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Abstract

The problem of undecided Separating reverberant audio sources is crucial for speech and audio processing. Numerous separation
strategies have been developed to solve this problem; however, all of them estimate model parameters in the time–frequency
domain, resulting in permutation ambiguity and poor separation performance. Additionally, one of the main challenges with
existing expectation–maximization (EM) strategies is the time needed for each iterative step to update the model parameters. In
this article, we offer an enhanced EM approach that combines nonnegative matrix factorization (NMF) with time differences of
arrival (TDOA) estimations while eliminating time expenditure to the EM algorithm's starting values being appropriately
selected. The suggested approach avoids permutation ambiguity by using the NMF source model, and acoustic localization is
accomplished by converting the TDOA. Following that, model parameters are changed to improve separation outcomes. Finally,
Wiener filters are used to separate the source signals. The experimental findings indicate that the suggested algorithm
outperforms current blind separation approaches in terms of source separation.

Keywords: TDOA; Expectation-Maximization; Audio-Source Separation; Data Mining

1. Introduction
Source blind separation (BSS) aims to separate the original source signal from the recorded mix [1]. For acoustic
signals in natural environments, for example to solve cocktail party problems [2], the mixing process is generally
considered to be convolutive. A more difficult situation arises when the number of source signals exceeds the number
of microphones; however, the situation is not highlighted in this case, and the mixing condition is repeatedly applied
to the signals. In this context, the undefined convolutive BSS has been identified as a serious issue in speech and
audio processing that requires more investigation.

ICA is a method that is the conventional strategy for handling BSS difficulties in the stated or prescribed situation,
which is when the number of source signals is less than or equal to the number of microphones. ICA is also known as
independent component analysis (ICA) in certain circles. ICA is based on the assumption of source component
independence. Many ICA-based algorithms have been applied in various fields, such as biomedical, audio,
mechanical engineering [3]. In the underdetermined case, sparse component analysis (SCA) is a feasible method
based on the assumption that only one source is active in each time-frequency slot, and has been an effective method
in blind deconvolution [4-5].

In addition, BSS problems are usually solved using a time-frequency domain approach [1,6,7], in which the observed
signal in the time domain is converted into the frequency domain using a short time Fourier transform (STFT). This
leads to permutation ambiguity and a source that is suboptimal splitting efficiency. To circumvent this permutation
issue, multiple approaches based on non-negative matrix factorization (NMF) have been proposed for BSS [8], where
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the NMF model is used to simulate the resource spectrum density matrix This is because the NMF source model
requires frequency band merging, which resolves the problem of permutation ambiguity. Additionally, an
expectation-maximization (EM) technique is used to update and estimate the model parameters, and a Wiener filter is
used to separate the source signals from the model parameters. EM, on the other hand, is a very sensitive technology
to beginning values, resulting in suboptimal source separation performance. A combined TDOA and NMF estimation
EM algorithm was developed. To begin, we used generalized cross-correlation with the phase transformation
approach (GCC-PHAT) to estimate the source TDOA [3]. Following that, the mixing filter may be calculated using
the TDOA approach. Additionally, the IS-NMF technique was used to generate the starting value for the NMF
parameter [9]. We employ the fundamental truth parameter in the simulation, as it has been used in numerous
comparable research' experiments [10]. The paper's primary contribution is to merge the TDOA estimating technique
with the EM algorithm, eliminating the ambiguity of source permutations while addressing the EM algorithm's
starting value issue. Additionally, one of the significant drawbacks of the present EM technique is the time required
to update the model parameters at each iterative step. As a result, our suggested technique attempts to integrate the
NMF and TDOA predictions in order to minimize time consumption associated with the EM algorithm's starting
values selection. Finally, we compare our proposed algorithm's separation quality to that of advanced
approaches.Meanwhile, we consider the defined cases and compare with the blind separation algorithm [9,10,16]. In
the underdetermined case, we compare with the algorithm [11,12], and the source separation performance is
improved according to the simulation results.

