
Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1012

Development of Skyline Query Algorithm for Individual Preference

Recommendation in Streaming Data

 Ruhul Amin1,* , Taufik Djatna2, , Annisa3, , Sukaesih Sitanggang4,

 1,3,4Department of Computer Science, Faculty of Mathematics and Natural Science, IPB University, Bogor 16680, Indonesia

1Department of Computer Science, Faculty of Technology Information, Universitas Nusa Mandiri, East Jakarta 13620, Indonesia

2Department of Agroindustrial Technology, Faculty of Agriculture Engineering and Technology, IPB University, Bogor 16680, Indonesia

(Received: December 9, 2024; Revised: December 19, 2024; Accepted: January 19, 2025; Available online: March 4, 2025)

Abstract

The ability of a recommendation system to deliver relevant outcomes is significantly influenced by its adaptability to the dynamic nature of

individual user preferences. Data-streaming-based recommendation systems face substantial challenges in aligning recommendations with rapid

shifts in user preferences. Previous research on the development of skyline query algorithms has predominantly focused on processing efficiency

and parallel performance optimization yet has not addressed the dynamic nature of individual user preferences—an essential factor for generating

relevant and responsive recommendations in streaming data environments. This study aims to develop a skyline query algorithm called

Distributed Data Skyline (DDSky) to provide recommendations based on dynamic individual user preferences within data-streaming contexts.

DDSky leverages the Recency, Frequency, Monetary, and Rating (RFMRT) model to capture real-time changes in user preferences. This model

is integrated with parallel skyline computation and structured to enhance the data processing efficiency on a large scale. The parallel processing

approach divides tasks into smaller subtasks executed simultaneously across multiple threads. This strategy enables the simultaneous processing

of attributes such as price, distance, and individual user preferences, thereby delivering relevant and responsive recommendations to real-time

changes in user preferences. The DDSky algorithm was evaluated using a local dataset from the JALITA application and compared with the

Eager algorithm. The results demonstrated that DDSky outperformed Eager, achieving an average recall value of 0.45 and an F1-measure of 0.55,

compared to Eager's recall value of 0.33 and F1-measure of 0.47. Furthermore, DDSky achieved an average precision of 0.73, which closely

approached Eager's precision of 0.82. Additionally, DDSky exhibited optimal throughput performance for datasets containing up to 10,000 items

with high flexibility across various data types. With its unique technical approach, DDSky delivers more responsive and relevant

recommendations to dynamic user preferences, establishing its superiority in data-streaming-based recommendation systems.

Keywords: DDSky, Dynamic Individual Preferences, RFMRT Model, Streaming Data, System Recommendation

1. Introduction

In the era of big data, the support of streaming data processing is essential [1] because it enables the continual and real-

time processing of large data volumes [2], [3], particularly in applications such as recommendation systems. Streaming-

based recommendation systems are influenced by their ability to process dynamic transaction histories, which reflect

individual preferences that change over time [4]. Individual preferences refer to a person's desires or tendencies toward

various products or services [5]. For example, in location-based recommendation systems, these changing preferences

include user location shifts during transactions. The ability of recommendation systems to adapt to dynamic user

preferences is key to delivering accurate recommendations [6].

Users of recommendation systems require query operators to process data and identify the most suitable outcomes

based on their preferences [7]. Relying solely on exact matches between preferences and database records through

query operators often fails to yield appropriate recommendations, as no recommendation might simultaneously satisfy

criteria such as low cost, good taste, high ratings, and proximity. Skyline query is a method that identifies a set of data

objects that align with user preferences, ensuring that no object in the set is dominated by another [8], [9]. An object is

*Corresponding author: Ruhul Amin (ruhulamin@apps.ipb.ac.id)

DOI: https://doi.org/10.47738/jads.v6i2.599

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/).

© Authors retain all copyrights

https://orcid.org/0000-0001-5521-5429
https://orcid.org/0000-0002-2071-089X
https://orcid.org/0000-0001-6441-6070
https://orcid.org/0000-0002-2280-1752

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1013

considered dominant if it has values no worse than those of another object in all dimensions and is strictly better in at

least one dimension [10]. In this context, data objects refer to specific products or services. Skyline queries provide

recommendations that involve multiple attributes [11]. However, this method has a limitation: the generated

recommendations fail to adapt to dynamic individual preferences, which can change based on the location and evolving

user priorities over time [12]. Beyond adapting to dynamic preferences, recommendation systems face significant

difficulties processing streaming data. Streaming data's continuous, high-speed, and large-volume nature necessitates

real-time updates to preference models. Efficient computational techniques are therefore required to ensure that

recommendations remain relevant, responsive, and timely [4].

Previous studies [13] proposed using Local Split Decision (LSD) trees to accelerate skyline query computations on

dynamic data. LSD Trees leverage geometric structures to store and prune irrelevant data, expediting repeated skyline

query processing. However, this approach lacks flexibility in adapting to dynamically changing individual preferences,

particularly in real-time environments that require swift responses to evolving user preferences. In addition, its

performance deteriorates with high-dimensional data. Other studies [14] have successfully implemented a multicore-

based parallel model for continuous skyline queries on high-dimensional data. However, this study did not consider

dynamically changing individual user preferences. Without preference adaptation, the recommendations lacked

personalization and responsiveness to individual user preference shifts. Another study developed a Distributed Parallel

Model (DPM) for skyline queries on uncertain data streams in cloud environments, achieving high scalability, load

balancing, and significant reductions in processing time [15]. Although the DPM model effectively processes large-

scale skyline queries, it does not account for dynamic individual user preferences. The parallel DPM model focuses on

optimizing parallel performance without mechanisms to update or adapt individual preferences in streaming data,

thereby reducing the relevance of recommendations for users.

