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Abstract 

The ability of a recommendation system to deliver relevant outcomes is significantly influenced by its adaptability to the dynamic nature of 

individual user preferences. Data-streaming-based recommendation systems face substantial challenges in aligning recommendations with rapid 

shifts in user preferences. Previous research on the development of skyline query algorithms has predominantly focused on processing efficiency 

and parallel performance optimization yet has not addressed the dynamic nature of individual user preferences—an essential factor for generating 

relevant and responsive recommendations in streaming data environments. This study aims to develop a skyline query algorithm called 

Distributed Data Skyline (DDSky) to provide recommendations based on dynamic individual user preferences within data-streaming contexts. 

DDSky leverages the Recency, Frequency, Monetary, and Rating (RFMRT) model to capture real-time changes in user preferences. This model 

is integrated with parallel skyline computation and structured to enhance the data processing efficiency on a large scale. The parallel processing 

approach divides tasks into smaller subtasks executed simultaneously across multiple threads. This strategy enables the simultaneous processing 

of attributes such as price, distance, and individual user preferences, thereby delivering relevant and responsive recommendations to real-time 

changes in user preferences. The DDSky algorithm was evaluated using a local dataset from the JALITA application and compared with the 

Eager algorithm. The results demonstrated that DDSky outperformed Eager, achieving an average recall value of 0.45 and an F1-measure of 0.55, 

compared to Eager's recall value of 0.33 and F1-measure of 0.47. Furthermore, DDSky achieved an average precision of 0.73, which closely 

approached Eager's precision of 0.82. Additionally, DDSky exhibited optimal throughput performance for datasets containing up to 10,000 items 

with high flexibility across various data types. With its unique technical approach, DDSky delivers more responsive and relevant 

recommendations to dynamic user preferences, establishing its superiority in data-streaming-based recommendation systems. 

Keywords: DDSky, Dynamic Individual Preferences, RFMRT Model, Streaming Data, System Recommendation 

1. Introduction  

In the era of big data, the support of streaming data processing is essential [1] because it enables the continual and real-

time processing of large data volumes [2], [3], particularly in applications such as recommendation systems. Streaming-

based recommendation systems are influenced by their ability to process dynamic transaction histories, which reflect 

individual preferences that change over time [4]. Individual preferences refer to a person's desires or tendencies toward 

various products or services [5]. For example, in location-based recommendation systems, these changing preferences 

include user location shifts during transactions. The ability of recommendation systems to adapt to dynamic user 

preferences is key to delivering accurate recommendations [6]. 

Users of recommendation systems require query operators to process data and identify the most suitable outcomes 

based on their preferences [7]. Relying solely on exact matches between preferences and database records through 

query operators often fails to yield appropriate recommendations, as no recommendation might simultaneously satisfy 

criteria such as low cost, good taste, high ratings, and proximity. Skyline query is a method that identifies a set of data 

objects that align with user preferences, ensuring that no object in the set is dominated by another [8], [9]. An object is 

 
*Corresponding author: Ruhul Amin (ruhulamin@apps.ipb.ac.id)   

DOI: https://doi.org/10.47738/jads.v6i2.599 

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/). 

© Authors retain all copyrights 

https://orcid.org/0000-0001-5521-5429
https://orcid.org/0000-0002-2071-089X
https://orcid.org/0000-0001-6441-6070
https://orcid.org/0000-0002-2280-1752


Journal of Applied Data Sciences 

Vol. 6, No. 2, May 2025, pp. 1012-1025 

ISSN 2723-6471 

1013 

 

 

 

considered dominant if it has values no worse than those of another object in all dimensions and is strictly better in at 

least one dimension [10]. In this context, data objects refer to specific products or services. Skyline queries provide 

recommendations that involve multiple attributes [11]. However, this method has a limitation: the generated 

recommendations fail to adapt to dynamic individual preferences, which can change based on the location and evolving 

user priorities over time [12]. Beyond adapting to dynamic preferences, recommendation systems face significant 

difficulties processing streaming data. Streaming data's continuous, high-speed, and large-volume nature necessitates 

real-time updates to preference models. Efficient computational techniques are therefore required to ensure that 

recommendations remain relevant, responsive, and timely [4]. 

