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Abstract 

Automating the detection of the COVID-19 pandemic has become necessary for assisting radiologists and medical practitioners in the diagnosis 

process. It enables them not only to save time through early diagnosis but also to ensure that they are making more accurate diagnoses. Therefore, 

this research presents a novel approach for automatically identifying COVID-19 in chest X-ray images by utilizing the EfficientNetV2-XL model 

in combination with the Rectified Adam optimizer for training. For conducting the experiments, we used the dataset available on Kaggle, known 

as the COVID-19 Radiography Dataset. The totality of this dataset was 21,165, and it included four patterns: COVID-19, viral pneumonia, lung 

opacity, and normal cases. The dataset was divided into 80% training and 20% testing. The preprocessing stage included resizing images to 512 

× 512 pixels and then applying data augmentation techniques to enhance model robustness. Consequently, a fine-tuned multiclass categorization 

system was implemented. The proposed system's effectiveness is evidenced by the experimental outcomes, which show a 99.31% accuracy rate 

and a perfect Area Under the Curve score of 1 for identifying COVID-19. Additionally, the Score-CAM visualization method was utilized to 

enhance the interpretability of model predictions, identifying key regions within the chest X-ray images that influence the classification outcome. 

This Localization technique aids healthcare professionals in understanding the reasoning behind the model and confirming the accuracy of the 

diagnosis. The proposed system outperformed the state-of-the-art models for COVID-19 detection. 

Keywords: Multiclass Classification, Deep Learning, EfficientnetV2-XL, Radam, COVID-19, Chest X-ray 

1. Introduction  

The coronavirus disease 2019 (COVID-19) pandemic has escalated the healthcare burden globally. The lungs are the 

organs most affected by COVID-19 disease [1]. Chest X-ray imaging (CXRI) of the lung is a standard point-of-care 

radiographic method for screening and diagnosing COVID-19 owing to its ease and availability [2]. The resources to 

diagnose the deadly disease, with reverberating consequences for communities already on the brink of survival, would 

increase with the increased availability, preparedness, promptness, and affordability of diagnosis [3], [4]. 

Thus, the value of COVID-19 detection from CXRI is undisputed. It manifests as infiltrations that appear mainly in the 

lower region of the lungs. It differs from other pneumonia patterns; therefore, CXRI was used to assess the severity of 

the infection [5]. CXRI can save time and act effectively in the fight against COVID-19 [6]. However, CXRI is not 

specific for COVID-19. The variability in the appearance of the lungs makes interpretation more challenging. Some 

findings also overlap with the typical findings associated with other viral pneumonia cases [7]. Therefore, accurately 

and swiftly distinguishing COVID-19 from other lung diseases has become critical in the fight against the pandemic 

[8]. Consequently, advances in deep learning (DL) made it possible to improve disease detection [9]. DL approaches 

address the challenge of distinguishing COVID-19 from other lung diseases by using advanced neural network 

architectures to extract and analyze complex patterns in CXRI [10]. EfficientNetV2-XL is a cutting-edge model of 

neural networks that classifies images with high accuracy and efficiency [11]. Moreover, coupling DL with optimizers 
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plays a crucial role in training neural networks effectively [12]. The Rectified Adam (Radam) optimizer is a variant of 

the Adam optimizer that aims to improve the generalization and convergence speed in DL models [13]. Thus, the 

integration of EfficientNetV2-XL with the Radam optimizer is expected to establish a robust multi-classification 

system for the detection of COVID-19, enabling the differentiation between COVID-19 and other lung diseases based 

on CXRI analysis. EfficientnetV2-XL with the Radam optimizer can handle the complicated patterns and 

characteristics observed in CXRI for lung diseases. Thus, the objective of this research was to develop a multi-

classification system for identifying COVID-19 through the analysis of CXRI. 

This study makes several significant contributions to the field of medical diagnostics. Firstly, it successfully 

implements a multiclass medical diagnostic system using CXRI that incorporates the EfficientnetV2-XL architecture 

and Radam optimizer to categorize four patterns: normal cases, COVID-19, lung opacity, and viral pneumonia. These 

four distinct patterns are abbreviated as (CPLN) across this research.  Secondly, integrating the EfficientnetV2-XL 

architecture with the Radam optimizer results in a novel method for multiclass classification in medical imaging. Lastly, 

the localization of CPLN patterns was determined using the Score-CAM approach. Furthermore, the outputs were 

visually shown through a heatmap that facilitated data analysis.  

It is becoming necessary for medical practitioners to automate the diagnostic process of detecting the COVID-19 

pandemic. Since it enables them not only to save time through early diagnosis but also to ensure that they are making 

more accurate diagnoses. As a result, timely inspection and diagnosis can mitigate the life-threatening nature of lung 

disorders and enhance the quality of life of affected patients. The remainder of this paper is organized as follows. 

Section 2 presents related work. Section 3 describes the research materials, and the methodology used. Section 4 

discusses and analyzes the model outputs. Section 5 concludes the study and highlights future work. 

