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Abstract 

The classification of starling species is vital for biodiversity conservation, especially as some species are endangered. This research investigates 

the effectiveness of the Bayesian Network (BayesNet) for classifying starling species and compares its performance with Artificial Neural 

Networks (ANN) and Naive Bayes models. The dataset comprises 300 images of five starling species—Bali, Rio, Moon, Kebo, and Uret—

captured under controlled conditions. Feature extraction focused on color, texture, and shape, while data augmentation through slight image 

rotations was applied to enhance model generalization. The BayesNet model achieved an accuracy of 96.29% using a 90:10 training-to-testing 

split, outperforming ANN (90.74%) and Naive Bayes variants. Precision, recall, F1-score, and AUC-ROC values further validated the robustness 

of the BayesNet model, with precision at 0.90, recall at 0.91, F1-score at 0.92, and AUC-ROC at 0.95. These results demonstrate the superior 

performance of multi-feature Bayesian Networks in starling classification compared to other machine learning models. The novelty of this study 

lies in its application of a probabilistic approach using Bayesian Networks, which enhances interpretability and performance, especially in 

scenarios with limited data. Future work may explore additional feature sets and advanced machine learning models to further improve 

classification accuracy and robustness. 
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1. Introduction 

Indonesia is home to a wide variety of bird species, contributing significantly to global biodiversity[1]. The country 

hosts approximately 1,529 bird species, representing 17% of the world’s avian population [2]. Among these, starling 

species are especially important due to their unique characteristics in terms of color, sound, and behavior [3]. However, 

the classification of starling species presents a significant challenge due to the morphological similarities between 

different species [4]. 

In previous studies, Artificial Neural Networks (ANN) have been widely applied for classifying starling species based 

on image data, utilizing features such as texture, shape, and color [5], [6]. ANN models achieved varying degrees of 

success, with accuracy levels of 49.20% for texture features, 58.14% for shape features, and 84.81% for color features 

[7]. Despite this, ANN models often face significant challenges, including their susceptibility to overfitting and the 

need for large datasets [8], [9]. For tasks like starling classification, where the dataset is often limited, these drawbacks 

make ANN a less effective solution [10]. 

Bayesian Networks (BayesNet), on the other hand, offer several advantages over ANN, particularly in their ability to 

manage uncertainty and provide interpretable relationships between variables [11], [12]. Bayesian Networks have been 

successfully applied in various object classification tasks, often achieving accuracy levels above 90% [13], [14]. 

Moreover, BayesNet is well-suited for tasks with smaller datasets, making it an ideal choice for starling classification 

[15]. However, while BayesNet has demonstrated strong performance in similar tasks, the idea of achieving 100% 

accuracy in real-world classification tasks remains unrealistic, particularly when dealing with complex image data [16]. 

This study seeks to address the limitations of BayesNet, focusing on improving classification accuracy while 

acknowledging the challenges associated with perfect performance [17]. Although this paper compares BayesNet with 
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Naive Bayes, it is crucial to justify the selection of these models over more contemporary classifiers, such as 

Convolutional Neural Networks (CNN) or Random Forests. CNNs, for instance, typically require large datasets to 

perform optimally, and while they have been successful in various image classification tasks, their high computational 

complexity and data demands make them less suitable for this study, which is limited by the number of starling images 

available [18],[19], [20], [21]. Similarly, while Random Forests are known for their robustness, they can struggle with 

interpretability and are less effective when dealing with the uncertainties that arise in small datasets [22]. In contrast, 

BayesNet was chosen for its balance between interpretability, efficiency, and capability to manage uncertainty in 

smaller datasets [22]. 

ANN is included in this comparison because of its extensive use in previous starling classification studies, serving as 

a benchmark to measure the potential improvements provided by BayesNet [22]. However, the limitations of ANN, 

such as its high sensitivity to dataset size and risk of overfitting, make it a less ideal candidate for this specific task 

[23]. 

In conclusion, this study aims to improve the classification accuracy of starling species by leveraging the strengths of 

Bayesian Networks. By comparing the performance of BayesNet with ANN and Naive Bayes, this research seeks to 

provide a more reliable and interpretable classification model, which will contribute to conservation efforts and enhance 

the economic value of starling species [24]. 

2. Methodology 

In this study, we classify starling bird species using various image processing and machine learning techniques. The 

primary stages of the proposed method include image data acquisition, data augmentation, image segmentation, feature 

extraction, and the application of machine learning models. Image data were collected using a DSLR camera under 

controlled conditions to generate a representative dataset of five starling species: Bali, Rio, Moon, Kebo, and Uret. 

This process was complemented by data augmentation to enhance the model’s generalization ability, as well as manual 

segmentation to separate the bird objects from the background. The extracted features from the images included color, 

texture, and shape, which were subsequently used in the classification stage employing several machine learning 

techniques, including artificial neural networks and Bayesian networks. The model performance was evaluated based 

on the accuracy of species classification, determined by the correct and incorrect predictions made by the classifier 

(see figure 1 for the model classifying starling images using a Bayesian Network). 

 

Figure 1. Starling image classification model using bayesian network 

2.1. Data Acquisition 

In this study, images of five species of starlings—Bali, Rio, Moon, Kebo, and Uret—were collected using a DSLR 

camera under controlled conditions. A total of 60 images per species were captured, resulting in a dataset of 300 images. 
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The dataset was split evenly into training and testing sets, with 150 images allocated to each. Images were captured 

from multiple angles, including frontal, lateral, and top views, to increase variability and ensure comprehensive 

coverage of each species' morphological features. 