Previous studies [13] proposed using Local Split Decision (LSD) trees to accelerate skyline query computations on 

dynamic data. LSD Trees leverage geometric structures to store and prune irrelevant data, expediting repeated skyline 

query processing. However, this approach lacks flexibility in adapting to dynamically changing individual preferences, 

particularly in real-time environments that require swift responses to evolving user preferences. In addition, its 

performance deteriorates with high-dimensional data. Other studies [14] have successfully implemented a multicore-

based parallel model for continuous skyline queries on high-dimensional data. However, this study did not consider 

dynamically changing individual user preferences. Without preference adaptation, the recommendations lacked 

personalization and responsiveness to individual user preference shifts. Another study developed a Distributed Parallel 

Model (DPM) for skyline queries on uncertain data streams in cloud environments, achieving high scalability, load 

balancing, and significant reductions in processing time [15]. Although the DPM model effectively processes large-

scale skyline queries, it does not account for dynamic individual user preferences. The parallel DPM model focuses on 

optimizing parallel performance without mechanisms to update or adapt individual preferences in streaming data, 

thereby reducing the relevance of recommendations for users. 

Based on prior studies, no comprehensive approach has been proposed to address dynamic individual preference 

calculations in streaming data, which can change in real-time according to user location or current preferences. This 

study aims to develop a skyline query algorithm for individual user preferences that generates recommendations based 

on dynamically changing user preferences. The algorithm that was developed is called Distributed Data Skyline 

(DDSky). DDSky is designed to provide recommendations based on dynamic individual preferences and process 

streaming data in real-time. This process enables DDSky to capture user preference changes promptly and adjust 

recommendations accordingly. DDSky leverages the Recency, Frequency, Monetary, and Rating (RFMRT) model, 

specifically designed to capture and analyze real-time changes in individual user preferences, ensuring that 

recommendations remain accurate and responsive to evolving user needs. 

In contrast to collaborative filtering [16] approaches that rely on analyzing user preference similarities, which are often 

ineffective in capturing dynamic individual preferences owing to their focus on collective historical patterns, DDSky 

emphasizes real-time individual preference changes. Similarly, content-based filtering approaches, which rely on item 

attributes to provide recommendations, are limited by the explicit information available in item attributes and often 

struggle to account for implicit contextual changes in user preferences. However, the RFMRT model is designed to 

capture individual preference changes directly through recent transactional data, making it more responsive to real-

time preference shifts. By integrating this model into DDSky, the system can provide recommendations tailored to 

change individual user preferences dynamically. 

Furthermore, DDSky utilizes streaming data processing and parallel computing technologies to enhance its efficiency 

in managing large-scale and dynamic data. By integrating rating indicators and historical transaction data, DDSky can 

generate more accurate and relevant recommendations, outperforming traditional methods that struggle to adapt to 

dynamic individual preferences. This study introduces significant contributions to the field of recommendation 

systems. The development of the DDSky algorithm enables recommendations that dynamically adjust to individual 

user preferences in streaming data environments, ensuring real-time adaptability to changing user behaviors. 

Additionally, implementing parallel computing optimizes the efficiency of processing vast and continuously flowing 

data, allowing for seamless scalability and responsiveness. Moreover, the dynamic individual preference model 

incorporated within DDSky effectively captures and analyzes fluctuations in user preferences over time, enabling the 

system to refine its recommendations by evolving user interactions. These advancements collectively position DDSky 

as a robust and adaptive solution for real-time recommendation generation in dynamic data-driven applications. 
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The remainder of this paper is organized as follows: Section 2 reviews relevant literature on the Recency, Frequency, 

Monetary (RFM) model, and skyline queries in streaming data. Section 3 discusses the methodology. Section 4 presents 

and discusses the results. Section 5 concludes the study with recommendations for potential extensions and future 

research directions. 

2. Related Work 

2.1. Analysis of the RFM Model (Recency, Frequency, Monetary) 

The Recency, Frequency, Monetary model was first proposed by Hughes (1996), particularly in data-driven marketing 

strategies [17]. Since its introduction, the RFM model has been widely utilized to assess customer value and predict 

purchasing behavior. By evaluating three key attributes—recency, frequency, and monetary value—this model enables 

companies to identify customer segments with high potential for repeat purchases and significant contributions to 

overall revenue [18]. Recency measures the time interval between a customer's last and most recent purchase, with 

shorter intervals indicating higher engagement and a greater likelihood of future interactions with the company’s 

products or services. On the other hand, frequency reflects the number of transactions a customer completes within a 

given period, where a higher frequency signifies stronger customer loyalty and a deeper relationship with the brand. 