2. Related Work 

The urgent need for reliable and rapid identification of COVID-19 infections has led to the exploitation of deep-

learning-based models within the medical imaging community. These models have revealed the ability to expedite the 

analysis of different medical images while maintaining high performance. This section presents a detailed review of 

the evolution of deep-learning models utilized for the detection of COVID-19 infections, with an emphasis on the 

analysis of CXRI. 

In various DL applications, explicitly using convolution neural networks (CNNs) in COVID-19 detection, 

Apostolopoulos and Mpesiana [14] adopted various CNN pre-trained architectures such as Inception, VGG19, 

MobileNetV2, Inception-ResNetv2, Xception as feature extractors in identifying COVID-19 infection process. The 

fine-tuned pre-trained model results demonstrated the efficiency of utilizing transfer learning in detecting abnormal X-

ray images from small datasets, obtaining an accuracy of 96.78% and a recall rate of 98.66%. 

A deep CNN model, dubbed COVID-Net, was developed by Wang and Wong [15] to categorize patient images into 

three classes: COVID-19, normal, and pneumonia cases. COVID-Net offers significant computational efficiency and 

architectural simplification compared to other pre-trained deep CNN architectures, such as VGG19 and ResNet-50. 

The model was evaluated using 13,800 X-ray images from 13,645 individuals. The experimental results for COVID-

Net showed that the model achieved a recall rate of 91.00% and a test accuracy of 93.30%. 

Narin et al. [16] developed a fine-tuned model using various pre-trained transfer approaches, including ResNet101, 

ResNet50, InceptionV3, ResNet152, and InceptionResNetV2 with X-ray images, to obtain better prediction 

performance for four distinct classes: COVID-19, bacterial pneumonia, normal, and viral pneumonia. Based on the 

performance results, the pre-trained ResNet50 method outperformed the other models by obtaining 98% accuracy on 

the ChestX-ray8 database. 

Ozturk et al. [17] developed a model called DarkNet-19 using the YOLO architecture, which is commonly used for 

real-time object detection. Their experimental results indicated that DarkNet-19 achieved 98.08% accuracy for binary 

classification and 87.02% accuracy for multiclass classification. 

Almutairi et al. [18] developed a lightweight EfficientNet model to classify X-ray images into various categories 

including normal, pneumonia, COVID-19, and lung opacity. This study involved testing multiple EfficientNet 
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architectures, specifically EfficientNet-lite-B0, EfficientNet-elite-B9-V2, and EfficientNet-elite-B9-V3. The 

experimental results indicated that the EfficientNet-lite-B0 model exhibited superior performance. This architecture 

demonstrated accuracies of 99% for binary classification and 94.9% for multiclass classification, surpassing the 

performance of other models. 

Halgurd et al. [19] evaluated a modification of both the CNN model and AlexNet architecture using two types of 

images: X-ray and CT scan. Their results showed that the modified AlexNet and CNN achieved accuracy rates of 98% 

and 94.1 %, respectively. Furthermore, Turkoglu [20] also introduces the COVIDetectionNet model by employing an 

AlexNet pretrained architecture. COVIDetectionNet architecture combined AlexNet with the Relief algorithm to 

extract the most relevant features, which were then used through a Support Vector Machine (SVM) classifier. Notably, 

COVIDetectionNet demonstrated a high accuracy rate of 99.18%. 

In addition, Shervin et al. [21] developed a COVID-19 detection model by fine-tuning various deep CNN pre-trained 

architectures, such as ResNet18, DenseNet121, ResNet50, and SqueezeNet, with the COVID-Xray-5k dataset. The 

proposed model was evaluated with an accuracy of 90% and a sensitivity of 98 %. A study by Farooq and Hafeez [22] 

also utilized a COVID-ResNet model, which was derived from a pre-trained ResNet-50 architecture, to identify 

COVID-19 patients. The researchers adjusted the dimensions of the image and conducted a range of fine-tuning 

experiments using ResNet50 architecture to improve COVID-ResNet performance. COVID-ResNet achieved an 

accuracy rate of 96.23% for multi-classes. 

Asif et al. [23] introduced the CoroNet model using the pre-trained Xception. CoroNet was trained on a benchmark 

dataset derived from two publicly available datasets. The coronet was evaluated by classifying three and four classes, 

and impressive accuracies of 95% and 89.6% were obtained, respectively. In a similar manner, Mahmud et al. [24] 

utilized depth-wise dilated convolution to introduce the CovXNet model which was trained on a diverse set of X-ray 

image classes, followed by an additional fine-tuning process. The model attained a classification rate of 90.3% through 

the implementation of a stacking algorithm during the testing stage. 

Chowdhury et al. [25] employed the pre-trained EfficientNet-B5 model to develop the ECOVNet model to detect 

COVID-19. The researchers developed a set of adaptive data augmentation techniques and optimized the EfficientNet 

model to enhance the accuracy of ECOVNet classification. The dataset utilized consisted of 14,914 training samples 

and 1,579 testing samples. The proposed model demonstrated an accuracy of 97% in categorizing multiple classes. 