2. Literature Review

Let's use to express the STFT of the ith source 𝑠𝐼  ( 𝑓 ,  𝑛), 𝑖 =  1,...,  𝐼 𝑑𝑎𝑛  𝑥( 𝑓 ,  𝑛) =  [𝑋
1
( 𝑓 ,  𝑛),  𝑋

2
( 𝑓 ,  𝑛)]  𝑇

and its mixing, , where I signifies the number of source signals and f = 1,..., F denotes the frequency of the source
signals.and time frame bin indexes, respectively. As a result, the model of source mixing may be represented as [3].

(1)𝑥( 𝑓 ,  𝑛) =  
𝐼=1

𝐼

∑ 𝑑 ( 𝑓 , τ
𝑖

)𝑆
𝑖

( 𝑓 ,  𝑛) +  𝑏( 𝑓 ,  𝑛) 

Where

(2)𝑑( 𝑓 , τ
𝑖

) =  [1,  𝑒 −2 𝑗π 𝑓 τ𝑖 ]  𝑇

is a vector for mixing, and encapsulates additive noise based on Gaussian independent assumptions, stable 𝑏( 𝑓 ,  𝑛) 

and spatially uncorrelated noise for simplicity, such that . The purpose of this research is to𝑏( 𝑓 ,  𝑛) ~𝑁
𝑐
(0,  σ2)

reconstruct the source signal using the observed signal's time-frequency domain.

without knowledge of the mixing vector in advance . In the last step𝑥( 𝑓 ,  𝑛) =  [𝑥
1
( 𝑓 ,  𝑛),  𝑥

2
( 𝑓 ,  𝑛)]  𝑇 𝑑( 𝑓 ,  τ

𝑖
)

of source recovery, the obtained source signal, is required to be converted into areversing𝑆
𝐼
 ( 𝑓 ,  𝑛), 𝑖 =  1,...,  𝐼,

STFT operation in the time domain.

In order to get started, let's refer to S as the audio source, and M1 and M2 as the two microphones that were utilized
throughout the recording process. owing to the distance between the two microphones and the source, the sound
waves produced by the S source arrive to the two microphones with a delay (TDOA). If we take the far-field
assumption, the delay is proportional to the angle of incidence (considering sound waves as "plane waves")

(3)α =  𝑎𝑟𝑐𝑐𝑜𝑠 𝑐τ
𝑑( )
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where c denotes the sound speed and d denotes the microphone separation (Fig. 1). Depending on the number of
microphones and the angle of arrival, the TDOA is calculated as follows.

(4)τ𝑖 =  𝑑𝑛
𝑐  𝑐𝑜𝑠(α𝑠𝑖)

Figure. 1. Arrival angle of a sound source as determined by TDOA

As a result, the mixing vector may be expressed as follows:

𝑑( 𝑓 ,  τ
1
) =  [1,  𝑒−2 𝑗π 𝑓 τ1 ] 𝑇 

(5)𝑑( 𝑓 ,   τ
2
) =  [1,   𝑒−2 𝑗π 𝑓 τ2  ] 𝑇   

𝑑( 𝑓 ,   τ
3
) =  [1,   𝑒−2 𝑗π 𝑓 τ3  ] 𝑇   

As a result, the mixing matrix may be calculated as follows:
(6)𝑑( 𝑓 , τ) =  [𝑑( 𝑓 ,  τ

1
),  .  .  .  ,  𝑑( 𝑓 ,   τ

1
)]

Moreover, We begin by assuming that the underlying model may be stated as

(7) |𝑠
𝑖
| 2 ≈ 𝑊

𝑖
𝐻

𝑖
 

where represents the STFT matrix of the i-th source, is the fundamental dictionary matrix,𝑠
𝐼 
ϵ 𝑅𝐹 × 𝑁 𝑊

𝑖 
ϵ 𝑅𝐹 × 𝑁

is the matrix of activation. Additionally, every source confirms this.𝐻
𝐼 
ϵ 𝑅𝐾 × 𝑁

(8)𝑠
𝑖
( 𝑓 ,  𝑛) ∼ 𝑁

𝐶
 0,  

𝐾 = 1

𝐾

∑  𝑤
𝑖
( 𝑓 ,  𝑘)ℎ𝑖(𝑘,  𝑛) ( )

The elements of Wi and Hi are represented by the variables Wi (for fibonacci) and Hi (for kernel). As a result, we
make the assumption that the components are independent throughout the frequency bins of interest (f and n). As a
result, the maximum likelihood estimates wi(f, k) and hi(k, n) of Si are obtained by reducing the maximum likelihood
estimates.