Meanwhile, monetary value represents the total amount a customer spends over a specific timeframe, helping 

businesses recognize high-value customers who generate substantial revenue. By leveraging these three dimensions, 

the RFM model provides a structured framework for organizations to segment their customers, optimize marketing 

efforts, and develop targeted retention strategies. Its ability to predict future purchasing patterns based on past behaviors 

makes it a valuable tool for enhancing customer relationship management and improving business performance [19]. 

Previous studies [20] validated the effectiveness of the RFM model, concluding that high recency (R) and frequency 

(F) values are positively correlated with a customer's likelihood of repeat transactions. Moreover, a high monetary 

value (M) is associated with an increased probability of purchasing products or services from the company. These 

findings underscore the relevance of the RFM model in identifying high-value customers and developing targeted and 

effective marketing strategies. In the context of streaming data, the RFM model holds significant potential, particularly 

for capturing real-time changes in individual user preferences. Given the dynamic nature of data processing, the 

attributes in the RFM model can serve as a foundation for developing adaptive and responsive individual preference 

models. This approach provides a robust basis for integrating the RFM model into streaming data-based 

recommendation algorithms, aimed at enhancing the relevance and personalization of recommendations, which is the 

core focus of this research.  

2.2. Skyline Query in Streaming Data 

Skyline query research has advanced rapidly, with various innovative approaches introduced to enhance computational 

efficiency, particularly for dynamic and large-scale data. The study in [21] proposed a framework that efficiently 

manages skyline queries in streaming data by periodically updating the index structure while considering the validity 

period of records. By incorporating time-aware indexing mechanisms, the proposed approach ensures that outdated 

records are efficiently removed, thereby maintaining the accuracy and relevance of skyline results in dynamic streaming 

environments. Other studies [22] introduced Parallel Real-time Skyline Segmentation (PRSS), a novel and more 

efficient approach for real-time applications. PRSS offers a faster and more scalable solution to address the challenges 

of processing streaming data using a sliding window approach on multicore 

A notable study [13] proposed local split decision (LSD) trees to accelerate skyline query computations on dynamic 

data. This structure enables efficient storage and pruning of irrelevant data, expediting repeated query processing. 

However, the LSD tree approach has limitations in adapting to dynamically changing individual preferences, 

particularly in real-time environments that require rapid responses to user preference changes. Furthermore, LSD Trees 

exhibit performance degradation when applied to high-dimensional data. Another study successfully implemented a 

multicore-based parallel model for continuous skyline queries on high-dimensional data [14]. Although effective in 

managing data complexity, this model does not account for dynamically changing individual user preferences, resulting 

in less personalized recommendations and less responsiveness to user preference shifts.   
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A study [15] proposed the Distributed Parallel Model (DPM) for skyline queries on uncertain data streams in cloud 

environments, emphasizing high scalability. The model significantly improved the performance by optimizing the load 

balancing and reducing the processing time. However, this approach does not incorporate mechanisms to update or 

adapt individual user preferences in streaming data, potentially diminishing the relevance of recommendations in 

personalization.  

Although these studies have contributed significantly to improving the computational efficiency of skyline queries, 

none have specifically addressed dynamically changing individual user preferences. The lack of adaptation to evolving 

user preferences limits the effectiveness of recommendations, particularly in streaming data environments that require 

real-time adjustments. This study aims to bridge this gap by developing an algorithm that dynamically adapts to 

individual user preferences, enhancing recommendations' relevance and quality. 

3. Methodology  

This study develops an algorithm called Distributed Data Skyline (DDSky) to generate recommendations based on 

dynamically changing individual user preferences. The algorithm was designed to address several limitations of 

previous research, particularly in handling dynamic individual user preferences. By leveraging streaming data 

processing, this new algorithm can produce more accurate recommendations that adapt to rapid preference changes, 

irrespective of time and user location. This framework is a significant advancement in the evolution of recommendation 

systems, with applications such as providing personalized recommendations for local Indonesian culinary options 

tailored to dynamic individual preferences. The workflow of the DDSky algorithm is illustrated in figure 1.  

 

 

Figure 1. DDSky Workflow. 