Based on prior studies, no comprehensive approach has been proposed to address dynamic individual preference

calculations in streaming data, which can change in real-time according to user location or current preferences. This

study aims to develop a skyline query algorithm for individual user preferences that generates recommendations based

on dynamically changing user preferences. The algorithm that was developed is called Distributed Data Skyline

(DDSky). DDSky is designed to provide recommendations based on dynamic individual preferences and process

streaming data in real-time. This process enables DDSky to capture user preference changes promptly and adjust

recommendations accordingly. DDSky leverages the Recency, Frequency, Monetary, and Rating (RFMRT) model,

specifically designed to capture and analyze real-time changes in individual user preferences, ensuring that

recommendations remain accurate and responsive to evolving user needs.

In contrast to collaborative filtering [16] approaches that rely on analyzing user preference similarities, which are often

ineffective in capturing dynamic individual preferences owing to their focus on collective historical patterns, DDSky

emphasizes real-time individual preference changes. Similarly, content-based filtering approaches, which rely on item

attributes to provide recommendations, are limited by the explicit information available in item attributes and often

struggle to account for implicit contextual changes in user preferences. However, the RFMRT model is designed to

capture individual preference changes directly through recent transactional data, making it more responsive to real-

time preference shifts. By integrating this model into DDSky, the system can provide recommendations tailored to

change individual user preferences dynamically.

Furthermore, DDSky utilizes streaming data processing and parallel computing technologies to enhance its efficiency

in managing large-scale and dynamic data. By integrating rating indicators and historical transaction data, DDSky can

generate more accurate and relevant recommendations, outperforming traditional methods that struggle to adapt to

dynamic individual preferences. This study introduces significant contributions to the field of recommendation

systems. The development of the DDSky algorithm enables recommendations that dynamically adjust to individual

user preferences in streaming data environments, ensuring real-time adaptability to changing user behaviors.

Additionally, implementing parallel computing optimizes the efficiency of processing vast and continuously flowing

data, allowing for seamless scalability and responsiveness. Moreover, the dynamic individual preference model

incorporated within DDSky effectively captures and analyzes fluctuations in user preferences over time, enabling the

system to refine its recommendations by evolving user interactions. These advancements collectively position DDSky

as a robust and adaptive solution for real-time recommendation generation in dynamic data-driven applications.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1014

The remainder of this paper is organized as follows: Section 2 reviews relevant literature on the Recency, Frequency,

Monetary (RFM) model, and skyline queries in streaming data. Section 3 discusses the methodology. Section 4 presents

and discusses the results. Section 5 concludes the study with recommendations for potential extensions and future

research directions.

2. Related Work

2.1. Analysis of the RFM Model (Recency, Frequency, Monetary)

The Recency, Frequency, Monetary model was first proposed by Hughes (1996), particularly in data-driven marketing

strategies [17]. Since its introduction, the RFM model has been widely utilized to assess customer value and predict

purchasing behavior. By evaluating three key attributes—recency, frequency, and monetary value—this model enables

companies to identify customer segments with high potential for repeat purchases and significant contributions to

overall revenue [18]. Recency measures the time interval between a customer's last and most recent purchase, with

shorter intervals indicating higher engagement and a greater likelihood of future interactions with the company’s

products or services. On the other hand, frequency reflects the number of transactions a customer completes within a

given period, where a higher frequency signifies stronger customer loyalty and a deeper relationship with the brand.

Meanwhile, monetary value represents the total amount a customer spends over a specific timeframe, helping

businesses recognize high-value customers who generate substantial revenue. By leveraging these three dimensions,

the RFM model provides a structured framework for organizations to segment their customers, optimize marketing

efforts, and develop targeted retention strategies. Its ability to predict future purchasing patterns based on past behaviors

makes it a valuable tool for enhancing customer relationship management and improving business performance [19].

Previous studies [20] validated the effectiveness of the RFM model, concluding that high recency (R) and frequency

(F) values are positively correlated with a customer's likelihood of repeat transactions. Moreover, a high monetary

value (M) is associated with an increased probability of purchasing products or services from the company. These

findings underscore the relevance of the RFM model in identifying high-value customers and developing targeted and

effective marketing strategies. In the context of streaming data, the RFM model holds significant potential, particularly

for capturing real-time changes in individual user preferences. Given the dynamic nature of data processing, the

attributes in the RFM model can serve as a foundation for developing adaptive and responsive individual preference

models. This approach provides a robust basis for integrating the RFM model into streaming data-based

recommendation algorithms, aimed at enhancing the relevance and personalization of recommendations, which is the

core focus of this research.

2.2. Skyline Query in Streaming Data

Skyline query research has advanced rapidly, with various innovative approaches introduced to enhance computational

efficiency, particularly for dynamic and large-scale data. The study in [21] proposed a framework that efficiently

manages skyline queries in streaming data by periodically updating the index structure while considering the validity

period of records. By incorporating time-aware indexing mechanisms, the proposed approach ensures that outdated

records are efficiently removed, thereby maintaining the accuracy and relevance of skyline results in dynamic streaming

environments. Other studies [22] introduced Parallel Real-time Skyline Segmentation (PRSS), a novel and more

efficient approach for real-time applications. PRSS offers a faster and more scalable solution to address the challenges

of processing streaming data using a sliding window approach on multicore

A notable study [13] proposed local split decision (LSD) trees to accelerate skyline query computations on dynamic

data. This structure enables efficient storage and pruning of irrelevant data, expediting repeated query processing.