− 𝑙𝑜𝑔  𝑃(𝑆
𝑖
|𝑊

𝑖
 , 𝐻

𝑖
)

(| | + cst (9)=
𝑛=1

𝑁

∑
𝑓=1

𝐹

∑ 𝑑
𝐼𝑆

𝑠
𝑖
( 𝑓 ,  𝑛) 2|

𝐾=1

𝐾

∑ 𝑤
𝑖
( 𝑓 ,  𝑘)ℎ𝑖(𝑘,  𝑛)
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where P represents the probability density function, cst represents the constant term, and dIS represents the Itakura
Saito divergence [11]

(10)𝑑
𝑖𝑠

(𝑎|𝑏 =  𝑎
𝑏 − 𝑙𝑜𝑔 𝑎

𝑏 − 1

Therefore, Widan ML estimation represents the NMF decomposition from its power spectrogram. To get better
source separation results, model parameters need to be updated using the EM algorithm [13]. To keep things simple,
we've omitted (f, n) from each item. The following table summarizes all revised formulations:

(11)𝑑
𝑗𝑖 

=  
1
𝑁 ∑

𝑛
𝑥

𝑗
𝑆

𝑗𝑖

1
𝑁 ∑

𝑛
𝑆

𝑗𝑖
𝑆

𝑗𝑖
𝐻 + 𝑅

𝑆𝑗𝑖
− 𝑅

𝑆𝑗𝑖
𝑑

𝑗𝑖
𝐻𝑅

𝑥𝑗
−1𝑑

𝑗𝑖
𝑅

𝑆𝑗𝑖

(12)𝑤
𝑖 

=  1
𝑁  

𝑛
∑

𝑛
𝑆

𝑗𝑖
𝑆

𝑗𝑖
𝐻 + 𝑅

𝑆𝑗𝑖
− 𝑅

𝑆𝑗𝑖
𝑑

𝑗𝑖
𝐻𝑅

𝑥𝑗
−1𝑑

𝑗𝑖
𝑅

𝑆𝑗𝑖

ℎ
𝑖

(13)ℎ
𝑖 

= 1
𝑁  

𝑛
∑

𝑆
𝑗𝑖

𝑆
𝑗𝑖
𝐻 + 𝑅

𝑆𝑗𝑖
− 𝑅

𝑆𝑗𝑖
𝑑

𝑗𝑖
𝐻𝑅

𝑥𝑗
−1𝑑

𝑗𝑖
𝑅

𝑆𝑗𝑖

𝑤
𝑖

Where ] and . The source signal is then reconstructed using Wiener filtering.𝑅
𝑠𝑗𝑖

=  𝐸[ 𝑆
𝑗𝑖

𝑆
𝑗𝑖
𝐻 𝑅

𝑥𝑗
=  𝐸[ 𝑥

𝑗
𝑥

𝑗
𝐻]

(14)𝑆
𝑗𝑖

(𝑓, 𝑛) =  
𝑑

𝑗𝑖
(𝑓,𝑓)(∑

𝐾=1
𝐾 𝑤

𝑖
(𝑓,𝑘)ℎ

𝑖
(𝑘,𝑛))𝑥

𝑗
(𝑓,𝑛)

𝑣
𝑗(𝑓,𝑛)

is the component of the j mixture's reconstructed I source. is the element of𝑆
𝑗𝑖

(𝑓, 𝑛) 𝑣
𝑗
( 𝑓 ,  𝑛) (𝑓, 𝑛)

. A more detailed explanation is given in [14]. Finally, the source signal is converted to a𝑣
𝑗

= ∑
𝑖
1 = 1𝑑

𝑗𝑖
𝑊

𝑖
𝐻

𝑖

time domain signal. obtained by using the inverse Fourier transform.