The DDSky algorithm processes the input from a user's transaction history. These historical transaction data are 

analyzed to identify individual user preferences using Algorithm 1. The identified individual preferences are then 

compared to the items available around the user's location to calculate the similarity. The similarity results are used as 

the preference attribute, which is subsequently processed along with the price and distance attributes through a skyline 

query. The three resulting attributes—price, preference, and distance—are processed parallel to identify skyline objects 

using Algorithm 2 on streaming data. Skyline processing is continuously performed upon receiving new data inputs, 

ensuring that recommendations remain responsive to dynamic individual user preferences. This parallel processing 

approach enhances the algorithm's efficiency in generating real-time personalized recommendations. 
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3.1. Development of the Individual Preference Recommendation Model 

The individual preference recommendation model was designed to capture the dynamic individual preferences of users. 

This model utilizes the recency, frequency, monetary value, and rating attributes from user transaction histories, 

collectively called RFMRT. The developed RFMRT model can process data in real time (streaming), accommodating 

changes in individual user preferences over time. The notations used in this recommendation model are presented in 

table 1. 

Table 1. Notations of the Individual Preference Recommendation Model (Algorithm 1) 

Dynamic individual user preferences can be formulated using Equation 1 :  

Pu,I,new = (Fu,I,new + Mu,I,new + RTu,I) − Ru,i (1) 

Algorithm for Individual User Preferences 

Algorithm 1 was developed to calculate the current preference value of user u for item I. 

 

Algorithm 1: Individual User Preference (user) 

No Notation Definition 

1 𝑢 User of the recommendation system, where 𝑢 = 1, 2, 3,…,𝑛;  𝑛 n is the total number of user. 

2 𝐼 Product (items)  recommended to the user, where 𝐼= 1, 2, 3, …, 𝑚; 𝑚  is the total number of products (items). 

3 𝑇 A series containing dates in the recommendation system, from the start of the transaction (𝑡1)  to the most 

recent transaction (𝑡𝑛𝑒𝑤).  In this case, 𝑇 = 𝑡1, 𝑡2, 𝑡3, … , 𝑡, … , 𝑡𝑛𝑒𝑤. 

4 𝑇𝐵𝑢,𝐼,𝑡 A time series corresponding to the time (HH:MM:SS) of item 𝐼 purchased by user 𝑢  at times 𝑇𝐵 =
𝑡𝑏1, 𝑡𝑏2, 𝑡𝑏3, … , 𝑡𝑏, … , 𝑡𝑏𝑛𝑒𝑤 

5 𝑓𝑢,𝐼,𝑡,𝑡𝑏 Frequency of user 𝑢 puchasing any item 𝐼  on date 𝑡 at time 𝑡𝑏 

6 𝐹𝑢,𝐼 The cumulative current frequency of user  𝑢 purchasing item 𝐼.  This represents the sum of frequencies from 

the start of transactions up to one transaction before the most recent transaction.  'Current' refers to the event 

on the current date (𝑡𝑛𝑒𝑤)  and at the current time 𝑡𝑏𝑛𝑒𝑤. 

7 𝑅𝑢,𝑖 The difference in days between the current date in the system 𝑡𝑛𝑒𝑤  and the last transaction date made by user 

𝑢 for item  𝐼; 𝑅𝑢,𝑖  is a non-negative integer. In practice, a user 𝑢 may make more than one transaction at  𝑡𝑛𝑒𝑤 

(transactions occurring on the same day but at different times) for the same item 𝐼.  In such cases, the value of 

𝑅𝑢,𝑖 is set to 0 (𝑅𝑢,𝑖 = 0). 

8 𝑀𝑢,𝐼 The current condition for the accumulation of money spent by user 𝑢 on item  𝐼 . 

9 𝑅𝑇𝑢,𝐼  The rating given by user 𝑢 to item 𝐼, recorded in the recommendation system at the time of the last transaction. 

The rating value can range from 1 to 5, where a higher number indicates a better condition. 