However, the LSD tree approach has limitations in adapting to dynamically changing individual preferences,

particularly in real-time environments that require rapid responses to user preference changes. Furthermore, LSD Trees

exhibit performance degradation when applied to high-dimensional data. Another study successfully implemented a

multicore-based parallel model for continuous skyline queries on high-dimensional data [14]. Although effective in

managing data complexity, this model does not account for dynamically changing individual user preferences, resulting

in less personalized recommendations and less responsiveness to user preference shifts.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1015

A study [15] proposed the Distributed Parallel Model (DPM) for skyline queries on uncertain data streams in cloud

environments, emphasizing high scalability. The model significantly improved the performance by optimizing the load

balancing and reducing the processing time. However, this approach does not incorporate mechanisms to update or

adapt individual user preferences in streaming data, potentially diminishing the relevance of recommendations in

personalization.

Although these studies have contributed significantly to improving the computational efficiency of skyline queries,

none have specifically addressed dynamically changing individual user preferences. The lack of adaptation to evolving

user preferences limits the effectiveness of recommendations, particularly in streaming data environments that require

real-time adjustments. This study aims to bridge this gap by developing an algorithm that dynamically adapts to

individual user preferences, enhancing recommendations' relevance and quality.

3. Methodology

This study develops an algorithm called Distributed Data Skyline (DDSky) to generate recommendations based on

dynamically changing individual user preferences. The algorithm was designed to address several limitations of

previous research, particularly in handling dynamic individual user preferences. By leveraging streaming data

processing, this new algorithm can produce more accurate recommendations that adapt to rapid preference changes,

irrespective of time and user location. This framework is a significant advancement in the evolution of recommendation

systems, with applications such as providing personalized recommendations for local Indonesian culinary options

tailored to dynamic individual preferences. The workflow of the DDSky algorithm is illustrated in figure 1.

Figure 1. DDSky Workflow.

The DDSky algorithm processes the input from a user's transaction history. These historical transaction data are

analyzed to identify individual user preferences using Algorithm 1. The identified individual preferences are then

compared to the items available around the user's location to calculate the similarity. The similarity results are used as

the preference attribute, which is subsequently processed along with the price and distance attributes through a skyline

query. The three resulting attributes—price, preference, and distance—are processed parallel to identify skyline objects

using Algorithm 2 on streaming data. Skyline processing is continuously performed upon receiving new data inputs,

ensuring that recommendations remain responsive to dynamic individual user preferences. This parallel processing

approach enhances the algorithm's efficiency in generating real-time personalized recommendations.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1016

3.1. Development of the Individual Preference Recommendation Model

The individual preference recommendation model was designed to capture the dynamic individual preferences of users.

This model utilizes the recency, frequency, monetary value, and rating attributes from user transaction histories,

collectively called RFMRT. The developed RFMRT model can process data in real time (streaming), accommodating

changes in individual user preferences over time. The notations used in this recommendation model are presented in

table 1.

Table 1. Notations of the Individual Preference Recommendation Model (Algorithm 1)

Dynamic individual user preferences can be formulated using Equation 1 :

Pu,I,new = (Fu,I,new + Mu,I,new + RTu,I) − Ru,i (1)

Algorithm for Individual User Preferences

Algorithm 1 was developed to calculate the current preference value of user u for item I.

Algorithm 1: Individual User Preference (user)

No Notation Definition

1 𝑢 User of the recommendation system, where 𝑢 = 1, 2, 3,…,𝑛; 𝑛 n is the total number of user.

2 𝐼 Product (items) recommended to the user, where 𝐼= 1, 2, 3, …, 𝑚; 𝑚 is the total number of products (items).

3 𝑇 A series containing dates in the recommendation system, from the start of the transaction (𝑡1) to the most

recent transaction (𝑡𝑛𝑒𝑤). In this case, 𝑇 = 𝑡1, 𝑡2, 𝑡3, … , 𝑡, … , 𝑡𝑛𝑒𝑤.

4 𝑇𝐵𝑢,𝐼,𝑡 A time series corresponding to the time (HH:MM:SS) of item 𝐼 purchased by user 𝑢 at times 𝑇𝐵 =
𝑡𝑏1, 𝑡𝑏2, 𝑡𝑏3, … , 𝑡𝑏, … , 𝑡𝑏𝑛𝑒𝑤

5 𝑓𝑢,𝐼,𝑡,𝑡𝑏 Frequency of user 𝑢 puchasing any item 𝐼 on date 𝑡 at time 𝑡𝑏

6 𝐹𝑢,𝐼 The cumulative current frequency of user 𝑢 purchasing item 𝐼. This represents the sum of frequencies from

the start of transactions up to one transaction before the most recent transaction. 'Current' refers to the event

on the current date (𝑡𝑛𝑒𝑤) and at the current time 𝑡𝑏𝑛𝑒𝑤.

7 𝑅𝑢,𝑖 The difference in days between the current date in the system 𝑡𝑛𝑒𝑤 and the last transaction date made by user

𝑢 for item 𝐼; 𝑅𝑢,𝑖 is a non-negative integer. In practice, a user 𝑢 may make more than one transaction at 𝑡𝑛𝑒𝑤

(transactions occurring on the same day but at different times) for the same item 𝐼. In such cases, the value of

𝑅𝑢,𝑖 is set to 0 (𝑅𝑢,𝑖 = 0).

8 𝑀𝑢,𝐼 The current condition for the accumulation of money spent by user 𝑢 on item 𝐼 .

9 𝑅𝑇𝑢,𝐼 The rating given by user 𝑢 to item 𝐼, recorded in the recommendation system at the time of the last transaction.