Likewise, Luz et al. [26] used a pre-trained EfficientNet architecture to develop a deep-learning model for identifying 

COVID-19 instances. Their research results showed that the proposed model attained an average accuracy of 93.9%. 

Naidji et al. [24] enveloped the COVID-EfficientNetB7-Attn model by combining an adapted EfficientNet-B7 

architecture with an attention mechanism and SVM classifier. Using the attention mechanism and the SE block at the 

top of EffecientNetB7 enhanced the extracted deep features and led to better performance in COVID-19 diagnosis. The 

proposed model achieved a recall rate of 100% and an average accuracy of 97.50 % for COVID-19 detection.  

Hussain et al. [25] presented CoroDet, a CNN model designed explicitly for the automated detection of COVID-19 

using both CT and CXRI. Developed as a reliable classifier, CoroDet is trained for two, three, and four classes. The 

classifier achieved an outstanding classification rate of 99.1% for binary classification. 

Khobahi et al. [26] combined a CNN with an AutoEncoder model to design a semi-supervised learning approach to 

distinguish COVID-19 cases from normal cases. Autoencoders were used to extract the infected legions from CXRI, 

and CNN was used to capture the features and train the classifier. The authors showed that their suggested model 

achieved an average accuracy of 93.50% on a limited available dataset. 

In [27] COVID-CXNet, a hierarchical deep-learning model was presented to identify COVID-19. The CheXNet model 

was built on a pretrained DenseNet architecture. The COVID-CXNet model was developed using a two-step 

classification process: initially categorizing the X-ray images into two classes, pneumonia or normal cases, followed 

by an improved classification of the X-ray images into multiple categories, like COVID-19 cases and both normal 

cases and pneumonia. The proposed model accomplished an accuracy of 87.8%. 
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The reviewed studies collectively highlight the significant advancements in applying DL models to detect COVID-19 

using CXRI. The diverse methodologies and models ranging from fine-tuned pre-trained architectures like ResNet, 

VGG19, and EfficientNet to specialized models like COVID-Net and COVIDetectionNet demonstrate the versatility 

and potential of DL in medical diagnostics. These models have consistently shown high accuracy rates, indicating their 

reliability and efficiency in identifying COVID-19, viral pneumonia, and other lung conditions. The successful 

implementation of techniques such as transfer learning, attention mechanisms, and data augmentation has further 

improved the model's performance. Table 1 presents a comprehensive summary of these previous studies, detailing the 

various DL models, datasets used, cases, and accuracy performance, and providing a clear summary of the recent state 

of research in this critical area. 

Table 1.  Overview of prior research on identifying COVID-19 by applying DL models to CXRI. 

Study Cases Model Used Accuracy 

Ioannis and Tzani [14] 

COVID-19: 224 

Pneumonia: 700 

Healthy: 504 

VGG-19 93.48% 

Wang and Wong [15] 
COVID-19: 5526 

Healthy: 8066 
COVID-Net 92.40% 

Narin et al. [16] 
COVID-19: 50 

Non-COVID-19: 50 

Deep CNN 

ResNet-50 
98.00% 

Halgurd et al. [19] 
COVID-19: 85 

Non-COVID-19: 85 
AlexNet 98.00% 

Shervin et al. [21] 
COVID-19: 184 

Healthy: 5000 

ResNet18, ResNet50 SqueezeNet, 

DenseNet121 
90.00% 

Ozturk et al. [17] 

COVID-19:125 

Pneumonia: 500 

Healthy: 500 

DarkCovidNet 87.02% 

Luz et al. [28] 

COVID-19: 152 

Pneumonia: 5421 

Healthy: 7966 

EfficientNet-B3 93.90% 

Almutairi et al. [18] 

COVID-19: 2000 

Healthy: 2000 

Viral Pneumonia: 1345 

Lung opacity: 2000 

EfficientNet-lite-B0 94.90% 

Farooq and Hafeez [22] 

COVID-19: 68 

Viral Pneumonia: 4914 

Bacterial Pneumonia: 400 

Healthy: 800 

COVID-ResNet 96.23% 

Naidji et al. [24] 

COVID-19: 16490 

Viral Pneumonia: 5555 

Healthy: 8085 

EffecientNetB7 

Attention mechanism 
97.50% 

Asif et al.[23] 

COVID-19: 290 

Healthy: 1203 

Bacterial Pneumonia: 660 Viral 

Pneumonia: 931 

Xception 95.00% 

mahmud et al. [29] 

COVID-19: 305 

Viral Pneumonia: 660 

Bacterial Pneumonia: 931 

Healthy: 1203 

CovXNet 90.30% 
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Turkoglu [20] 

COVID-9: 219 

Pneumonia: 4290 

Healthy: 1583 

COVIDetectionNet 99.18% 

Chowdhury et al. [25] 

COVID-19: 489 

Viral Pneumonia: 5459 

Healthy: 7966 

EfficientNet-B5 97.00% 

Hussain et al. [25] 

COVID-19: 441 

Viral Pneumonia: 400 

Bacterial Pneumonia: 400 

Healthy: 7170 

CoroDet 99.10% 

Haghanifar et al. [27] 
COVID-19: 1326 

Normal: 5000 
DenseNet-121 87.88% 

3. Material and Methodology  

This study introduces a multiclass medical diagnosis system designed to detect CPLN from CXRI images. As shown 

in figure 1, the proposed system encompasses four stages: datasets, data preprocessing, model building and training, 

and model output (testing). 