10 𝑃𝑢,𝐼 The current preference value of user 𝑢 for item 𝐼. 
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The current preference value of the user 𝑢 for item 𝐼 can be calculated using Algorithm 1. This algorithm takes inputs 

from the attributes 𝑅𝑢,𝑖,  𝐹𝑢,𝐼 , 𝑀𝑢,𝐼 , 𝑅𝑇𝑢,𝐼. The output of this algorithm is the current preference value of the user 𝑢 for 

item 𝐼  (𝑃𝑢,𝐼). The process begins by setting the value of u from 1 to n, where n is the number of users for whom the 

individual preferences are calculated. Next, the preference calculation for each user is performed for each item, 

considering the various factors that influence the preferences. Then, the preference for each item is calculated by 

summing the values of the attributes 𝐹𝑢,𝐼,𝑛𝑒𝑤, 𝑀𝑢,𝐼,𝑛𝑒𝑤, 𝑅𝑇𝑢,𝐼. The result of this sum is subtracted from the value of the 

attribute 𝑅𝑢,𝑖. Finally, the algorithm searches for the maximum value 𝑃𝑢,𝐼,𝑛𝑒𝑤 among all items to determine which item 

has the highest value. 

3.2. Parallel Skyline Query 

Skyline query processing is performed parallel to streaming data to efficiently generate recommendations tailored to 

dynamically changing user preferences. Algorithm 2 outlines the approach for executing skyline queries in parallel 

based on dynamic individual user preferences, leveraging the Distributed Parallel Model proposed in [15]. The 

notations used in Algorithm 2 are listed in table 2. 

Table 2. Notations of the Individual Preference Recommendation Model (Algorithm 1) 

Notation Definition 

𝐷𝑠 Data streams 

𝑊𝑖 Local sliding window, where 𝑖 = 1,2,3, … , 𝑛;  𝑛 is the total number of local sliding windows. 

𝑒𝑛𝑒𝑤 The newly arrived streaming object in 𝑊 

𝑒𝑜𝑙𝑑 The expired streaming object in W 

𝑆𝑖 Local skyline, where 𝑆𝑖 is the result of the skyline computation from the local sliding window 𝑊𝑖 

𝑆𝑔𝑙𝑜𝑏𝑎𝑙 
Global skyline, where 𝑆𝑔𝑙𝑜𝑏𝑎𝑙  is the result of the global skyline obtained from the combination of 

all local skylines 𝑆𝑖 

Algorithm 2 operates by distributing data streams (𝐷𝑠) into local sliding windows (𝑊𝑖), where 𝑖 ranges from 1 to 𝑛 

(1 ≤ 𝑖 ≤ 𝑛). Each local sliding window (𝑊𝑖) has a maximum capacity equivalent to the total number of sliding 

windows (𝑛). When the amount of data in a sliding window (𝑊𝑖) exceeds its maximum capacity, the oldest data item 

(𝑒𝑜𝑙𝑑) is removed to accommodate the new data item (𝑒𝑛𝑒𝑤). This removal adheres to the First-In, First-Out (FIFO) 

principle, ensuring that only the most recent data are retained for skyline computation. 

Using the First-In-First-Out technique to manage data within local sliding windows in real-time scenarios provides 

several advantages. The algorithm effectively reduces the computational load by systematically removing older data, 

as fewer items need to be processed in each iteration. This optimization significantly enhances the overall computation 

speed, ensuring the system operates more efficiently. Moreover, sliding windows keep the data constantly updated, 

directly improving the relevance of the information being processed. As a result, the recommendation outcomes are 

closely aligned with current user preferences, maintaining high accuracy and relevance. Additionally, by minimizing 

the volume of data the algorithm processes, response times are greatly improved. This mechanism enables the system 

to quickly adapt to user behavior and preferences changes, providing timely, precise, and real-time recommendations. 
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Algorithm 2: DDSky with Parallel Processing 

This process enables efficient parallel computation in each partition (𝑃𝑖), where skyline computation is performed for 

the local sliding window (𝑊𝑖). The results from all sliding windows (𝑊1, 𝑊2, … , 𝑊𝑛 ) are merged to form the global 

skyline, representing the final output. This merging ensures the algorithm efficiently generates recommendations based 

on user preferences in dynamic streaming data environments. By integrating the FIFO principle, the DDSky algorithm 

enhances computational efficiency. It ensures adaptability to real-time data processing requirements, making it an ideal 

solution for applications based on streaming data. 

