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Abstract

When developing a prediction paradigm, an ensemble technique such as boosting is used. It is built on a heuristic framework.
Generally speaking, engineering ensemble learning is more accurate than individual classifiers when it comes to making
predictions. Consequently, numerous ensemble strategies have been presented in this work, particularly to provide a more
complete understanding of the essential methods in general. Researchers have experimented with boosting methods to forecast
student performance as part of a variety of ensemble techniques. The researchers employed improvement approaches to construct
an accurate predictive educational model, which was based on a key phenomena seen in categorization and prediction operations.
In light of the uniqueness and originality of the suggested strategy in educational data mining, the researchers used augmentation
strategies in order to construct an accurate predictive pedagogical model. Tenfold cross-validation was performed to evaluate the
effectiveness of the basic classifiers, which included the random tree, the j48, the knn, and the Naive Bayes. The random tree was
found to be the most effective classifier. Several additional screening techniques, including oversampling (SMOTE) and
undersampling (Spread subsampling), were utilized to analyze any statistically significant variations in results between the meta
and base classifiers that had been identified between the meta and base classifiers. The use of ensemble and screening strategies,
as compared to the use of standard classifiers, has demonstrated considerable gains in predicting student performance, as has the
use of either strategy alone. Furthermore, after the completion of a performance research on each approach, two new prediction
models have been established on the basis of the improved results gained thus far.
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1. Introduction
With the development of pedagogical data, the need to find productive information has emerged as a hot topic among
the research community [1]. Many data mining techniques have been exploited in this direction to achieve better
insight of different academic data warehouses [2,3]. Extraction of significant knowledge from the warehouse plays a
major role in propelling the wheel of further education by using various data mining techniques [4,5].When it comes
to educational data mining, it is generally agreed that predicting student achievement is a critical responsibility.
Researchers Zhu et al. [5], conducted a case study to predict drop-out ratios using various classification approaches
[6]. It was determined that the decision tree algorithm was correct and produced significantly different results with
Bayes net and JRip rules being two types of rules. The CRISP methodology was exploited to test student
performance in a c++ course [7], and the researcher in this study compared the performance of two decision trees viz.
ID3 and C4.5 with naive bayes algorithm. The researchers Zhu et al. [5], also explored analog classifiers including
ID3 and C4.5 on datasets relating to MCA students, with the primary objective of predicting and improving student
performance [8]. Kotsiantis et al [7], used the Naive Bayes ensemble method, neural network and the WINDOWS
algorithm to predict student performance [9].

In another research study, the authors proposed a prediction system based on the Adaboost algorithm to reduce risk
failure by providing timely advice to high-risk students [10]. Additional study was done on educational data to
increase prediction accuracy using different ensemble methodologies [11-13]. The authors also recommended several
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prediction paradigms based on their findings. In order to forecast student performance, classification, grouping, and
regression are the approaches that are most often utilized. The power of the ensemble technique, on the other hand,
has only been employed by a few academics to forecast student performance in the past. The ensemble technique is
advantageous because it gives the much-needed incentive for improving the prediction accuracy of several classifiers
after the aggregated outputs have been created, and this is because Although the data is complicated, ensembles have
the capacity to achieve higher accuracy and, as a result, to avoid overfitting of individual classifiers and
generalization mistakes in the classification process. Several research papers have proven that employing the
ensemble strategy to combine the outputs of separate classifiers resulted in a decrease in generalization error [14-16].

One of the most important factors in ensuring that the ensemble mechanism is used effectively is that there must be a
wide range of classifiers used in the ensemble. For example, data diversity may be performed by providing the
classifier with diverse subsamples of the input data, similar to how boosting is done in this instance. Essentially, there
are a number of significant and basic differences that distinguish the various types of ensemble techniques from one
another. When the outputs of various classifiers are combined to form a prospective prediction, this is referred to as
an imperative factor. Another consideration is the amount of classifiers that need to be synthesized. Furthermore, the
classifiers that are part of the The members of an ensemble may operate in a sequential or concurrent manner.
Ensembles can also be divided into two types based on the learning process that was used during the training and
testing phases of a subsample of the dataset base; these are referred to as meta ensemble learning and subsample
learning, respectively, and are referred to as meta ensemble learning and subsample learning, respectively.