 

Figure 1. The research methodology 

3.1. Datasets 

This study used datasets created by a collaborative group of researchers from Qatar University in Doha, Qatar, and the 

University of Dhaka in Bangladesh, with contributions from colleagues in Pakistan and Malaysia. These researchers 

developed the COVID-19 Radiography Database, which comprises 3,616 CXRI of COVID-19-positive cases, 6,012 

images of lung opacity (non-COVID lung infections), 1,345 images of viral pneumonia, and 10,192 images of normal 

lungs. Data were extracted directly from Kaggle using the Kaggle API [30]. 

3.2. Data Preprocessing  

The medical image dataset was split into training and test sets, with 80% allocated to the training set and 20% allocated 

to the test set. This stratification ensured a consistent distribution of classes across both sets. It is worth mentioning 

that the preprocessing stage of the application under consideration did not incorporate the pixel normalization technique 

because it is deemed superfluous for certain medical image categorization tasks. 

In accordance with the requirements of the CNN, a customized pipeline was implemented to pre-process the image 

data for the computer vision model. Thus, pre-processing is a two-step approach. First, all the chest X-ray samples 

were adjusted to a resolution of 512 × 512 pixels. This resolution was chosen to balance the trade-off between 

computational feasibility and the retention of diagnostically relevant features. Moreover, it ensures that these features 

are preserved while maintaining compatibility with the EfficientNetV2-XL architecture and the available 

computational resources. Second, several data augmentation methods were employed to improve the ability of the 
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model to generalize and reduce overfitting. Data augmentation aims to artificially increase the size of a dataset by 

producing modified variations in existing observations. Hence, the resilience of the proposed model is enhanced. 

Therefore, the dataset was augmented for the training phase by using diverse approaches, including random rotation, 

width and height shifting, shearing, and zooming [2]. These augmentations were specifically employed to introduce 

realistic variations in the dataset without compromising the integrity of diagnostic features. By increasing the diversity 

of the training data, these techniques help prevent overfitting and improve the model's performance on unseen data, 

ensuring clinical applicability. 

3.3. Build and Training Model 

An optimal architecture and optimizer that reduces the loss function are needed for remarkable image classification 

performance. This study introduces a deep learning classification model using the EfficientNetV2-XL architecture and 

Radam optimizer for training. 

3.3.1. Employing EfficientNetV2-XL for Extracting Features 

CNNs are built with a fixed resource cost and then scaled up to enhance accuracy as resources rise. A standard technique 

in CNN models includes arbitrarily increasing its depth or width or using a higher-resolution input image for training 

the model and testing the performance of the model. Although these approaches enhance accuracy, they typically 

require laborious fine-tuning and nevertheless frequently produce suboptimal performance.  

In contrast to the conventional methodologies, EfficientNetV1 architecture was first introduced by M. Tan and Q.V. 

Le in 2019. The aim was to find a trade-off between accuracy and computing efficiency. Thus, the EfficientNetV1 

model applies a compound scaling scheme to adjust the dimensions of the network evenly (width, depth, and 

resolution). This involves utilizing a user-defined value named (𝜙) that consider the available resources for scaling the 

model. Hence, simultaneously expanding the network dimensions by a factor of (𝜙) requires approximately 2(𝜙) times 

more computing resources. Furthermore, there are eight versions of EfficientNet-V1, denoted as EfficientNetV1-B0 to 

EfficientNetV1-B7 [31]. 

EfficientNetV2 was subsequently introduced in [11]. EfficientNetV2 differs significantly from EfficientNetV1 in 

several key respects. First, EfficientNetV2 heavily utilized both MBConv and Fused-MBConv, particularly in the early 

layers.  As shown in figure 2, the distinction between Fused-MBConv and MBConv lies in the use of Conv3 × 3 

ordinary convolution in Fused-MBConv, which replaces the depth-wise Conv3 × 3 depth convolution and Conv1 × 1 

convolution in MBConv. Second, EfficientNetV2 prioritizes smaller expansion ratios for MBConv because of its 

tendency to result in a lower memory access overhead. Third, EfficientNetV2 employs smaller 3 × 3 kernel sizes, 

while incorporating additional layers to compensate for the reduction in the receptive field resulting from the decreased 

kernel size. Finally, EfficientNetV2 eliminates the final stage with a stride-1 present in the original EfficientNet, 

potentially due to its substantial parameter size and the associated complexity of memory access. 

