' 

historical data to predict the progression of PMF. Training and testing, this stage rained the Generator and Discriminator 

of the GAN, as well as train the LSTM to detect PMF based on augmented and pre-processed image data. Training 

GAN, it was trained slightly differently as alternately train the Generator and Discriminator. The Discriminator's task 

is to classify images as real or fake, while the Generator is trained to produce images that are challenging for the 

Discriminator to distinguish. 

The GAN-LSTM architecture enhances PMF detection by combining data generation and temporal modelling. A 

random noise vector is input into a generator with LSTM layers, which produces synthetic sequential data resembling 

real patient data. This generated data, along with actual sequences, is fed into a discriminator—also equipped with 
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LSTM layers—that classifies the input as either real or fake. The output is compared with the ground truth using a loss 

function, and both networks are updated through backpropagation. Iterative training allows the generator to produce 

increasingly realistic data while the discriminator improves its classification accuracy. This approach enables data 

augmentation for limited PMF datasets and effectively captures temporal patterns in disease progression, offering a 

reliable, non-invasive method for early detection and monitoring of PMF [35]. 

The LSTM model has a total of 1,050,113 parameters, with 1,049,729 being trainable. These parameters are updated 

during training through backpropagation, enabling the model to learn complex patterns in time-series data. The high 

number of trainable parameters shows the model's ability to capture intricate relationships. However, the 384 non-

trainable parameters suggest some fixed components, possibly related to specific layers or pre-trained embeddings. 

Figure 6 illustrates the large number of trainable parameters enhances learning, it also raises concerns about overfitting, 

necessitating the use of techniques like dropout, regularization, and data augmentation for better generalization. 

 

Figure 6. Metrices Performance 

The models shows that the GAN-LSTM model outperforms the others, achieving the highest accuracy of 91.3%, an 

impressive Dice coefficient of 0.85, and the best AUC of 0.92. These results prove its superior performance in both 

classification and segmentation tasks. The CNN-LSTM model also performs well, with an accuracy of 88.3%, a Dice 

coefficient of 0.80, and an AUC of 0.88, showing strong ability to distinguish between classes and maintain solid 

segmentation overlap. The U-Net model, though slightly behind, achieves an accuracy of 86.5%, a Dice coefficient of 

0.78, and an AUC of 0.86, showing solid performance with somewhat lower accuracy and segmentation quality. In 

conclusion, the GAN-LSTM model is the most robust, leading in all key performance metrics, followed closely by 

CNN-LSTM, while U-Net still shows strong overall performance. 

Figure 7 illustrated a comparison of model performance across three dataset partitions—Training Set, Validation Set, 

and Testing Set—using five evaluation metrics: Accuracy, Dice Coefficient, Sensitivity, Specificity, and AUC. The 

model shows consistently high performance in terms of classification metrics, with accuracy, sensitivity, and specificity 

values all ranging between 90% and 95% across all datasets. This shows that the model generalizes well and is capable 

of accurately showing both positive and negative cases. However, the values for the Dice Coefficient and AUC are 

notably low, appearing close to zero across all sets. These unexpectedly low scores suggest potential issues with metric 

calculation or data visualization, particularly since they contradict the otherwise strong classification comment 4 

performance.  

4.2. Confusion Matrix  

To judge the performing of a classification prototypical by summarizing its predictions and the actual outcomes in a 

structured table, providing comprehensive discernments the model's accuracy, errors, and types of misclassifications. 

The confusion matrix is particularly suitable for understanding the distribution of predictions across all classes, helping 

to diagnose issues with the model, such as class imbalance or bias. 

Table 1 presents the model's performance metrics: 420 True Positives (TP), 35 False Negatives (FN), 50 False Positives 

(FP), and 495 True Negatives (TN). The model’s accuracy is 91.5%, calculated as (TP + TN) / (TP + TN + FP + FN). 

Precision, or positive predictive value, is 89.3%, writing down that 89.3% of predicted PMF cases are correct. Recall, 
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or sensitivity, is 92.3%, reflecting the model's ability to correctly name actual PMF cases. The F1 score, the harmonic 

mean of precision and recall, is 90.8%, proving balanced performance. Additionally, the performance of three deep 

learning models—CNN-LSTM, U-Net, and GAN-LSTM—was evaluated using accuracy, Dice coefficient, and AUC 

metrics. The GAN-LSTM model outperformed the others with the highest accuracy (91.3%), Dice coefficient (0.85), 

and AUC (0.92), followed by CNN-LSTM and U-Net. 

Table 1. Confusion Matrix 

 Predicted PMF Predicted to PMF 

Actual PMF 420 (true Positive) 35 (false Negative) 

Actual No PMF 50 (false Negative) 495 (true Negative) 

Table 1 also illustrates the model's performance metrics, emphasizing both its predictive accuracy and clinical 

relevance. The model correctly showed 420 patients with PMF, easing timely diagnoses and appropriate management. 

However, it misclassified 35 PMF patients as negative, potentially delaying treatment and worsening outcomes. 

Additionally, 50 individuals without PMF were incorrectly identified as positive, which could lead to unnecessary 

procedures and patient anxiety. On the positive side, 495 patients without PMF were accurately classified, minimizing 

overdiagnosis and unnecessary interventions. Overall, the model shows strong performance, balancing accurate 

detection with minimizing clinical risks. 