The rating value can range from 1 to 5, where a higher number indicates a better condition.

10 𝑃𝑢,𝐼 The current preference value of user 𝑢 for item 𝐼.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1017

The current preference value of the user 𝑢 for item 𝐼 can be calculated using Algorithm 1. This algorithm takes inputs

from the attributes 𝑅𝑢,𝑖, 𝐹𝑢,𝐼 , 𝑀𝑢,𝐼 , 𝑅𝑇𝑢,𝐼. The output of this algorithm is the current preference value of the user 𝑢 for

item 𝐼 (𝑃𝑢,𝐼). The process begins by setting the value of u from 1 to n, where n is the number of users for whom the

individual preferences are calculated. Next, the preference calculation for each user is performed for each item,

considering the various factors that influence the preferences. Then, the preference for each item is calculated by

summing the values of the attributes 𝐹𝑢,𝐼,𝑛𝑒𝑤, 𝑀𝑢,𝐼,𝑛𝑒𝑤, 𝑅𝑇𝑢,𝐼. The result of this sum is subtracted from the value of the

attribute 𝑅𝑢,𝑖. Finally, the algorithm searches for the maximum value 𝑃𝑢,𝐼,𝑛𝑒𝑤 among all items to determine which item

has the highest value.

3.2. Parallel Skyline Query

Skyline query processing is performed parallel to streaming data to efficiently generate recommendations tailored to

dynamically changing user preferences. Algorithm 2 outlines the approach for executing skyline queries in parallel

based on dynamic individual user preferences, leveraging the Distributed Parallel Model proposed in [15]. The

notations used in Algorithm 2 are listed in table 2.

Table 2. Notations of the Individual Preference Recommendation Model (Algorithm 1)

Notation Definition

𝐷𝑠 Data streams

𝑊𝑖 Local sliding window, where 𝑖 = 1,2,3, … , 𝑛; 𝑛 is the total number of local sliding windows.

𝑒𝑛𝑒𝑤 The newly arrived streaming object in 𝑊

𝑒𝑜𝑙𝑑 The expired streaming object in W

𝑆𝑖 Local skyline, where 𝑆𝑖 is the result of the skyline computation from the local sliding window 𝑊𝑖

𝑆𝑔𝑙𝑜𝑏𝑎𝑙
Global skyline, where 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 is the result of the global skyline obtained from the combination of

all local skylines 𝑆𝑖

Algorithm 2 operates by distributing data streams (𝐷𝑠) into local sliding windows (𝑊𝑖), where 𝑖 ranges from 1 to 𝑛

(1 ≤ 𝑖 ≤ 𝑛). Each local sliding window (𝑊𝑖) has a maximum capacity equivalent to the total number of sliding

windows (𝑛). When the amount of data in a sliding window (𝑊𝑖) exceeds its maximum capacity, the oldest data item

(𝑒𝑜𝑙𝑑) is removed to accommodate the new data item (𝑒𝑛𝑒𝑤). This removal adheres to the First-In, First-Out (FIFO)

principle, ensuring that only the most recent data are retained for skyline computation.

Using the First-In-First-Out technique to manage data within local sliding windows in real-time scenarios provides

several advantages. The algorithm effectively reduces the computational load by systematically removing older data,

as fewer items need to be processed in each iteration. This optimization significantly enhances the overall computation

speed, ensuring the system operates more efficiently. Moreover, sliding windows keep the data constantly updated,

directly improving the relevance of the information being processed. As a result, the recommendation outcomes are

closely aligned with current user preferences, maintaining high accuracy and relevance. Additionally, by minimizing

the volume of data the algorithm processes, response times are greatly improved. This mechanism enables the system

to quickly adapt to user behavior and preferences changes, providing timely, precise, and real-time recommendations.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1018

Algorithm 2: DDSky with Parallel Processing

This process enables efficient parallel computation in each partition (𝑃𝑖), where skyline computation is performed for

the local sliding window (𝑊𝑖). The results from all sliding windows (𝑊1, 𝑊2, … , 𝑊𝑛) are merged to form the global

skyline, representing the final output. This merging ensures the algorithm efficiently generates recommendations based

on user preferences in dynamic streaming data environments. By integrating the FIFO principle, the DDSky algorithm

enhances computational efficiency. It ensures adaptability to real-time data processing requirements, making it an ideal

solution for applications based on streaming data.

3.3. Scenario of DDSky Algorithm Workflow

Figure 2 depicts the operation of the DDSky algorithm. An individual user 𝑈1 performs purchase transactions involving

five local culinary items 𝐼1, 𝐼2, 𝐼3, 𝐼4 dan 𝐼5, while located at Location 1. Each transaction made by the user is stored in

a system database. Based on the stored transaction history, the user's preference values were calculated using the

RFMRT model, as outlined in Algorithm 1. This process generates the user's current preference value 𝑃𝑢,𝐼, where the

items with the highest preference values reflect the user's primary preferences.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1019

Figure 2. Scenario of DDSky Algorithm Workflow

In this scenario, the primary preferences of 𝑈1 are 𝐼1, 𝐼2 and 𝐼4. User 𝑈1 then dynamically moves from Location 1 to

Location 2. Upon arrival at Location 2, the system collects data on the available items, including attributes such as

geographic coordinates (longitude and latitude), price, and distance from the user. Each item at Location 2 was further

analyzed to measure its similarity with the user's individual preferences 𝐼1, 𝐼2 and 𝐼4. The results of this similarity

analysis were used to compute the preference attributes for each item in location 2.