Furthermore, the EfficientNetV2 model was optimized by utilizing a training-aware Neural Architecture Search (NAS) 

and implementing progressive training with an adaptively adjusted regularization approach [11]. This accelerated the 

training process. Hence, the Efficient-NetV2 model surpasses earlier models in terms of performance while being 

significantly faster and more parameter-efficient. EfficientNetV2-XL architecture was employed in this study. 
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Figure 2. (a) MBConv structure and (b) Fused-MBConv structure [11]. 

This study employs the EfficientNetV2-XL model [11], which consists of seven blocks, as illustrated in figure 3. The 

architecture begins with a convolutional layer that includes 32 channels, utilizes a 3 × 3 filter, and operates with a stride 

of two. A series of Fused-MBConv layers were employed, incorporating different filter sizes, strides, and channels to 

systematically extract intricate information from the input images. The fused-MBConv1×4 layer operates with a stride 

of 1 and consistently utilizes 32 channels across the four layers, ensuring accurate feature extraction. 

 

Figure 3. The EfficientNetV2-XL architecture 

As the network architecture deepens, it integrates Fused-MBConv layers characterized by increased strides and a 

greater number of channels, including the Fused-MBConv4x8 and Fused-MBConv1x16 layers. This enhances the 

capacity of the model to understand complex characteristics. Subsequently, the MBConv layers are utilized, starting 

with MBConv4x24 and progressing to MBConv6x32, therefore augmenting the feature maps by increasing both the 

depth and channel dimensions. This was followed using a 1 × 1 convolutional layer with 1280 channels.  

Consequently, the feature maps are flattened into a one-dimensional vector of 327680 components, which are fed into 

a fully connected layer of 2048 neurons, which in turn are connected to an output layer consisting of four neurons 

representing CPLN cases. Table 2 lists the details of each block structure, including the block number, operator, stride, 

resolution, number of channels, and number of layers. 
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Table 2. The structure of EfficientNetV2-XL [11] 

Stage Block Operator Stride Resolution #Channels #Layers 

Input  - - 512x512 3 - 

Stage 1  Conv3x3 2 256x256 32 1 

Stage 2 1 Fused-MBConv1x4 1 256x256 32 4 

Stage 3 2 Fused-MBConv4x8 2 128x128 64 8 

Stage 4 3 Fused-MBConv4x8 2 64x64 96 8 

Stage 5 4 Fused-MBConv1x16 2 32x32 192 16 

Stage 6 5 MBConv4x24 2 32x32 256 24 

Stage 7 6 MBConv6x32 2 16x16 512 32 

Stage 8 7 MBConv6x8 1 16x16 640 8 

Stage 9  Conv1x1 1 16x16 1280 1 

Stage 10  Fully Connected - 1x1 2048 1 

Output  Fully Connected - 1x1 4 1 

The EfficientNetV2-XL architecture uses a combination of MBConv and Fused-MBConv layers as the primary 

building blocks [11]. These layers were optimized to handle the complex patterns found in medical images, ensuring 

robust and accurate diagnoses. Figure 4 illustrates the structures of both Fused-MBConv and MBConv networks. 

  

(A) (B) 

Figure 4. Structure of (A) MBConv, and (B) Fused-MBConv 

Figure 4(a) illustrates MBConv1, whereas figure 4(b) presents Fused-MBConv, both representing distinct design points 

in the EfficientNetV2-XL architecture [11]. The MBConv block begins with a 1 × 1 convolution followed by a depth-

wise 3 × 3 convolution. The output dimensions change from H, W, C to H, W, and 4C after depth-wise convolution. A 

global average pooling layer reduces the spatial dimensions, followed by a 2D convolution and Swish activation 

function. Another 2D convolution and sigmoid activation function were applied. The squeeze-and-excitation 

mechanism is used, which adapts the attention of the network to different channels by weighing them. Finally, a 1 × 1 
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convolution reduces the dimensions to H, W, and C, and the output is added element-wise to the input. In contrast, the 

Fused-MBConv block starts with a 3 × 3 convolution instead of the initial 1 × 1 and depth-wise convolutions seen in 

MBConv. Global average pooling, followed by a 2D convolution, Swish activation, another 2D convolution, and 

sigmoid activation, is applied similarly. The squeeze-and-excitation mechanism is also discussed here. The block 

concludes with a 1 × 1 convolution that reduces the dimensions back to H, W, and C, and the output is added element-

wise to the input. Notably, both blocks employed the squeeze-and-excitation process to enhance the network's capacity 

to concentrate on meaningful features. 

In addition, we aimed to achieve the best performance of the proposed medical image classification application. The 

pretrained EfficientNetV2-XL model was fine-tuned on the ImageNet21k-ft1k benchmark dataset. This dataset offers 

the advantage of being pre-trained on the large-scale ImageNet21k dataset and further fine-tuned on ImageNet1k, 

thereby providing a robust foundation for transfer learning to medical image classification. Subsequently, a fully 

connected layer comprising three neurons and employing Softmax activation was incorporated to adapt the model to 

the specific classification problem under investigation.  