3.3. Scenario of DDSky Algorithm Workflow 

Figure 2 depicts the operation of the DDSky algorithm. An individual user 𝑈1 performs purchase transactions involving 

five local culinary items 𝐼1, 𝐼2, 𝐼3, 𝐼4 dan 𝐼5,  while located at Location 1. Each transaction made by the user is stored in 

a system database. Based on the stored transaction history, the user's preference values were calculated using the 

RFMRT model, as outlined in Algorithm 1. This process generates the user's current preference value 𝑃𝑢,𝐼, where the 

items with the highest preference values reflect the user's primary preferences. 
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Figure 2. Scenario of DDSky Algorithm Workflow 

In this scenario, the primary preferences of 𝑈1 are 𝐼1, 𝐼2  and 𝐼4. User 𝑈1 then dynamically moves from Location 1 to 

Location 2. Upon arrival at Location 2, the system collects data on the available items, including attributes such as 

geographic coordinates (longitude and latitude), price, and distance from the user. Each item at Location 2 was further 

analyzed to measure its similarity with the user's individual preferences 𝐼1, 𝐼2  and 𝐼4. The results of this similarity 

analysis were used to compute the preference attributes for each item in location 2.  

Once the preference attributes are established, the system performs a skyline query process in parallel on streaming 

data using three main attributes: distance, price, and preference. The skyline query aims to filter optimal items where 

any other item across all attributes does not dominate each recommended item. The outcome of this process is a 

recommendation list for user 𝑈1 at Location 2, such as 𝐼6, 𝐼7  and 𝐼10, which satisfies the criteria of being close in 

distance, affordable in price, and aligned with the user's transaction history preferences. This scenario demonstrates 

how DDSky effectively handles dynamic user location changes and delivers relevant and responsive recommendations 

to individual user preferences. 

3.4. Parallelization Design 

This study proposes a DDSky algorithm to generate recommendations based on dynamic individual user preferences. 

The skyline query process is executed parallel to handle rapidly changing and large-scale data, leveraging 

multithreading parallel computing technology to enhance the speed and efficiency of streaming data processing. The 

DDSky algorithm uses a distributed parallel model and employs Apache Kafka technology for real-time data 

processing. Specifically, the framework for parallel processing is illustrated in figure 3, which consists of three types 

of nodes for parallel skyline query processing on streaming data: Monitor Node (M), Partition Node (P), and Query 

Node (Q).  

 

Figure 3. Parallel Skyline Query Processing Framework 
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The monitor node (M) is responsible for transmitting streaming data (DS= … , 𝑒6, 𝑒5, 𝑒4, 𝑒3, 𝑒2,𝑒1, 𝑒0) produced by the 

data producer before it enters the parallel computation nodes 𝑃𝑖. For each incoming data point 𝑒0, 𝑒1, 𝑒2, … , 𝑒𝑛, the 

monitor node performs the following tasks: Assigns a  timestamp (𝑒𝑎𝑟𝑟)  to each data point corresponding to the current 

system time, and Distributes each data point  𝑒0, 𝑒1, 𝑒2, … , 𝑒𝑛  to a specific partition node (𝑃𝑖) for individual preference 

computation and skyline query processing, respectively. This process continues until the internal time of the data point 

reaches its expiration time  𝑒𝑒𝑥𝑝 =  𝑒𝑎𝑟𝑟 + 𝑁, where N denotes the size of the sliding window. Once the data is 

allocated, the Partition Nodes (𝑃𝑖) take over the computational workload. These nodes are responsible for processing 

user preferences and executing parallel skyline queries based on the assigned data. Each partition node maintains its 

own sliding window, ensuring that only relevant and recent data is considered in real-time processing. This localized 

data management strategy enhances efficiency by minimizing the computational overhead while maintaining high 

accuracy in preference calculations and skyline query results. The final stage of the process is managed by the Query 

Node (Q), which continuously gathers skyline results from all partition nodes and consolidates them into a final output 

for the end user. By aggregating results from multiple sources, the query node ensures that recommendations are 

comprehensive and reflect the most relevant data. This distributed, and parallel processing framework enables the 

DDSky algorithm to efficiently adapt to the demands of real-time dynamic data environments, delivering personalized 

recommendations with high responsiveness and precision. The system maintains its ability to process large-scale 

streaming data through this systematic approach while ensuring optimal performance and user satisfaction. 

4. Experimental Evaluation 

In this study, the evaluation was divided into two scenarios. The first evaluation aimed to measure the accuracy of the 

DDSky algorithm using precision, recall, and F1 measure metrics. The second evaluation focused on the computation 

time required by the DDSky algorithm to generate skyline objects. The results of the accuracy and computation time 

produced by the DDSky algorithm were compared with those of other algorithms. 