Once the preference attributes are established, the system performs a skyline query process in parallel on streaming

data using three main attributes: distance, price, and preference. The skyline query aims to filter optimal items where

any other item across all attributes does not dominate each recommended item. The outcome of this process is a

recommendation list for user 𝑈1 at Location 2, such as 𝐼6, 𝐼7 and 𝐼10, which satisfies the criteria of being close in

distance, affordable in price, and aligned with the user's transaction history preferences. This scenario demonstrates

how DDSky effectively handles dynamic user location changes and delivers relevant and responsive recommendations

to individual user preferences.

3.4. Parallelization Design

This study proposes a DDSky algorithm to generate recommendations based on dynamic individual user preferences.

The skyline query process is executed parallel to handle rapidly changing and large-scale data, leveraging

multithreading parallel computing technology to enhance the speed and efficiency of streaming data processing. The

DDSky algorithm uses a distributed parallel model and employs Apache Kafka technology for real-time data

processing. Specifically, the framework for parallel processing is illustrated in figure 3, which consists of three types

of nodes for parallel skyline query processing on streaming data: Monitor Node (M), Partition Node (P), and Query

Node (Q).

Figure 3. Parallel Skyline Query Processing Framework

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1020

The monitor node (M) is responsible for transmitting streaming data (DS= … , 𝑒6, 𝑒5, 𝑒4, 𝑒3, 𝑒2,𝑒1, 𝑒0) produced by the

data producer before it enters the parallel computation nodes 𝑃𝑖. For each incoming data point 𝑒0, 𝑒1, 𝑒2, … , 𝑒𝑛, the

monitor node performs the following tasks: Assigns a timestamp (𝑒𝑎𝑟𝑟) to each data point corresponding to the current

system time, and Distributes each data point 𝑒0, 𝑒1, 𝑒2, … , 𝑒𝑛 to a specific partition node (𝑃𝑖) for individual preference

computation and skyline query processing, respectively. This process continues until the internal time of the data point

reaches its expiration time 𝑒𝑒𝑥𝑝 = 𝑒𝑎𝑟𝑟 + 𝑁, where N denotes the size of the sliding window. Once the data is

allocated, the Partition Nodes (𝑃𝑖) take over the computational workload. These nodes are responsible for processing

user preferences and executing parallel skyline queries based on the assigned data. Each partition node maintains its

own sliding window, ensuring that only relevant and recent data is considered in real-time processing. This localized

data management strategy enhances efficiency by minimizing the computational overhead while maintaining high

accuracy in preference calculations and skyline query results. The final stage of the process is managed by the Query

Node (Q), which continuously gathers skyline results from all partition nodes and consolidates them into a final output

for the end user. By aggregating results from multiple sources, the query node ensures that recommendations are

comprehensive and reflect the most relevant data. This distributed, and parallel processing framework enables the

DDSky algorithm to efficiently adapt to the demands of real-time dynamic data environments, delivering personalized

recommendations with high responsiveness and precision. The system maintains its ability to process large-scale

streaming data through this systematic approach while ensuring optimal performance and user satisfaction.

4. Experimental Evaluation

In this study, the evaluation was divided into two scenarios. The first evaluation aimed to measure the accuracy of the

DDSky algorithm using precision, recall, and F1 measure metrics. The second evaluation focused on the computation

time required by the DDSky algorithm to generate skyline objects. The results of the accuracy and computation time

produced by the DDSky algorithm were compared with those of other algorithms.

4.1. Dataset

This study uses a dataset of local culinary profiles, local culinary vendor profiles, and user transaction histories sourced

from the JALITA (Jajanan Asli Nusantara Pintar) application. JALITA is a mobile-based application for a local

culinary recommendation system based on individual user preferences. Another dataset consists of individual user

preferences from a questionnaire distributed to users. The JALITA application is a mobile-based recommendation

system for Indonesian local cuisines based on user preferences.

4.2. Accuracy Evaluation of the DDSky Algorithm

Accuracy evaluation uses recall, precision, and F1 metrics, which have been applied previously in the research [23].

The definitions and equations used for each of the metrics are as follows:

Precision was defined as the percentage of items recommended by the user. Precision measures how well a system

recommends relevant and liked items. The precision calculation method for precision is given in Equation (2).

precision =
|prefered ∩ recommended|

recommended
 (2)

Recall is defined as the percentage of liked items that are recommended. Recall measures how well a system

recommends items that the user truly likes. The calculation method for recall is given by Equation (3).

𝒓𝑒𝑐𝑎𝑙𝑙 =
|𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑑 ∩ 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑|

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑑
 (3)

F1-measure is a balanced combination of precision and recall. The F1-measure combines the precision and recall

metrics into a single value that provides an overall view of the algorithm's performance of the algorithm. The

calculation method for the F1-measure is given by Equation (4).

F1 =
2∗recall∗precision

recall+precision
 (4)

Where preferred are items liked by the user, and recommended are the set of skyline objects produced by the algorithm.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1021

In the accuracy evaluation, this study compared the DDSky algorithm with the Eager parallel processing algorithm

[14]. Both algorithms share fundamental similarities, as they are designed to process skyline queries in streaming data

environments, requiring time efficiency and adaptability to real-time data changes. DDSky and Eager implement

parallel processing techniques to handle large-scale streaming data, enabling both to achieve high performance in

dynamic data scenarios. Additionally, both algorithms utilize a sliding window model to limit the data processed within

specific intervals, ensuring that only relevant data is considered. The output of both algorithms is a skyline set

comprising optimal objects based on user preferences.