4.3. Validation 

The validation phase assessed the performance of three models—CNN-LSTM, U-Net, and GAN-LSTM—in detecting 

PMF. Based on the confusion matrix, the model achieved 580 TP and 835 TN, accurately naming PMF and No PMF 

cases. It reported 45 FN and 40 FP. With an accuracy of 94.33% (TP + TN divided by total predictions), the model 

demonstrated reliable performance. Precision was 93.55%, recall was 92.8%, and the F1 score reached 93.17%, 

showcasing a strong balance between sensitivity and precision. The results highlight the model’s effectiveness in 

detecting PMF. Figure 7 comparing the validation metrics (accuracy, dice coefficient, and AUC) for the three models: 

CNN-LSTM, U-Net, and GAN-LSTM.   

 

Figure 7. Validation Metrics of PMF Detection 

This bar chart compares the performance of three machine learning models—CNN-LSTM, U-Net, and GAN-LSTM—

across three metrics: Accuracy, Dice Coefficient, and AUC. GAN-LSTM achieves the highest performance in all 

metrics, with an accuracy of 91.30%, a Dice Coefficient of 0.85, and an AUC of 0.92. CNN-LSTM follows, reaching 

an accuracy of 88.30%, a Dice Coefficient of 0.80, and an AUC of 0.88. U-Net ranks the lowest among the three, 

recording an accuracy of 86.50%, a Dice Coefficient of 0.78, and an AUC of 0.86. Overall, GAN-LSTM outperforms 

the other models, proving superior effectiveness, while U-Net shows the weakest performance, particularly in Accuracy 

and Dice Coefficient.  
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Integrating Generative Adversarial Networks with Long Short-Term Memory networks offers a promising approach 

for detecting Progressive Massive Fibrosis. The GAN part generates synthetic lung disease images, augmenting the 

dataset and addressing data scarcity. These synthetic images are then used to train the LSTM model, which processes 

sequential patient data to predict disease progression. During training, the GAN's Generator and Discriminator are 

trained alternately: the Discriminator learns to differentiate between real and synthetic images, while the Generator 

aims to produce images that are challenging for the Discriminator to classify. This adversarial training enhances the 

quality of synthetic images. Subsequently, the LSTM model, including over a million parameters, is trained on this 

augmented dataset to capture temporal patterns in disease progression. Performance evaluations indicate that the GAN-

LSTM model outperforms other architectures, achieving an accuracy of 91.3%, a Dice coefficient of 0.85, and an AUC 

of 0.92. These metrics suggest superior capability in both classification and segmentation tasks. The integration of 

GAN and LSTM thus provides a robust framework for PMF detection, using synthetic data generation and temporal 

analysis to enhance predictive accuracy. Compared to earlier works, our proposed method proves superior accuracy, 

as shown in table 2. 

Table 2. Comparation three methods 

Model Accuracy (%) Sensitivity (%) Specificity (%) 

Lung Net–SVM [18] 87.64 86.3 89.08 

LSTM-GAN 93 91 94 

SVM  91 N/A N/A 

Referring to table 2, the LSTM-GAN model proves the most robust performance among the models compared, 

achieving the highest accuracy of 93%, along with strong sensitivity (91%) and specificity (94%). These metrics 

highlight its superior ability to accurately classify both positive and negative cases, making it a highly reliable model 

for diagnostic applications. In contrast, the Lung Net–SVM model, while slightly lower in overall performance, still 

achieves a respectable accuracy of 87.64%, with sensitivity at 86.3% and specificity at 89.08%. This indicates balanced 

performance across both classes, though not as strong as the LSTM-GAN. The standard SVM model records an 

accuracy of 91%, which is notable; however, the lack of sensitivity and specificity metrics limits a comprehensive 

evaluation of its diagnostic effectiveness.  The LSTM-GAN excels due to its combined strengths. LSTM networks 

effectively capture temporal dependencies, which are crucial for medical diagnostics. Meanwhile, GANs generate 

realistic synthetic data, addressing issues like class imbalance and limited datasets. By integrating LSTM's sequence 

modelling with GAN's data augmentation, the model enhances training diversity, improving generalization and 

diagnostic accuracy over traditional models. 

5. Conclusion 

Addressing the complexities of PMF requires a multidimensional approach that considers the disease’s clinical 

variability, diagnostic challenges, and socioeconomic impacts. The integration of advanced machine learning 

techniques—particularly a hybrid GAN-LSTM model—offers a promising solution. The GAN-LSTM framework 

addresses these challenges by combining synthetic image generation with temporal pattern analysis. GANs are used to 

augment limited datasets by generating high-quality synthetic images, while LSTM networks capture sequential data 

patterns to monitor disease progression over time. This dual capability enhances both diagnostic precision and model 

robustness. The proposed model demonstrates strong performance, achieving an accuracy of 91.3%, a Dice coefficient 

of 0.85, and an AUC of 0.92. Beyond its technical advantages, early and accurate predictions using this model can 

reduce misdiagnoses, prevent unnecessary treatments, and support timely interventions—ultimately lowering 

healthcare costs and improving patient outcomes. This approach not only advances PMF detection but also contributes 

to more efficient, fair healthcare deliver. 

To improve the clinical relevance of the proposed GAN-LSTM model for detecting PMF, future research should focus 

on several key areas. First, validation with larger, more diverse, and multi-center datasets is needed to ensure robustness 

across populations. Second, integrating clinical data—such as pulmonary function tests, exposure history, and lab 

results—can enhance the model’s predictive power. Third, incorporating explainable AI techniques will improve 

interpretability and clinician trust. Finally, real-time deployment should be explored by developing lightweight, 
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scalable versions suitable for integration with radiology systems and use in low-resource or mobile healthcare 

environments. 
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