1.1. Ensemble Learning at Its Most Fundamental

This system's fundamental training and testing of classifiers results in the merging of numerous classifiers' outputs
into a single classifier with improved scenario prediction accuracy. The suggested model in figure 1 fully explains the
training and testing of classifiers during the early phases of basic ensemble learning. Figure 1, The suggested model
incorporates a number of ensemble approaches, which are discussed in further detail in the next part.

Figure. 1. Demonstrates foundation ensemble learning
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1.1.1. Voting

Among the fundamental techniques for distributed skew algorithms is the voting approach, which is used to
determine the average class allocation of the whole learning algorithm as a whole. Instead of allocating their votes to
a single class that has been determined to be the most probable, the votes are distributed among a number of basic
classifiers in order to estimate a given instance's final class is defined as To be more specific, the voting method is the
only one that does not use cross-validation throughout the process's training and instance testing stages. Furthermore,
combining algorithms may be performed in two ways: either by synthesizing many classifiers or by using meta
synthesizers, or a combination of both. When dealing with difficulties when each classifier does the same work and
earns the same amount of money, the straight-forward coupling strategy is the most effective method of solving the
problem. The approach, on the other hand, is susceptible to inconsistencies and outliers. Contrastingly, the meta
synthesizer is claimed to be potentially stronger in terms of the difficulties related with the classifier, namely, a more
accurate fit and an increased training time. Voting determines the average potential class allocation for occurrences
that are not defined as being in the following categories:

(1)𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =
𝑘=0

𝑁

∑ 𝑃𝑘
𝑁

1.1.2. Bagging

Bagging is a widely used ensemble approach that analyzes subsamples at the same time in order to improve the
accuracy of the classifiers that are normally formed by merging several models. When various classifiers are
hybridized together, a large number of outputs are formed by voting among the participants. According to Du et al.
[13], an uneven learning process is required in order to generate statistically meaningful findings [17]. The basic
classifier is also trained repeatedly on additional samples of the original dataset utilizing random sampling with a
replacement technique in this method, which is a significant improvement over previous methods. Before training the
basic classifier, it is necessary to alter it according to the formula below in order for random sampling from the
original training set to be recreated. Adjustment of the basic classifier training set

(2)𝑁𝑒𝑤𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡 = {(𝐴𝑡𝑡𝑟𝑉𝑒𝑐
𝑞𝑟

,  𝐶𝑙𝑎𝑠𝑠
𝑞𝑟

)|𝑞𝑟 =  𝑅𝑎𝑛𝑑(0, 𝑛), � 0 ≤ 𝑟 <  𝑛}

1.1.3. Boosting

As arcing, this technique was developed by Schapire in 1990 to increase the classification accuracy performance of a
machine learning classifier. In order for it to operate, weak learners must be run repeatedly on some training data that
has been distributed. Random sampling from the original training set should be recreated. Adjustment of the basic
classifier training set of strong classifiers in order to obtain much higher accuracy than the model generated by the
individual weak learners. After a nearly 5-year hiatus, Yang [15] developed an improved version of the boosting
algorithm known as AdaBoost [18], which is currently in use worldwide. The underlying principle of this learning
method is to assign a weight to each occurrence in the training set, which is a simple concept. All instances are
assigned the same priority at the start of the process, but with each iteration, the weight associated with the
incorrectly classified instance is increased, while the weight associated with the properly identified instance is
decreased (see Figure 1). As a result, in order to obtain the highest possible prediction accuracy, weak learning
algorithms are pushed to concentrate on incorrect instances from the training set. Aside from that, the categorization
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is carried out in accordance with a voting method for each student (Ci), which has an individual weight ofIn
mathematics, the relationship between I and is described as follows:

(3)𝐻(𝑥) =  𝑠𝑖𝑔𝑛(
𝑖=0

𝑖

∑ α𝑖 .  𝑐
𝑖
(𝑥)

1.1.4. X-Validation

In machine learning, an extended ensemble approach, also known as selection by cross-validation, is a procedure in
which an optimal selection among basic classifiers is made utilizing an inner 10-fold cross-validation system inside
the ensemble. In order to create equal-sized training sets, each fold is split into two halves, which are then divided
again. Gams [16] primarily depended on this strategy, which they further improved, in order to generate neural
network ensembles [19,20]. To make matters even better, Domingos [17] employed cross-validation to speed up the
development of his proposed rule induction system, known as RISE [21]. In this study, the training sets were split
into equal-sized divisions depending on the number of people that took part in it. This is followed by the algorithm
being executed on each split on a different thread. m+1 partition instances were used to assess the advanced rule of m
partitions, which was designed to decrease over-fitting challenges and, as a consequence, boost accuracy of the model
by decreasing over-fitting difficulties.

1.2. Meta Ensemble Learning

Predictions are made with specificity Rather than categorizing instances at the base level, this technique classifies
them at the meta level, and a single classifier, referred to as the meta classifier, is responsible for classifying all of the
instances and then aggregating them using a voting procedure to get the predictions. Figure 2 depicts the suggested
model in a way that accurately illustrates the whole approach that was followed, from data pre-processing through the
formulation of classification label predictions. The use of identical practice in producing unknown class labels is a
common feature of many ensemble strategies, and as a result, multiple ways have been examined in detail in the
following subsections.
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Figure. 2. Displays the suggested paradigm for Meta ensemble learning in action

1.2.1. Stacking

It is a procedure that is enforced with the goal of reaching the highest level of generalization accuracy possible.
Zenko and Dzeroski [15] employed the stacking technique, in which they constructed an ensemble of learning
algorithms, and ultimately determined in their analysis that observed stacking was the best classification
methodology for predicting sample output [22]. In most cases, this strategy is used to hybridize the models formed by
a range of classifiers and then attempt to establish if the classifiers' findings are consistent or inconsistent. This stage
involves creating a meta training set using the predictions generated by each classifier on the original dataset. This
meta training set will then be used to train the classifiers in the next step. When given training data, the meta
classifier applies it to the classification issue in order to combine the multiple predictions and come up with a final
decision. By producing probabilities for each class, which are often determined by separate base classifiers and may
be used to increase performance, the stacking approach can usually be improved. Although the number of examples
in the meta training set will increase as a result of such a situation, the number of instances in the training set will
decrease.

1.2.2. Grading

The execution of a graded learning algorithm, according to Afsahhosseini and Al-Mulla [16], categorizes instances at
the meta-level by using the meta classifier as a classification criteria, which is a classification criterion for the meta
classifier [23]. The primary rationale behind the grading is that it teaches the meta classifier to categorize specific
bases in order to forecast the instance whenever the base classifier fails in a particular job, which is the goal of the
grading. A strategy based on weighted voting is used as the base classifier in this method. The base classifier is
responsible for making the final classification prediction. In essence, a weighted vote is nothing more than the weight
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obtained by the When a correct prediction is produced, the confidence of the base classifier is calculated, which is
generally computed by the related meta classifier when a successful prediction is made. Moreover, in his work, Yu et
al. [17] proposes grading as a generalization method for cross-validation selection, in which the training set is divided
into n subsets and an n-1 classifier is constructed, therefore removing one split at a time to investigate the speed of
misclassification [24]. Finally, this strategy chooses the learning classifier with the lowest rate of misclassification.
Grading only makes use of classifiers who possess a sufficient level of expertise in correctly categorizing a specific
occurrence. Furthermore, for each base classifier, a variety of meta-data sets are created, which are then used to train
meta-classifiers that are based on the metadata sets maintained by the base classifier.