The testing was performed by comparing the recommendation outputs of both algorithms against test data reflecting

actual user preferences in dynamic streaming data scenarios. Identical datasets ensured evaluation parity, with

normalized attributes to standardize value scales. The accuracy results for the DDSky algorithm are presented in table

3, demonstrating its superiority in capturing dynamic user preferences. Conversely, table 4 provides the evaluation

results for the Eager algorithm, which excels in processing efficiency but is less responsive to changes in user

preferences. This comparison offers a comprehensive overview of the strengths and weaknesses of each algorithm in a

streaming data environment.

Table 3. Accuracy Evaluation Results for the DDSky Algorithm

Table 4. Evaluation of the accuracy results of the Eager algorithm

UserID intersection prefered recommended precision recall F1

4 4 53 4 1.00 0.08 0.14

5 4 40 4 1.00 0.10 0.18

6 3 30 4 0.75 0.10 0.18

.....

46 3 31 4 0.75 0.10 0.17

47 2 47 4 0.50 0.04 0.08

48 1 21 4 0.25 0.05 0.08

average 0.82 0.08 0.15

The results shown in figure 4 indicate that DDSky achieves a precision of 0.73, a recall of 0.45, and an F1-measure of

0.55. In contrast, the Eager algorithm, which emphasizes distributed and parallel processing without considering

individual user preferences [14], demonstrates a precision of 0.82, a recall of 0.33, and an F1-measure of 0.47. Based

on the accuracy evaluation of the two algorithms, while DDSky exhibits a slightly lower precision value, its primary

focus lies in the ability to capture dynamic individual user preferences in real-time. This decrease in precision occurs

because DDSky is designed to broaden the scope of recommendations by adapting to changes in dynamic individual

user preferences. However, this may result in some less relevant recommendations. An increase in recall often

UserID intersection prefered recommended precision recall F1

4 5 53 6 0.83 0.09 0.17

5 5 40 6 0.83 0.13 0.22

6 5 30 7 0.71 0.17 0.27

.....

46 4 31 9 0.44 0.13 0.20

47 4 47 7 0.57 0.09 0.15

48 1 21 4 0.25 0.05 0.08

average 0.73 0.11 0.19

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1022

negatively affects precision. This phenomenon arises because adding more items to the recommendation list increases

the likelihood of capturing relevant items (enhancing recall) and raises the risk of including irrelevant items, thereby

reducing precision [24]. Nevertheless, the improved recall value indicates that the algorithm is more responsive to

encompassing items that align with user preferences, making it more adaptive to changes caused by temporal and

locational factors. This trade-off is acceptable in systems based on dynamic preferences, where responsiveness and

adaptability are prioritized to enhance the relevance and personalization of recommendations.

Figure 4. Comparative analysis of performance metrics between the DDSky and Eager algorithms.

4.3. Throughput Evaluation

The second scenario in this evaluation was the throughput testing of the DDSky algorithm. We used a synthetic dataset

of various types to test throughput, including independent, correlated, and anticorrelated data. These different dataset

types were used to assess the performance of the DDSky algorithm under various data conditions. Throughput is

measured to determine how efficiently DDSky processes large volumes of data with diverse types while ensuring that

the improvement in recommendation quality does not come at the cost of the algorithm's performance in terms of

processing speed. The throughput evaluation results for the DDSky algorithm are shown in figure 5.

Figure 5. Throughput Evaluation Results for DDSky

The evaluation results indicate that DDSky's performance varies owing to the differing distribution characteristics of

each data type, which impacts the computational load of the algorithm. Correlated data exhibit mutually supportive

patterns among attributes, leading to quicker dominance in skyline processing and achieving optimal throughput at

6,000 data points. However, beyond this optimal point, the reduced number of skyline candidates causes a decline in

throughput. In contrast, anticorrelated data, where attributes conflict with one another, increase the number of skyline

candidates needing processing. This results in a higher throughput than correlated data, although the optimal pattern

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1023

remains similar. For independent data, where attribute distributions lack specific patterns, DDSky requires more time

to identify the skyline, gradually increasing throughput at 8,000 data points.

This throughput variation indicates that DDSky's performance is influenced by the complexity of the dominance

relationships among data objects, which heavily depends on the distribution of the processed data types. These findings

underscore DDSky's ability to handle various data distribution patterns efficiently, ensuring consistent performance for

large-scale datasets of up to 10,000 objects without significant throughput degradation. These results confirm DDSky's

capability to maintain efficient skyline computation in diverse and dynamic streaming data environments.

5. Conclusion

This study has developed the DDSky algorithm, which is designed to provide recommendations based on the dynamic

individual preferences of users of streaming data. The results show that DDSky outperforms the Eager algorithm, with

an average recall of 0.11 and an F1 measure of 0.19, surpassing Eager, which has a recall of 0.08 and an F1 measure

of 0.15. This result indicates that DDSky generates accurate and relevant recommendations more effectively.

Additionally, the study successfully developed the RFMRT model, which can identify individual user preferences using

transaction history and user ratings data.

The main contribution of this study is the development of a skyline query algorithm that can adapt to dynamic user

preferences in the context of streaming data. However, this study had several limitations. Its focus is confined to local

Indonesian culinary recommendation systems, leaving the application of DDSky in other domains, such as e-

commerce, social media, and retail business, unexplored in depth. These domains hold significant potential for

leveraging DDSky, for instance, by recommending relevant retail products based on customers' purchase histories or

curating personalized media content aligned with users' dynamically evolving preferences.