3. Research Model
The separation performance is mainly discussed using the signal-to-distortion ratio (SDR) and signal-to-interference
ratio (SIR) [15], which are two effective evaluation measures for comparing source separation performance. We need

information.the actual source of the image for theI and microphone are sources with I = 1,... j = 1,..., J,𝑆
𝑖𝑗
𝑖𝑚𝑔(𝑡)

followed by the approximate can be expressed as:𝑆
𝑖𝑗
𝑖𝑚𝑔(𝑡)

(15)𝑆
𝑖𝑗
𝑖𝑚𝑔(𝑡) = 𝑆

𝑖𝑗
𝑖𝑚𝑔(𝑡) +  𝑦

𝑖𝑗
𝑠𝑝𝑎𝑡(𝑡) + 𝑦

𝑖𝑗
𝑖𝑛𝑡𝑒𝑟𝑓(𝑡) + 𝑦

𝑖𝑗
𝑎𝑟𝑡𝑖𝑓(𝑡)

where , and are error components that, respectively, indicate spatial distortion, 𝑦
𝑖𝑗
𝑠𝑝𝑎𝑡(𝑡) 𝑦

𝑖𝑗
𝑖𝑛𝑡𝑒𝑟𝑓(𝑡) 𝑦

𝑖𝑗
𝑖𝑛𝑡𝑒𝑟𝑓(𝑡)

interference, and artifacts. As a result, the SDR is represented as follows:

(16)𝑆𝐷𝑅
𝑖 

=  10𝑙𝑜𝑔
10

∑
𝐽=1
𝐼 ∑

𝑡
 𝑆

𝑖𝑗
𝑖𝑚𝑔(𝑡) 2

∑
𝐽=1
𝐼 𝑦

𝑖𝑗
𝑠𝑝𝑎𝑡(𝑡)+𝑦

𝑖𝑗
𝑖𝑛𝑡𝑒𝑟𝑓(𝑡)+𝑦

𝑖𝑗
𝑎𝑟𝑡𝑖𝑓(𝑡) 2

and SIR is expressed as:
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(17)𝑆𝐼𝑅
𝑖 

=  10𝑙𝑜𝑔
10

∑
𝐽=1
𝐼 ∑

𝑡
( 𝑆

𝑖𝑗
𝑖𝑚𝑔(𝑡)+𝑦

𝑖𝑗
𝑠𝑝𝑎𝑡(𝑡))

2

∑
𝐽=1
𝐼 ∑

𝑡
𝑦

𝑖𝑗

𝑖𝑛𝑡𝑒𝑟𝑓(𝑡)) 2

3.2. Conditions of Experimentation and Separation Outcomes
3.2.1. Conditions of Experiment
We conducted numerical tests to assess the suggested algorithm's performance. The data were taken from the UCI
Machine Learning Repository's "Underdetermined speech and mixed music" data set [16]. Table 1 summarizes the
most frequently used experimental parameters.

3.2.2. Separation as a Result of a Specific Case
To begin, we examine the specified situation, that is,I equals 2, J equals 2. The microphone is located 5 cm from the
source, the reverberation time is between 50 and 750 milliseconds, and the source is located 50 centimeters from the
microphone. Figures 2 and 3 illustrate the simulation findings.

Table. 1. Typical experimental parameterization

Sources = 2, 3 or 4𝐼

Channel count = 2𝐽

Rate of sampling 16 kHz

Spacing between microphones 5 cm or 1 m

Types of sources Speech and music

Time of reverberation T60 = 50 ms ∼ 750 ms

Function of the window Hanning window

STFT frame dimensions 2048 sample (128 ms)

The rate of propagation 343 m/s
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Figure. 2. The average SDR of two source mixes is 5 cm, while the standard deviation is 5 cm. as is the microphone
spacing.

Figure. 3. Two source combinations averaged at five centimeters SIR.

So, in this study we assume the distance between the source and the microphone is 1 m. The results of the simulation
are shown in Figures 4 and 5.