1.2.3. Arbiter Trees

As previously mentioned, Du et al. [13] adopted this strategy, in which the arbiter tree was created in a bottom-up
fashion [25]. For the most part, the dataset is arbitrarily truncated into many sub-partitions of size 'n'. Because of the
combination of the two learning algorithms, the arbiter is stimulated, and subsequently recursively induced arbiters
are produced from the output of numerous arbitrators, leading to an infinite number of arbiters being produced. There
is a log2(n) degree of complexity in an arbitrator formed from n classifiers. It is necessary to pool training data and
classifiers before building an arbitrator, which must then be classified by several classifiers once it has been
constructed. The classification provided by the twin classifier is compared to the selection criteria, and a sample from
the amalgamation pool is selected further to build a training set for the arbitrators based on the results. Every time the
basic classifier produces a different classification, the arbitrator is responsible for compiling alternative
classifications. As indicated in figure 3, the arbitrator, in conjunction with the arbitration rules , is responsible for
determining the final classification result based on the basic predictions, which is shown in figure 3.

Figure. 3. Zhang et al [21] provides two basic learning algorithms as well as a single arbitrator

2. Methodology

In this thorough analysis, which evaluated critical elements linked with the dataset that are responsible for student
performance in particular, a pedagogical dataset developed by the University of Kashmir was used as the basis. With
great care and attention to detail, the researchers carried out this research investigation. Before being employed for
analysis or observation, the whole dataset was subjected to a technique of pre-processing in order to exclude impotent
features such as name, parentage, contact number, and so on from consideration. Additional tuples included missing
data, which were removed in order to provide more accurate and dependable results in the future, According to the
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findings of the study, there were nine and twenty-four characteristics in the raw dataset before pre- and
post-processing of the data, respectively, before pre- and post-processing of the data. Additionally, in the same way
that demographic information about students was derived from registration numbers, English language skills and
zoology, botany, and chemistry skills, among other variables related to academic dataset, were discovered by mining
other attributes present in the raw dataset and then ranked based on their significance, as was the case with the
variables mined from other attributes in the raw dataset. The multiple characteristics that have been obtained, as well
as the possible values connected with each variable, are shown in the accompanying Table 1.

Table. 1. This function displays all of the potential values associated with each attribute of our dataset.

No. Fields Description

1 Demography Rural, Urban

2 GE-Paper A 0-75

3 GE-Paper B 0-75

4 GE-Total 0-150

5 BO-Paper A 0-50

6 BO-Paper B 0-50

7 BO-Practical 0-25

8 BO-Intern 0-25

9 BO-Total 0-150

10 ZO-Paper A 0-50

11 ZO-Paper B 0-50

12 ZO-Intern 0-33

13 ZO-Practical 0-25

14 ZO-Total 0-150

15 CH-Paper A 0-150

16 CH-Paper B 0-50

17 CH-Paper C 0-50

18 CH-Intern 0-25

19 CH-Practical 0-25

20 CH-Total 0-150

21 Total-Marks 600
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22 Total-Obtain 0-600

23 Overall Grade Division I, II, III

3. Result & Discussion

3.1. The performance of learning classifiers on an individual basis

For predicting student performance, academics have employed a range of base and meta learning approaches,
including the j48 algorithm, the random tree, and the logistic regression model. The course covers techniques such as
naive bayes, K-nearest neighbor, and boosting, as well as machine learning methods. It was achieved via the use of a
variety of filtering approaches, including the synthetic minority oversampling technique (SMOTE) and the Spread
Subsampling method (SST) (under-sampling technique). In order to generate statistically meaningful findings, the
oversampling and undersampling approaches were used to a genuine academic dataset obtained from Kaggle and
based on the University paper test dataset. Furthermore, if the dataset is unbalanced before training and testing, the
findings obtained might be skewed in favor of the majority class, increasing the likelihood of making an incorrect
prediction. Taking these considerations into account, the two filtering procedures described above were implemented.