4.1. Dataset 

This study uses a dataset of local culinary profiles, local culinary vendor profiles, and user transaction histories sourced 

from the JALITA (Jajanan Asli Nusantara Pintar) application. JALITA is a mobile-based application for a local 

culinary recommendation system based on individual user preferences. Another dataset consists of individual user 

preferences from a questionnaire distributed to users. The JALITA application is a mobile-based recommendation 

system for Indonesian local cuisines based on user preferences. 

4.2. Accuracy Evaluation of the DDSky Algorithm 

Accuracy evaluation uses recall, precision, and F1 metrics, which have been applied previously in the research [23]. 

The definitions and equations used for each of the metrics are as follows: 

Precision was defined as the percentage of items recommended by the user. Precision measures how well a system 

recommends relevant and liked items. The precision calculation method for precision is given in Equation (2). 

precision =  
|prefered ∩ recommended|

recommended
  (2) 

Recall is defined as the percentage of liked items that are recommended. Recall measures how well a system 

recommends items that the user truly likes. The calculation method for recall is given by Equation (3). 

𝒓𝑒𝑐𝑎𝑙𝑙 =  
|𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑑 ∩ 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑|

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑑
  (3) 

F1-measure is a balanced combination of precision and recall. The F1-measure combines the precision and recall 

metrics into a single value that provides an overall view of the algorithm's performance of the algorithm. The 

calculation method for the F1-measure is given by Equation (4). 

F1 =  
2∗recall∗precision

recall+precision
  (4) 

Where preferred are items liked by the user, and recommended are the set of skyline objects produced by the algorithm. 
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In the accuracy evaluation, this study compared the DDSky algorithm with the Eager parallel processing algorithm 

[14]. Both algorithms share fundamental similarities, as they are designed to process skyline queries in streaming data 

environments, requiring time efficiency and adaptability to real-time data changes. DDSky and Eager implement 

parallel processing techniques to handle large-scale streaming data, enabling both to achieve high performance in 

dynamic data scenarios. Additionally, both algorithms utilize a sliding window model to limit the data processed within 

specific intervals, ensuring that only relevant data is considered. The output of both algorithms is a skyline set 

comprising optimal objects based on user preferences. 

The testing was performed by comparing the recommendation outputs of both algorithms against test data reflecting 

actual user preferences in dynamic streaming data scenarios. Identical datasets ensured evaluation parity, with 

normalized attributes to standardize value scales. The accuracy results for the DDSky algorithm are presented in table 

3, demonstrating its superiority in capturing dynamic user preferences. Conversely, table 4 provides the evaluation 

results for the Eager algorithm, which excels in processing efficiency but is less responsive to changes in user 

preferences. This comparison offers a comprehensive overview of the strengths and weaknesses of each algorithm in a 

streaming data environment. 

Table 3. Accuracy Evaluation Results for the DDSky Algorithm 

Table 4. Evaluation of the accuracy results of the Eager algorithm 

UserID intersection prefered recommended precision recall F1 

4 4 53 4 1.00 0.08 0.14 

5 4 40 4 1.00 0.10 0.18 

6 3 30 4 0.75 0.10 0.18 

..... ..... ..... ..... ..... ..... ..... 

46 3 31 4 0.75 0.10 0.17 

47 2 47 4 0.50 0.04 0.08 

48 1 21 4 0.25 0.05 0.08 

average  0.82 0.08 0.15 

The results shown in figure 4 indicate that DDSky achieves a precision of 0.73, a recall of 0.45, and an F1-measure of 

0.55. In contrast, the Eager algorithm, which emphasizes distributed and parallel processing without considering 

individual user preferences [14], demonstrates a precision of 0.82, a recall of 0.33, and an F1-measure of 0.47. Based 

on the accuracy evaluation of the two algorithms, while DDSky exhibits a slightly lower precision value, its primary 

focus lies in the ability to capture dynamic individual user preferences in real-time. This decrease in precision occurs 

because DDSky is designed to broaden the scope of recommendations by adapting to changes in dynamic individual 

user preferences. However, this may result in some less relevant recommendations. An increase in recall often 

UserID intersection prefered recommended precision recall F1 

4 5 53 6 0.83 0.09 0.17 

5 5 40 6 0.83 0.13 0.22 

6 5 30 7 0.71 0.17 0.27 

..... ..... ..... ..... ..... ..... ..... 