So far, EfficientNetV2-XL requires fewer computational resources relative to its capacity compared to other 

architectures such as ResNet and Xception. This enables it to process high-resolution images (e.g., 512×512) while 

maintaining computational feasibility. Moreover, its ability to generalize effectively across classes is enhanced when 

combined with data augmentation techniques and the Radam optimizer, which mitigates overfitting and improves 

convergence. 

3.3.2. Rectified Adam Optimizer 

Rectified Adam is a variant of the Adam optimizer, designed to improve training stability and convergence. It addresses 

potential issues with Adam’s adaptive learning rate by adding a rectification term to reduce the variance. This is 

particularly convenient during the initial few phases of training when the number of samples is small, which may result 

in less dependable adjustments to the learning rate [13].  

Algorithm 1: Rectified Adam Optimizer [13]. 

Input: {𝛼𝑡}𝑡=1
𝑇 : step size, {𝛽1, 𝛽2}: decay rate is utilized to compute the moving average and moving second moment, 

𝜃0: initial parameter, 𝑓𝑡(𝜃):  objective function which is stochastic 

Output:  𝜃𝑡: output parameters 

1 𝑚0, 𝑣0 ← 0, 0  
2 𝜌∞  ←  2 (1 − 𝛽2) − 1 ⁄  

 3    𝐰𝐡𝐢𝐥𝐞 𝑡 =  {1, ⋯ , 𝑇} do 

4       𝑔𝑡  ←  ∇𝜃𝑓𝑡(𝜃𝑡−1)  

5       𝑣𝑡  ← 𝛽2𝑣𝑡−1 + (1 −  𝛽2)𝑔𝑡
2  

6       𝑚𝑡  ←  𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡  

7      𝑚�̂�  ←  𝑚𝑡 / (1 − 𝛽1
𝑡)  

8       𝜌𝑡  ←  𝜌∞ − 2𝑡𝛽2
𝑡  /(1 − 𝛽2

1  

9       𝐢𝐟 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒, 𝑖. 𝑒. , 𝜌𝑡 > 4 𝐭𝐡𝐞𝐧 

10               𝑙𝑡  ←  √1 − 𝛽2
1 𝑣𝑡⁄     

11 
 

   𝑟𝑡  ←  √
(𝜌𝑡−4) (𝜌𝑡−2)𝜌∞

(𝜌∞ 4)(𝜌∞−2)𝜌𝑡
   

12     𝜃𝑡  ←  𝜃𝑡−1 −  𝛼𝑡𝑟𝑡𝑚�̂�𝑙𝑡  

13      else 

14             𝜃𝑡  ←  𝜃𝑡−1 − 𝛼𝑡𝑚�̂�  

15 
 

𝒓𝒆𝒕𝒖𝒓𝒏 𝜃𝑇 

The pseudocode of Rectified Adam (Radam) is illustrated in Algorithm 1[13]. The process begins by setting the starting 

values of the first and second moment vectors, (𝑚0 and 𝑣0), to zero (Line 1). Then, the maximum length of the 

estimated Simple Moving Average (SMA), denoted as (𝜌∞), is calculated (Line 2). For each time step (𝑡) ranging from 

1 to T, the gradients (𝑔𝑡)  are computed in relation to the stochastic objective function (Line 4). Both the second 

moment estimate (𝑣𝑡) and the first moment estimate (𝑚𝑡) are updated (Lines 5-6). This is followed by the computation 

of the bias-corrected first moment estimate (𝑚�̂�) and the length of the estimated SMA (𝜌𝑡) (Lines 7-8). If the value of 

𝜌𝑡 is greater than 4, which reveals that the variance is tractable, the method calculates the adaptive learning rate (𝑙𝑡) and 

the variance rectification term (𝑟𝑡) (Lines 10-11).  It then proceeds to update the parameters (𝜃𝑡) with the adaptive 
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momentum (Line 12). On the other hand, if the value of  (𝜌𝑡 ) is less than or equal to 4, the parameters are updated 

with un-adapted momentum (Line 14). As a result, the parameters 𝜃𝑇 are returned after finalizing the optimization 

procedure (Line 15). This approach assists in the stability of training and enhances the convergence of neural networks 

by adaptively rectifying the variance of parameter updates. 

In a broader sense, the Radam optimizer is highly efficient in stabilizing training and enhancing convergence, making 

it crucial for complicated tasks such as the multiclass categorization of medical datasets. In this study, Radam was used 

in conjunction with EfficientNetV2-XL to achieve fast learning and precise classification of CPLN based on CXRI. 

The adaptive characteristics of Radam facilitate the management of data changes, resulting in enhanced generalization 

and performance in the identification and differentiation of different lung disorders. 

4. Model Outputs 

This section provides details on the empirical settings and outcomes achieved using the dataset under consideration. 