Table. 2. Results of multiple learning classifiers

CN CC IC TPR FPR Precision Recall F-Measure ROC RAE

J48 93.21% 7.78% 0.93 0.06 0.93 0.92 0.93 0.95 14.52%

Naive
Bayes

96.51% 5.44% 0.96 0.04 0.96 0.96 0.96 0.99 8.93%

Random
Tree

91.31% 10.68% 0.91 0.07 0.91 0.91 0.91 0.93 16.45%

KNN 92.81% 9.17% 0.92 0.06 0.92 0.92 0.92 0.94 14.18%

Results of multiple learning classifiers are provided in the previously stated Table 2 after various learning algorithms
have been executed across a pedagogical dataset. According to the results of Table 1, the naive bayes approach has
obtained an amazing prediction accuracy of 95.50% when it comes to categorizing the relevant conditions. In terms
of erroneous classification error and relative error, the classifier exceeds the competition, with 5.44% and 7.78%,
respectively, having the lowest values among the other learning classifiers. As well as accuracy and recall, as well as
the f-measure and the receiver operating characteristic (ROC) curves, a range of additional metrics related to learning
classifiers have shown statistically significant results. These measurements include the Tp rate and the Fp rate,
among others. The random tree achieved a noteworthy prediction accuracy of 91.31%, as well as a classification error
of 10.68% and a relative absolute error of 15.46%, both of which were impressive. It also achieved a classification
error of 10.68% and a relative absolute error of 15.46%. Other estimations associated with the classifier were also
complimented for their accuracy; nevertheless, the results acquired were found to be less significant than those
obtained by other learning classifiers, which was a source of disappointment for the researchers.
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3.1.1. The results of basic classifiers created using the SMOTE approach are shown below.

The performance of the various classifiers after they have been exposed to one of the screening procedures, namely
SMOTE, is described in Table 3 below across academic datasets. Following the implementation of the oversampling
approach, the Precision of learning classifiers' predictions is increasing, which is also reflected by the improvement
of other performance-related matrices This is shown by the data presented in Table 2. Several learning classifiers,
including j48 (which improved from 93.21% to 93.99%), random tree (which improved from 91.31% to 91.85%),
naive bayes (which improved from 96.51% to 98.16%), and Knn (which improved from 92.20% to 92.98%),
demonstrated an improvement in performance (92.81% to 93.80% ). Similarly, the relative absolute error associated
with the basic classifier shows the lowest error after the application of SMOTE, decreasing from 14.52% to 11.53%
(j48), from 16.45% to 14.02% (random tree), from 8.93% to 4.70% (naive bayes), and from 14.18% to 11.08% after
the application of SMOTE, respectively (knn). The area under the curve (AUC) of the naive bayes classifier differs
by a little margin, ranging from 0.99 to 0.97 in the case of the naive bayes classifier, according to ROC analysis
(ROC).