Therefore, future research is recommended to test the application of the DDSky algorithm in various other domains to

evaluate its flexibility and to integrate the individual preference model with machine learning to improve the prediction

capabilities and adaptability to changes in user preferences. Evaluations in more complex real-time scenarios are also

suggested to ensure the algorithm's effectiveness under real-world conditions. Further studies should also focus on

improving the scalability and performance of the algorithm in handling huge data volumes by developing additional

optimization techniques and more advanced data processing strategies. Thus, the recommendations generated will be

more relevant and responsive to real-time changes in user preferences.

6. Declarations

6.1. Author Contributions

Conceptualization: R.A., T.D., A., and S.S.; Methodology: R.A., T.D.; Software: R.A.; Validation: R.A., A., S.S., and

T.D.; Formal Analysis: R.A., S.S., and T.D.; Investigation: R.A.; Resources: S.S.; Data Curation: S.S.; Writing—

Original Draft Preparation: R.A., S.S., and T.D.; Writing—Review and Editing: S.S., R.A., and T.D.; Visualization:

R.A. All authors have read and agreed to the published version of the manuscript.

6.2. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

6.3. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

6.4. Institutional Review Board Statement

Not applicable.

6.5. Informed Consent Statement

Not applicable.

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1024

6.6. Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

[1] A. B. Amale, K. K. Bajaj, M. D. Shamout, L. C. Campos Ramírez, M. L. Medina Vásquez, and J. R. Yataco Torrealva, “Real-

Time Analytics with Big Data and Streaming Computation,” 2023 Int. Conf. Power Energy, Environ. Intell. Control. PEEIC

2023, pp. 1668–1673, 2023, doi: 10.1109/PEEIC59336.2023.10452008.

[2] H. Kumar, P. J. Soh, and M. A. Ismail, “Big Data Streaming Platforms: A Review,” Iraqi J. Comput. Sci. Math., vol. 3, no.

2, pp. 95–100, Apr. 2022, doi: 10.52866/IJCSM.2022.02.01.010.

[3] A. Lemzin, “Streaming Data Processing,” Asian J. Res. Comput. Sci., vol. 15, no. 1, pp. 11–21, Jan. 2023, doi:

10.9734/AJRCOS/2023/V15I1311.

[4] Y. Wu and Y. Yusof, “Emerging Trends in Real-time Recommendation Systems: A Deep Dive into Multi-behavior Streaming

Processing and Recommendation for E-commerce Platforms,” J. Internet Serv. Inf. Secur., vol. 14, no. 4, pp. 45–66, Oct.

2024, doi: 10.58346/JISIS.2024.I4.003.

[5] M. J. Osborne and A. Rubinstein, “Consumer preferences,” in Models in Microeconomic Theory, Open Book Publishers,

2023, vol. 2023, no. 6, pp. 45–56. doi: 10.11647/OBP.0361.04.

[6] R. M. Roy, “An E-Commerce Recommendation System Based on Dynamic Analysis of Customer Behavior,” Int. J. Sci.

Technol. Eng., vol. 12, no. 11, pp. 37–48, Nov. 2024, doi: 10.22214/IJRASET.2024.64867.

[7] Y. Zhu et al., “Query-based Interactive Recommendation by Meta-Path and Adapted Attention-GRU,” Int. Conf. Inf. Knowl.

Manag. Proc., vol. 2019, no. 6, pp. 2585–2593, Jun. 2019, doi: 10.1145/3357384.3357805.

[8] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” Proc. - Int. Conf. Data Eng., vol. 2001, no. 4, pp. 421–

430, 2001, doi: 10.1109/icde.2001.914855.

[9] R. Amin, T. Djatna, A. Annisa, and I. S. Sitanggang, “Skyline Query Based on User Preferences in Cellular Environments,”

JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 9, no. 1, pp. 143–153, 2023, doi: 10.33480/jitk.v9i1.4192.

[10] B. J. Santoso, R. M. Ijtihadie, and I. N. Y. Mahottama, “Answering Durable Skyline Queries on Multidimensional Time

Series Data Using Grid-Based Approach,” 2023 14th International Conference on Information & Communication

Technology and System (ICTS). IEEE, vol. 2023, no. 10, pp. 331-337, 2023. doi: 10.1109/icts58770.2023.10330858.

[11] Y. Shu, J. Zhang, W. E. Zhang, D. Zuo, and Q. Z. Sheng, “IQSrec: An Efficient and Diversified Skyline Services

Recommendation on Incomplete QoS,” IEEE Trans. Serv. Comput., vol. 16, no. 3, pp. 1934–1948, May 2023, doi:

10.1109/TSC.2022.3189503.

[12] M. Luo, X. Zhang, J. Li, P. Duan, and S. Lu, “User Dynamic Preference Construction Method Based on Behavior Sequence,”

Sci. Program., vol. 2022, no. 2022, pp. 1-15, 2022, doi: 10.1155/2022/6101045.

[13] D. Köppl, “Dynamic Skyline Computation with LSD Trees,” Analytics, vol. 2, no. 1, pp. 146–162, 2023, doi:

10.3390/analytics2010009.

[14] T. De Matteis, S. Di Girolamo, and G. Mencagli, “A multicore parallelization of continuous skyline queries on data streams,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9233, no. 1, pp. 402–

413, 2015, doi: 10.1007/978-3-662-48096-0_31.

[15] X. Li, Y. Wang, X. Li, and Y. Wang, “Parallel skyline queries over uncertain data streams in cloud computing environments,”

Int. J. Web Grid Serv., vol. 10, no. 1, pp. 24–53, 2014, doi: 10.1504/IJWGS.2014.058759.