Various metrics were utilized to evaluate the classification model's effectiveness. Additionally, the Score-CAM method 

was applied to provide insights into the model's decision-making processes.  

4.1. Experiments Setting 

The network was trained on TPU v3-8. All training and testing phases were conducted in the same environment 

utilizing the Keras DL framework and Python 3.9 programming language. Network training was executed with the 

hyperparameters delineated in table 3. 

Table 3.  Hyperparameters 

Parameter Value 

Input size 512 × 512 × 3 

Batch size 128 

Learning rate 1e-3 

Optimizer Radam 

Epochs 60 

Loss function Categorical Cross entropy 

As depicted in table 3, the hyperparameters for the EfficientNetV2-XL model with Radam optimizer were carefully 

tuned to optimize performance for detecting COVID-19 from chest X-ray images. An input size of 512×512 was chosen 

to balance detail preservation and computational efficiency. A batch size of 128 ensured effective GPU utilization 

while maintaining stability during training. The learning rate of 1e-3 was fine-tuned for rapid convergence, 

complementing the Radam optimizer’s ability to stabilize noisy gradients. Sixty epochs provided sufficient training 

time, validated by monitoring performance metrics to avoid overfitting. Finally, categorical crossentropy was employed 

as the loss function to handle the multi-class classification task effectively. This configuration achieved robust training 

and state-of-the-art detection accuracy. 

4.2. Classification Performance Evaluation 

This study employs indicators such as Precision (P), Recall (R), Accuracy (A), and F1-score to evaluate the 

performance of the proposed multiclass medical diagnosis model based on the confusion matrix, as illustrated in figure 

5. The confusion matrix provides a detailed analysis of the model's classification performance. This matrix highlights 

the true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) for each class. For the 

COVID-19 class, the model correctly identified 718 cases (TP), with 6 FP and 5 FN, and correctly classified 3504 

cases as true negatives (TN), demonstrating high specificity and sensitivity. For the Lung Opacity class, 1186 cases 

were correctly identified (TP), with 28 FP, 17 FN, and 3002 true negatives (TN), indicating robust differentiation from 

other classes. In the Normal class, the model achieved 2007 TP, 20 FP, and 31 FN, while accurately classifying 2175 

cases as TN. Finally, for the Viral Pneumonia class, the model recorded 265 TP, 3 FP, 4 FN, and 3961 TN, reflecting 

strong performance in identifying these cases. Overall, the confusion matrix underscores the model's ability to achieve 
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a balanced performance across all classes, effectively addressing the challenges of multi-class classification in chest 

X-ray diagnostics. The formulations for these evaluation measures are detailed in Equations (1)–(4) [32], [33]. 

P = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 × 100 %     (1) 

R = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 × 100 %    (2) 

A= 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 × 100 %    (3) 

F1 = 2.
𝑃𝑅

𝑃+𝑅
 × 100 %    (4) 

 

 

 

 

 

 

 

 

 

 

Figure 5. Confusion matrices for CXRI. 

Table 4 presents the multiclass classification results, which demonstrate the capacity of the created system to effectively 

differentiate among CPLN. The multiclass classification system achieved average values for the following various 

metrics: precision of 98.69%, recall of 98.72%, F1-score of 98.70%, and accuracy of 98.65%. Especially, the system's 

accuracy at detecting COVID-19 was 99.31%. These findings clearly show that the proposed categorization method 

reliably diagnoses CPLN patterns using CXRI.  

Table 4. Performance Metrics for multi-class classification of CXRI 

Classes Precision (%) Recall (%) F1-score (%) Accuracy (%) 

COVID-19 99.17 99.31 99.24 99.31 

Lung Opacity 97.69 98.59 98.14 98.59 

Viral Pneumonia 98.88 98.51 98.70 98.51 

Normal 99.01 98.48 98.75 98.48 

Average 98.69 98.72 98.70 98.65 

To comprehensively assess the model’s performance across various sensitivity and specificity ranges, we employed a 

Receiver Operating Characteristic (ROC) curve analysis. As illustrated in figure 6, the ROC curve tool was used to 

evaluate CPLN medical classes. The dataset used for this analysis consisted of X-ray images obtained in this study. 
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Figure 6. ROC Curves for CPLN patterns using CXRI 

The results demonstrated elevated Area Under the Curve (AUC) values, indicating robust model efficiency. The AUC 

for all classes reached a score of 1.00, signifying perfect separation between the categories of the application at hand 

and demonstrating the capability of discrimination between dataset samples. The ROC assessments reveal substantial 

evidence supporting the accuracy of the developed classification system of CPLN patterns under consideration. This 

also improves the system's capability to deliver precise medical diagnoses through the analysis of the CXRI. Thus, the 

model can serve as a decision-support tool for healthcare professionals, enabling faster and more precise detection of 

COVID-19. This capability can streamline diagnostic processes, reduce workload, and ensure timely interventions, 

particularly in resource-constrained settings or during pandemic surges. 