Table. 3. Results obtained using the SMOTE approach are shown

CN CC IC TPR FPR Precision Recall F-Measure ROC RAE

J48 93.99% 7.01% 0.93 0.03 0.92 0.92 0.93 0.95 11.53%

Naive
Bayes

98.16% 2.84% 0.97 0.01 0.97 0.97 0.97 0.97 4.70%

Random
tree

91.85% 9.15% 0.90 0.04 0.90 0.90 0.90 0.93 14.02%

KNN 93.80% 7.20% 0.92 0.03 0.92 0.92 0.92 0.94 11.08%

3.1.2. The results of the basic classifier using the Spread Subsampling approach are shown below.

For the purpose of determining whether or not there was an extra improvement in prediction accuracy in this section,
the Spread Subsampling technique, which is an under-sampling procedure, was used in an educational dataset
throughout this section. The following table contains estimates of the performance of a number of different
classifiers. Taking a look at Tables 4 and 2, it is clear that post spread sub sampling increased the prediction accuracy
of the knn classifier by an impressive margin (from 92.81% to 94.95%), demonstrating superiority over the knn
classifier (over-sampling approach), which increased its accuracy by an additional margin (from 92.81% to 94.00%).
A number of additional performance metrics linked with the knn classifier, such as the Tp rate, the Fp rate and the
accuracy, among others, have also shown outstanding results. There are references to the same information in both
Table 4 (Post Spread subsampling) and Table 2 (Pre Spread subsampling) (before Spread subsampling). Those who
use the undersampling strategy, on the other hand, have reported inconsistent results among random trees, with their
performance dropping from 91.31% to 89.96% as a consequence of the process. This despite the fact that the
prediction accuracy of learning classifiers such as the j48 and naive bayes has shown considerable increases, growing
from 93.21% to 93.68% and from 96.51% to 96.86% respectively, since it was first measured at the start of the
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research. Nonetheless, the results are not statistically significant in the same way as the findings obtained by the
oversampling technique were.

Table. 4. The results of the Spread Sub-sampling approach are shown

CN CC IC TPR FPR Precision Recall F-Measure ROC RAE

J48 93.68% 7.32% 0.92 0.03 0.92 0.92 0.92 0.95 11.78%

Naive
Bayes

96.86% 4.14% 0.95 0.02 0.96 0.95 0.95 0.99 6.11%

Random
tree

89.96% 11.04% 0.89 0.05 0.88 0.88 0.89 0.91 16.75%

KNN 94.95% 6.05% 0.93 0.03 0.93 0.93 0.93 0.95 9.48%

Figure 4 presents a comparison of prediction accuracy across all learning classifiers, as well as a comparison of their
relative absolute errors, for your convenience. Using the image, we can tell the difference between the results
generated in each of the three cases: before filtering, post SMOTE (oversampling), and post Spread subsampling (as
shown in the example) (under-sampling). According to the data shown in Figure 4, the naive bayes algorithm has
produced remarkable results in both instances (pre-filtering methods and post-filtering techniques). Following
exposure to a spread subsampling approach, the KNN classifier was found to have significantly higher prediction
accuracy than the other learning classifiers, as shown in Tables 1, 2, and 3. The KNN classifier was also found to
have significantly higher prediction accuracy than the other learning classifiers. The relative absolute error has also
been greatly decreased as a result of the introduction of the SMOTE and Spread subsampling methods, as previously
stated. However, with the exception of random trees, where it has been shown to be aggravated when used in
combination with an under-sampling method, this mistake has been reduced in almost all learning classifiers save for
those based on random trees.
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Figure. 4. Explains the variations in outcomes obtained when using a variety of strategies

3.2.1. Boosting approach

When we utilized the boosting approach to generate a comparable collection of learning classifiers that performed in
the same manner on our educational dataset, we got a similar set of results. Therefore, any improvement in prediction
accuracy achieved by either boosting or base classifiers using ensemble learning methodologies may be confirmed.
Although we found that individual prediction models outperformed boosting paradigms, with the exception of
boosting with the J48 and the Naive Bayes, we also discovered that the accuracy of classifying correct instances was
boosted with 96.31%. We then investigated the model that had the least misclassification error, which turned out to be
4.77%. The outcomes of the ensemble learning process were acquired, and they are described in full in Table 5
below. Upon careful examination of the results presented in the aforementioned tables 2 and 5, it becomes clear that
the relative absolute error associated with the learning base classifiers (j48 and knn) has characterized notable results
when these learning base classifiers have been subjected to an ensemble learning process using boosted learning.
Also revealed was that the random tree's performance reduced with the boosting strategy, from 95.77% to 90.36%, as
a result of the boosting approach. This has resulted in inconsistency in the performance indicators related with the
base learning classifier such as Tp rate, accuracy rate, Fp rate, recall rate, ROC area f-measure, and others when
anticipating the precise instances of the base learning classifier.