[16] K. Bhareti, S. Perera, S. Jamal, M. H. Pallege, V. Akash, and S. Wiieweera, “A Literature Review of Recommendation

Systems,” 2020 IEEE Int. Conf. Innov. Technol. INOCON 2020, vol. 2020, no. 1, pp. 1–7, 2020, doi:

10.1109/INOCON50539.2020.9298450.

[17] A. M. Hughes, “Strategic Database Marketing,” Database Mark. Inst., 1994, p. 400.

[18] A. Handojo, N. Pujawan, B. Santosa, and M. L. Singgih, “A multi layer recency frequency monetary method for customer

priority segmentation in online transaction,” Cogent Eng., vol. 10, no. 1, pp. 0–19, 2023, doi:

10.1080/23311916.2022.2162679.

https://doi.org/10.1109/PEEIC59336.2023.10452008
https://doi.org/10.1109/PEEIC59336.2023.10452008
https://doi.org/10.1109/PEEIC59336.2023.10452008
https://doi.org/10.1109/PEEIC59336.2023.10452008
https://doi.org/10.52866/ijcsm.2022.02.01.010
https://doi.org/10.52866/ijcsm.2022.02.01.010
https://doi.org/10.9734/ajrcos/2023/v15i1311
https://doi.org/10.9734/ajrcos/2023/v15i1311
https://doi.org/10.58346/JISIS.2024.I4.003
https://doi.org/10.58346/JISIS.2024.I4.003
https://doi.org/10.58346/JISIS.2024.I4.003
https://doi.org/10.11647/OBP.0361.04
https://doi.org/10.11647/OBP.0361.04
https://doi.org/10.22214/ijraset.2024.64867
https://doi.org/10.22214/ijraset.2024.64867
https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.33480/jitk.v9i1.4192
https://doi.org/10.33480/jitk.v9i1.4192
https://doi.org/10.1109/TSC.2022.3189503
https://doi.org/10.1155/2022/6101045
https://doi.org/10.3390/analytics2010009
https://doi.org/10.3390/analytics2010009
https://doi.org/10.1504/IJWGS.2014.058759
https://doi.org/10.1504/IJWGS.2014.058759
https://doi.org/10.1109/INOCON50539.2020.9298450
https://doi.org/10.1109/INOCON50539.2020.9298450
https://doi.org/10.1109/INOCON50539.2020.9298450
https://doi.org/10.1109/INOCON50539.2020.9298450
https://archive.org/details/strategicdatabas00hugh?view=theater
https://doi.org/10.1080/23311916.2022.2162679
https://doi.org/10.1080/23311916.2022.2162679
https://doi.org/10.1080/23311916.2022.2162679

Journal of Applied Data Sciences

Vol. 6, No. 2, May 2025, pp. 1012-1025

ISSN 2723-6471

1025

[19] Chinazor Prisca Amajuoyi, Luther Kington Nwobodo, and Ayodeji Enoch Adegbola, “Utilizing predictive analytics to boost

customer loyalty and drive business expansion,” GSC Adv. Res. Rev., vol. 19, no. 3, pp. 191–202, Jun. 2024, doi:

10.30574/GSCARR.2024.19.3.0210.

[20] A. J. Christy, A. Umamakeswari, L. Priyatharsini, and A. Neyaa, “RFM ranking – An effective approach to customer

segmentation,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 10, pp. 1251–1257, 2021, doi:

10.1016/j.jksuci.2018.09.004.

[21] K. Alami and S. Maabout, “A framework for multidimensional skyline queries over streaming data,” Data Knowl. Eng., vol.

no. 1, pp. 101792, 2020, doi: 10.1016/j.datak.2020.101792.

[22] W. Khames, A. Hadjali, and M. Lagha, “Parallel continuous skyline query over high-dimensional data stream windows,”

Distrib. Parallel Databases, Dec. vol. 2024, no. 7, pp. 469-524, 2024, doi: 10.1007/S10619-024-07443-7.

[23] F. Rhimi, S. B. Yahia and S. B. Ahmed, "Enhancing Skyline Computation with Collaborative Filtering Techniques for QoS-

Based Web Services Selection," 2015 IEEE 14th International Symposium on Network Computing and Applications,

Cambridge, MA, USA, 2015, vol. 2015, no. 9, pp. 247-250, doi: 10.1109/NCA.2015.18.

[24] A. Gunawardana and G. Shani, “A survey of accuracy evaluation metrics of recommendation tasks,” J. Mach. Learn. Res.,

vol. 10, no. 9, pp. 2935–2962, 2009. doi: 10.5555/1577069.1755883.

https://doi.org/10.30574/gscarr.2024.19.3.0210
https://doi.org/10.30574/gscarr.2024.19.3.0210
https://doi.org/10.30574/gscarr.2024.19.3.0210
https://doi.org/10.30574/gscarr.2024.19.3.0210
https://doi.org/10.1016/j.jksuci.2018.09.004
https://doi.org/10.1016/j.jksuci.2018.09.004
https://doi.org/10.1016/j.jksuci.2018.09.004
https://doi.org/10.1016/j.jksuci.2018.09.004
https://doi.org/10.1016/j.datak.2020.101792
https://doi.org/10.1016/j.datak.2020.101792
https://doi.org/10.1007/s10619-024-07443-7
https://doi.org/10.1007/s10619-024-07443-7
https://doi.org/10.1109/NCA.2015.18
https://doi.org/10.1109/NCA.2015.18
https://doi.org/10.1109/NCA.2015.18
https://doi.org/10.1109/NCA.2015.18
https://jmlr.org/papers/volume10/gunawardana09a/gunawardana09a.pdf
https://jmlr.org/papers/volume10/gunawardana09a/gunawardana09a.pdf