46 4 31 9 0.44 0.13 0.20 

47 4 47 7 0.57 0.09 0.15 

48 1 21 4 0.25 0.05 0.08 

average 0.73 0.11 0.19 
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negatively affects precision. This phenomenon arises because adding more items to the recommendation list increases 

the likelihood of capturing relevant items (enhancing recall) and raises the risk of including irrelevant items, thereby 

reducing precision [24]. Nevertheless, the improved recall value indicates that the algorithm is more responsive to 

encompassing items that align with user preferences, making it more adaptive to changes caused by temporal and 

locational factors. This trade-off is acceptable in systems based on dynamic preferences, where responsiveness and 

adaptability are prioritized to enhance the relevance and personalization of recommendations. 

 

Figure 4. Comparative analysis of performance metrics between the DDSky and Eager algorithms. 

4.3. Throughput Evaluation 

The second scenario in this evaluation was the throughput testing of the DDSky algorithm. We used a synthetic dataset 

of various types to test throughput, including independent, correlated, and anticorrelated data. These different dataset 

types were used to assess the performance of the DDSky algorithm under various data conditions. Throughput is 

measured to determine how efficiently DDSky processes large volumes of data with diverse types while ensuring that 

the improvement in recommendation quality does not come at the cost of the algorithm's performance in terms of 

processing speed. The throughput evaluation results for the DDSky algorithm are shown in figure 5. 

 

Figure 5. Throughput Evaluation Results for DDSky 

The evaluation results indicate that DDSky's performance varies owing to the differing distribution characteristics of 

each data type, which impacts the computational load of the algorithm. Correlated data exhibit mutually supportive 

patterns among attributes, leading to quicker dominance in skyline processing and achieving optimal throughput at 

6,000 data points. However, beyond this optimal point, the reduced number of skyline candidates causes a decline in 

throughput. In contrast, anticorrelated data, where attributes conflict with one another, increase the number of skyline 

candidates needing processing. This results in a higher throughput than correlated data, although the optimal pattern 
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remains similar. For independent data, where attribute distributions lack specific patterns, DDSky requires more time 

to identify the skyline, gradually increasing throughput at 8,000 data points.  

This throughput variation indicates that DDSky's performance is influenced by the complexity of the dominance 

relationships among data objects, which heavily depends on the distribution of the processed data types. These findings 

underscore DDSky's ability to handle various data distribution patterns efficiently, ensuring consistent performance for 

large-scale datasets of up to 10,000 objects without significant throughput degradation. These results confirm DDSky's 

capability to maintain efficient skyline computation in diverse and dynamic streaming data environments. 

5. Conclusion 

This study has developed the DDSky algorithm, which is designed to provide recommendations based on the dynamic 

individual preferences of users of streaming data. The results show that DDSky outperforms the Eager algorithm, with 

an average recall of 0.11 and an F1 measure of 0.19, surpassing Eager, which has a recall of 0.08 and an F1 measure 

of 0.15. This result indicates that DDSky generates accurate and relevant recommendations more effectively. 

Additionally, the study successfully developed the RFMRT model, which can identify individual user preferences using 

transaction history and user ratings data. 

The main contribution of this study is the development of a skyline query algorithm that can adapt to dynamic user 

preferences in the context of streaming data. However, this study had several limitations. Its focus is confined to local 

Indonesian culinary recommendation systems, leaving the application of DDSky in other domains, such as e-

commerce, social media, and retail business, unexplored in depth. These domains hold significant potential for 

leveraging DDSky, for instance, by recommending relevant retail products based on customers' purchase histories or 

curating personalized media content aligned with users' dynamically evolving preferences. 

Therefore, future research is recommended to test the application of the DDSky algorithm in various other domains to 

evaluate its flexibility and to integrate the individual preference model with machine learning to improve the prediction 

capabilities and adaptability to changes in user preferences. Evaluations in more complex real-time scenarios are also 

suggested to ensure the algorithm's effectiveness under real-world conditions. Further studies should also focus on 

improving the scalability and performance of the algorithm in handling huge data volumes by developing additional 

optimization techniques and more advanced data processing strategies. Thus, the recommendations generated will be 

more relevant and responsive to real-time changes in user preferences. 
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