Table. 5. Demonstrates the effectiveness of the boosting strategy

CN CC IC TPR FPR Precision Recall F-Measure ROC RAE

Boost.
with J48

96.33% 4.67% 0.953 0.032 0.955 0.953 0.954 0.995 7.39%
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Boost.
with Naive

Bayes

96.05% 4.95% 0.950 0.033 0.951 0.950 0.951 0.988 10.09%

Boost.
with

Random
tree

90.36% 10.64% 0.894 0.073 0.896 0.894 0.895 0.910 17.01%

Boost.
with KNN

94.60% 6.40% 0.936 0.044 0.937 0.936 0.936 0.948 10.46%

3.2.2. Increasing the effectiveness of SMOTE

When applied to different individual based learning classifiers, such as the j48, the random tree, the knn, and the
naive bayes, and when combined with the boosting strategy, the oversampling strategy, specifically SMOTE, and the
boosting technique enabled us to achieve remarkable results in all of the classifiers. Base learning classifiers such as
the j48 and naive bayes with boosting systems, as shown in Table 6, have shown significant improvements in
prediction results when applied to the over sampling approach, as shown in this study. In J48 with boosting, the
performance of the learning classifier increased from 96.31 percent to 97.41 percent; whereas, in J48 without
boosting, the performance of the learning classifier increased from 96.01 percent to 97.01 percent. In this case, we
use naive bayes with boosting. Both procedures yielded results that were similar to one another. However, the random
tree demonstrated superior prediction accuracy over all other classifiers using the knn technique from 94.60 percent
to 95.50 percent, and the random tree demonstrated superior prediction accuracy over all other classifiers using the
knn technique from 94.6 percent to 95.6 percent, and the random tree demonstrated superior prediction accuracy over
all other classifiers using the knn technique from 94.6 percent to 95.6 percent.

Table. 6. shows results of boosting method with SMOTE

CN CC IC TPR FPR Precision Recall F-Measure ROC RAE

Boost.
with J48

97.45% 3.55% 0.964 0.019 0.965 0.964 0.963 0.996 5.45%

Boost.
with

Naive
Bayes

97.07% 3.93% 0.961 0.021 0.962 0.961 0.960 0.991 8.36%

Boost.
with

Random
tree

93.04% 7.96% 0.920 0.043 0.921 0.922 0.921 0.938 12.08%

Hananto et al / JADS Vol. 2 No. 4 2021



Journal of Applied Data Sciences
Vol. 2, No. 4, December 2021, pp. 157-173

ISSN 2723-6471
169

Boost.
with
KNN

95.50% 5.50% 0.945 0.029 0.946 0.946 0.944 0.960 8.51%

3.2.3. Increasing the impact of data after spread subsampling

In the situation of boosting employing the under-sampling technique, the outcomes of multiple base learning
classifiers are shown in Table 7 in the context of boosting. According to Tables 5 and 7, increasing the number of
classifiers used, such as random trees, has resulted in a decrease in performance. For example, the Tp rate has
decreased from 94.60 percent to 94.00 percent. This decline in performance was found throughout the whole
collection of performance estimates associated with the learning classifier, including Tp rate, Fp rate, Precision and
recall, and the f-measure, among other things. Tp rate, Fp rate, Precision and recall, and the f-measure were all
influenced by this decline in performance. The performance of other classifiers, on the other hand, has improved, as
can be shown in the tables 5 and 7 of this report. The j48 classifier, the naive bayes classifier, and the knn classifier
are examples of such classifiers.

Table. 7. This table illustrates the outcomes of the boosting approach combined with Spread Sub-Sampling