Figure. 4. The average SDR of two source mixes is 1 m, as is the microphone spacing
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Figure. 5. The average SIR of two source mixes is one meter, and the microphone spacing is one meter as well

3.2.3. Separation Occurs in Uncertain Cases
Second, we investigate the undecided scenario, with RT60 = Reverberation time is either 130 ms or 250 ms. Tables 2,
3, and 4 illustrate the outcomes of the simulations, respectively.

Table. 2. SDR assessment of the SiSEC 2017 dataset on an average basis for the situation of three speech source
mixes

Data Range Casing RT60 Speech
type

Proposed

Dat1 8 cm = (3,𝐼, 𝐽
2)

130 ms Woman 1.17 7.27 6.50 7.10 9.81

Man 3.33 6.42 5.83 7.11 8.20

250 ms Woman 3.19 5.80 5.10 5.63 9.13

Man 3.50 4.82 4.23 5.41 7.82

Table. 3. An average-based SDR evaluation of the SiSEC 2017 dataset was performed for the condition of four
different speech source combinations

Data Range Casing RT60 Speech
type

Proposed

Dat1 8 cm = (4,𝐼, 𝐽
2)

130 ms Woman 2.52 4.31 3.1 4.50 9.45

Man 2.32 3.76 3.37 4.16 7.52

250 ms Woman 1.48 3.56 3.43 3.55 8.16

Man 1.12 3.13 2.68 3.59 6.70
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Table. 4. Evaluation of the SiSEC 2017 dataset on an average basis for three different audio source combinations
using SDR techniques

Data Range Casing RT60 Speech
type

Proposed

Dat2 3 cm = (3,𝐼, 𝐽
2)

Sync Woman -2.75 1.31 2.67 4.10 8.12

Man 0.36 1.16 2.60 4.50 9.37

Live Woman 1.18 6.21 7.22 8.29 8.60

Man 0.48 2.31 3.70 5.71 9.50

3.2.4. A Robust Investigation of the Movement of the Light Source
We next tested the dependability of our suggested approach for recording source movement bits by recording the
three sources s1, s2, and s3 in the simulation space shown in Figure 6 and comparing them to the results. The space
measures 6,046 m4,562 m2,535 m and has a reverberation time that has been defined. 250 milliseconds and a
microphone distance of 5 cm were used in this experiment. Positions of microphones are as follows: [3,000 meters
2,000 meters 1,500 meters], [3,050 meters 2,000 meters 1,500 meters], starting positions of sources are as follows:
[3.015 meters 3.226 meters 1.193 meters], [2.415 meters 3.226 meters 2.183 meters], and [2.405 meters 2.226 meters
1.183 meters], and final positions of sources are as follows: [4.015 meters 3.226 meters 1.193 meters], [3.415 meters
3.226 meters 2.183 meters], and Additionally, we studied the separation performance by measuring SDR and SIR in a
short 200 ms segment and comparing the results to the baseline. The scores from each segment are averaged over all
segments, and the resulting average is used to assess overall performance. The metrics are referred to as segmental
SDR (SSDR) and segmental SIR (segmental SIR) (SSIR). Short-term objective clarity (STOI) measures [17] and
frequency-weighted segmental radio signal-to noise ratios [18] are two more metrics that are not
segmentation-dependent but may be used in conjunction with each other. The results of the experiment are shown in
Figure 7.

Figure. 6. SSDR, SSIR, STOI, and fwSegSNR were used to quantify separation performance.
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4. Result and Discussion
To begin, we examine the described scenarios and compare the proposed approach to the full-rank algorithm [19], the
FastICA algorithm [20], and the independent low-level matrix analysis (ILRMA) algorithm [21]. According to Figs.
2, 3, 4, and 5, the The mean SDR and SIR drop with increased reverberation the mean SDR and SIR decrease with
increasing reverberation the reverberation the reverberation duration. Other methods' splitting performance is
noticeably worse when the reverberation period exceeds 250 ms. Nonetheless, our technique is successful, indicating
that our method achieves a higher level of separation performance.