Table 5 provides a comparative analysis of various advanced models utilized for the multiclass categorization task 

using CXRI to differentiate between the healthy (normal) pattern, the COVID-19 pattern, and other lung disorders 

patterns under investigation in this study. The proposed EfficientNetV2-XL model demonstrates superior performance 

compared to state-of-the-art models in terms of accuracy. 

Table 5. CXRI comparison of cutting-edge models of deep learning for multiclass classification. 

Study Cases Model Accuracy 

Luz et al. [26] 

COVID-19: 152 

Pneumonia: 5421 

Healthy: 7966 

EfficientNet-B3 93.90 % 

Almutairi et al. [18] 

COVID-19: 2000 

Healthy: 2000 

Pneumonia: 1345 

Lung opacity: 2000 

EfficientNet-lite-B0 94.90 % 

Naidji et al. [27] 

COVID-19: 16490 

Viral Pneumonia: 5555 

Healthy: 8085 

EffecientNetB7 

Attention mechanism 
97.50 % 

Chowdhury et al. [25] 

COVID-19: 489 

Viral Pneumonia: 5459 

Healthy: 7966 

EfficientNet-B5 97.00 % 

Proposed 

COVID-19: 3616 

Viral Pneumonia: 1345 

Lung opacity: 6012 

Normal: 10192 

EfficientNetV2-XL 
99.31 % 
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4.3. Explaining model predictions using Score-CAM 

In medical imaging applications, it is essential to enhance the interpretability of deep learning (DL) results. Score-

CAM [34] is a powerful method for visualizing the decision on the pattern’s label made by deep learning models, 

emphasizing the areas of an image that significantly impact a specific classification. Score-CAM is typically utilized 

for diagnostic applications, providing clinicians with an accurate and detailed visualization of the patterns under 

investigation. This will result in timely medical intervention, thereby enhancing the probability of effective treatment 

and increasing patient survival rates. 

In view of that, the Score-CAM algorithm was employed to evaluate the classification behavior of the proposed model 

(figure 7). Heatmaps were overlaid on the X-ray image dataset to generate class activation maps, which highlighted 

areas of significance for differentiating CPLN cases. Analysis of the heatmaps from the Score-CAM algorithm 

demonstrated that our model could successfully detect regions with bifocal and multifocal glassy opacity (GGO). 

Notably, the heatmaps of COVID-19-infected images revealed distinct peripheral and diffuse distributions and vascular 

thickening of the opacity. This localized information can provide clinicians with valuable insights into the factors 

underlying COVID-19 infection. 

 

Figure 7. Visualization of chest X-rays using Score-CAM on the Best model. (a) Heatmap for a test image from the 

COVID-19 class; (b) heatmap for a test image from the Viral Pneumonia class; (c) heatmap for a test image from the 

Lung opacity case class; (d) heatmap for a test image from the Normal case class. 

Figure 7 illustrates Score-CAM visualizations applied to chest X-ray images from the test set using the proposed 

EfficientNetV2-XL model. The heatmaps highlight regions most influential in the model's classification decisions for 

the four target classes: (a) COVID-19, (b) Viral Pneumonia, (c) Lung Opacity, and (d) Normal. 

For the COVID-19 class (a), the heatmap shows pronounced activation over bilateral lung fields, particularly in 

peripheral regions, aligning with typical radiographic findings such as ground-glass opacities. In the Viral Pneumonia 

case (b), the activation is concentrated in lower lung fields, consistent with patchy consolidations. The Lung Opacity 

class (c) demonstrates central and dense activation correlating with areas of consolidation, while the Normal case (d) 

exhibits uniform and minimal activation across the lungs, reflecting the absence of abnormalities. 

These visualizations enhance the interpretability of the model by correlating its predictions with clinically relevant 

radiographic features, supporting its integration into diagnostic workflows and increasing confidence in its reliability 

for real-world clinical applications. 
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5. Conclusion 

This paper presents a robust and accurate DL-based system for the multiclass classification of CPLN from CXRI. By 

leveraging the EfficientNetV2-XL architecture and Rectified Adam optimizer, our model achieved an impressive 

accuracy of 99.31% and an AUC of 1 for COVID-19 detection. The use of Score-CAM visualization further enhances 

the practicality of the system by providing interpretable heatmaps, allowing healthcare professionals to understand the 

basis of the model's predictions. These findings contribute to a growing body of research demonstrating the potential 

of DL in medical image analysis, particularly for automated disease detection. 

From a practical standpoint, our proposed system holds significant potential as a reliable and efficient tool for assisting 

radiologists. Its high accuracy and efficiency support its use as a rapid screening tool for COVID-19, particularly in 

resource-limited settings. Consequently, using automated systems for diagnostic tasks in the healthcare domain 

confirms its practicality in real-world scenarios. In this view, by automating the phases of the diagnostic process, the 

system can alleviate the radiologist's workload, enhance the diagnostic classification rate, and expedite treatment. The 

vision for future improvements involves testing the developed systems’ generalizability and resilience on a bigger, 

more varied dataset gathered from different regions and demographics. 
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