CN CC IC TPR FPR Precision Recall F-Measure ROC RAE

Boost.
with J48

96.55% 4.45% 0.955 0.22 0.956 0.956 0.954 0.996 6.87%

Boost.
with

Naive
Bayes

92.62% 8.38% 0.916 0.042 0.917 0.916 0.915 0.937 12.67%

Boost.
with

Random
tree

96.86% 4.14% 0.959 0.021 0.960 0.961 0.959 0.992 7.52%

Boost.
with KNN

94.00% 7.00% 0.930 0.035 0.932 0.929 0.930 0.985 10.86%

Several classifiers trained using boosting techniques are illustrated in this figure, with histograms indicating their
classification accuracy and relative absolute error shown in this illustration. According to the diagram below, there
are three types of outcomes: boosting with each base learning classifier prior to using the filtering approach, results
obtained after applying the SMOTE algorithm, and results obtained after applying the spread subsampling algorithm.
Boosting with each base learning classifier prior to using the filtering approach Figure 5 shows the results of a prior
application of the filtering process, in which a learning classifier such as the J48 with boosting attained the highest
accuracy of 96.33 percent when compared to other learning classifiers used in the industry. In contrast, following the

Hananto et al / JADS Vol. 2 No. 4 2021



Journal of Applied Data Sciences
Vol. 2, No. 4, December 2021, pp. 157-173

ISSN 2723-6471
170

implementation of the SMOTE and Spread subsampling methods in each instance after the deployment of the
approaches, naive bayes with boosting have obtained remarkable prediction accuracy (97.07 percent and 96.86
percent , respectively). Also evident from the figure is that the least relative error across all phases, including results
obtained prior to the filtering process, results obtained following the SMOTE and Spread subsampling approaches,
has been analyzed with two classifiers involving boosting concepts, namely, j48 and naive bayes, in order to
determine the least relative error. j48 is a classifier involving boosting concepts that was used to determine the least
relative error.

Figure. 5. It displays the outcomes of several tactics that have been used.

Figure 6 depicts the ROC curves from the output class for Division I, Division II, and Division III, respectively.
Figure 6 shows the ROC curves for three classes from the output class, each with a different ROC value. The many
curves constructed for each class label in Figure 6 demonstrate that the accuracy of prediction has grown
significantly. Figure 6: Accuracy of prediction has increased drastically. Although the ROC curve representing
Division III has shown good performance in this situation, it is because the ROC curve in this case is more
dominating than in the other cases that the process has achieved its maximum potential degree of accuracy.
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Figure. 6. The ROC curve for three different classes is shown.

Using the underlying screenshot, we can observe the predictions made by the proposed model, which are shown in
table 8. Table 8 depicts a contrast between the original and predicted classes, with a few examples that have been
wrongly categorized by the suggested model being drawn to the attention of the viewer.

Table. 8. The proposed system expected model output

Sample Overall Score Grade

Original Predicted

1 77.65 II II

2 81.22 II II
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3 44.21 III II

4 95.98 I I

5 70.12 II II

4. Conclusion
In this study examination, the primary goal was to determine if filtering procedures or ensemble methods had a
significant influence on the accuracy of predictions made by learning classifiers Furthermore, as a result of the
results, we have developed a more accurate prediction approach for use with educational datasets. Because of this,
two prediction models, called base level learning and meta level learning, have been presented in order to produce
statistically significant results. When compared to all previous individual learning classifiers, the naive bayes
classifier obtained a remarkable prediction accuracy of 96.51% prior to the advent of filtering or ensemble
techniques, which was unprecedented at the time. In this case, the conclusions would have been erroneous and biased
due to the unequal distribution of the data in the dataset. It was as a result of these findings that the researchers
discovered that each learning classifier experienced a significant improvement and that among each base classifier,
naive bayes achieved an impressive prediction accuracy of 98.16% when using the over-sampling technique, which
was achieved using the filtering approaches. According to the findings, the knn classifier beat other learning
classifiers in terms of prediction accuracy when the under-sampling technique was used to train the classifier.
Researchers discovered that when they examined the ensemble approach and attempted to corroborate which method
had produced better results, they discovered that boosting without being subjected to any filtering approaches, such
as oversampling and undersampling procedures, demonstrated significantly higher prediction accuracy than
individual classifiers. As a consequence of our findings, when we tested the ensemble approach using both
under-sampling and under-sampling methodologies, prediction accuracy increased by a substantial amount in both
situations as compared to when we tested it using individual classifiers.
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