Second, we investigate the undecided scenario and compare the proposed approach to the current algorithm [22-24].
The tables 2, 3, and 4 summarize the mean SDR values derived using the various approaches. It is observed that our
suggested technique improves the SDR by an average of 1.77 dB, 1.08 dB, 3.18 dB, and 2.41 dB for the three sound
source mixes, respectively, when compared to the existing best results. The SDR rose by an average of 4.91 dB, 3.39
dB, 4.63 dB, and 3.11 dB for the four mixed sound sources. They increased the SDR by an average of 4.92 dB, 4.86
dB, 0.31 dB, and 3.81 dB for the three music source mixes, respectively.

Thirdly, we analyze the suggested algorithm's resilience to minor Source motions are described in detail below.
According to Fig. 6, the separation achieved by our recommended strategy is larger than that achieved by the
full-rank algorithm. SSDR, SSIR, STOI, and fwSegSNR, for example, get a 0.80 dB boost, a 1.14 dB boost, a 0.11
dB boost, and a 2.27 dB boost, depending on the signal. These findings demonstrate that the suggested approach is
resilient to source relocation of a minor magnitude. Finally, we evaluate the suggested algorithm's computational cost
and some of its shortcomings. Multiplying matrices, for example, is one of the most time-consuming processes in
many EM algorithms., in (11), whose complexity of computation is , and J denotes the𝑅

𝑥𝑗 
= 𝑑

𝑗𝑖 
.  𝑅

𝑠𝑗𝑖 
. 𝑑

𝑗𝑖 
 𝑂(𝐽3)

microphone's serial number. We have lowered the computational cost of our approach correspondingly. , where𝑂 (𝐼2)
I cite the source. The following explains why. Calculating the inversion of the current EM algorithms the matrix𝑅

𝑥𝑗 

in each time-frequency slot takes approximately . The explicit matrix inverse formula developed by Gamers𝑂(𝐽3)
was modified by reversing the order of the coefficients, in contrast to the current technique matrix per𝑅

𝑥𝑗 
 ϵ 𝑅2 × 2 

time-frequency slot and simply vectorizing the resulting matrix. The diagonal elements of the matrix are the only
ones that need to be calculated in this manner on (11) and the computational complexity is𝑅

𝑠𝑗𝑖 
 = 𝐸[𝑆

𝑗𝑖
𝑆

𝑗𝑖
𝐻]ϵ 𝑅1 × 1

related linearly to the number of sources I. Thus, the computational cost of can be reduced to 𝑅
𝑥𝑗 

= 𝑑
𝑗𝑖 

.  𝑅
𝑠𝑗𝑖 

. 𝑑
𝑗𝑖 

 

It is associated with the source code I. To show our computational advantage, we used synthetic tests to𝑂(𝐼2).  
compare the running time of the proposed approach to that of the classic EM algorithm. For these situations, the
suggested technique takes around 18.5 minutes and the classic EM algorithm takes approximately 23.5 minutes per
500 iterations, respectively. It is shown that our suggested approach outperforms the conventional EM algorithm in
terms of time and cost.

5. Conclusion
We provide an improved EM technique for undefined convolutive BSS that incorporates TDOA and NMF estimate
approaches in this article. The mixing filter was detected using the TDOA estimation approach, and permutation
ambiguity was handled using the NMF source model. A series of experiments demonstrate that the upgraded EM
algorithm outperforms the comparable separation method in terms of source separation performance. Additionally,
we evaluate a variety of potential study avenues. To begin, we compare the proposed technique, as well as the
resilience of the full-rank algorithm to even little source mobility. Despite the fact that the path from source to
microphone has changed dramatically over time, distinguishing moving sources has remained a tough challenge.

S. Slehat / JADS Vol. 3 No. 1 2022



Journal of Applied Data Sciences
Vol. 3, No. 1, January 2022, pp. 44-54

ISSN 2723-6471
53

Second, more investigation into the difficulties of monitoring a large number of speakers who are always moving in
an interior setting is equally challenging. To summarize, this will be the subject of our future study.
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