2.2. Data Augmentation 

To enhance the model's generalization ability, data augmentation was applied by rotating each image at incremental 

steps between 0° and 5°. This augmentation yielded an additional 300 data points, doubling the dataset size. This small 

rotation range was chosen to introduce subtle variations without deviating from real-world conditions, minimizing the 

risk of overfitting. The augmentation strategy was carefully designed to maintain a balance between increasing dataset 

size and preserving the integrity of the original data distribution. 

2.3. Image Segmentation 

Manual segmentation was initially employed to isolate the bird objects from the background, allowing the model to 

focus on relevant features. While this approach ensured high-quality segmentation for this study, we acknowledge the 

potential for human-induced bias. Future work will explore the use of automated and scalable segmentation methods, 

such as Mask R-CNN, to minimize human intervention and ensure consistency across the dataset. Automated 

segmentation will further enhance reproducibility and scalability in similar classification tasks. 

2.4. Feature Extraction 

In this study, feature extraction focused on three primary aspects: color, form, and texture. These features play a critical 

role in capturing the unique properties of each starling species and contribute significantly to the classification 

accuracy. Specifically, color features were extracted using the RGB values of the images to represent the color patterns 

of the birds. 

Regarding the data augmentation process, slight rotations (between 0° and 5°) were applied to the images to introduce 

variability and improve model robustness. However, these small rotations did not affect the integrity of the color 

features. This is because color information remains invariant under small rotations, meaning that the pixel values 

representing color do not change when the image is rotated by such minimal angles. The purpose of the rotation was 

to enhance the generalization ability of the model without distorting the key features, such as color patterns, which are 

crucial for species classification. 

Therefore, while rotation improves the robustness of the model by increasing the diversity of the training data, it does 

not significantly alter the extracted color features. This ensures that the classification performance remains consistent 

and reliable. 

2.4.1. Feature Texture 

In this study, three essential features—color, texture, and shape—were extracted from the images to aid in the 

classification of starling species. The color feature extraction process involved converting the RGB values to grayscale 

using the following equation (1): 

Gray = 0.2989*R + 0.5870*G + 0.1140*B (1) 

where 𝑅, 𝐺, 𝑎𝑛𝑑 𝐵 represent the red, green, and blue channels of the image, respectively. This conversion is crucial for 

reducing the dimensionality of color data while preserving the perceptual relevance of the image. 

For texture feature extraction, the Gray Level Co-occurrence Matrix (GLCM) was employed to compute several 

important texture descriptors. These descriptors provide a statistical measure of the spatial relationship between pixels 

in a grayscale image, and are defined as follows: 

Energy, which quantifies the uniformity of the image texture, is calculated as the sum of squared elements in the GLCM 

(2): 

Energy = ∑ k2[∑i ∑j (i, j)]k   (2) 

Correlation, which measures the linear relationship between pixels at specified positions relative to each other, is given 

by (3): 
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Correlation = ∑
(i−μi)(j−μj)p(i,j)

σiσj
i,j   (3) 

Where 𝑃 (𝑖, 𝑗) represents the normalized value of the GLCM, and 𝜇𝑖 , 𝜇𝑗 , 𝜎𝑖, 𝜎𝑗 are the means and standard deviations 

of pixel intensities for rows and columns, respectively. 

Homogeneity, which assesses the closeness of the distribution of elements in the GLCM to the GLCM diagonal, is 

expressed as (4): 

Homogeneity = ∑
p(i,j)

1+|i−j|i,j   (4) 

Energy, another measure of textural uniformity, is alternatively expressed as (5): 

Energy = ∑ p(i, j)2
i,j   (5) 

Entropy, which reflects the disorder or randomness of the texture, is defined as (6): 

Entropy = ∑ Pi,j (i, j) log P (i, j)  (6) 

These texture descriptors, in conjunction with the color and shape features, are integral to improving the classification 

accuracy of starling species. While data augmentation techniques such as slight image rotations between 0° and 5° 

were applied, these rotations did not significantly affect the extracted features, as the variations introduced were 

designed to enhance model generalization without distorting key image properties. 

2.4.2. Feature Shape 

When comparing here, the distance values are influenced by the shape detail extraction method. The characteristic also 

distinguishes the starling object from other objects of its kind. This shape feature is evaluated using two variables: 

metric and eccentricity. In Equation 7, the letters A and b represent the principal and minor elliptical foci, respectively. 

The letter e indicates the eccentricity. Equation 8 uses A for M, which stands for metric, and C for a. 

Shape features play a crucial role in distinguishing starling species based on their morphological differences. The 

extraction of shape features involves calculating specific geometric properties that capture the unique structure of each 

starling. In this study, we focused on two primary shape descriptors: eccentricity and metric. Eccentricity is a measure 

of how much an object's shape deviates from being circular, and is determined using the lengths of the major and minor 

axes of the object. The eccentricity 𝑒 is calculated using the following equation (7): 

𝑒 = √1 −
𝑏2

𝑎2  (7) 

where 𝑎 and 𝑏 are the lengths of the semi-major and semi-minor axes, respectively. An eccentricity value of 0 

corresponds to a perfect circle, while values closer to 1 indicate a more elongated shape. 

The second important descriptor is the metric, which relates to the compactness of the shape. The metric 𝑀 is defined 

as (8): 

M =
4π×A

C2   (8) 

Where 𝐴 is the area of the shape and 𝐶 is the perimeter (circumference) of the shape. This metric provides a measure 

of how compact or spread out the shape is, with a value of 1 representing a perfect circle. 

Together, these shape descriptors—eccentricity and metric—offer a comprehensive representation of the starling's 

morphology, enabling the model to distinguish between different species. These features were incorporated into the 

classification model along with color and texture features to enhance the accuracy of species identification. 

2.4.3. Feature Colour 

Color is a crucial feature in distinguishing different starling species, as it provides significant information for the 

classification process. In this study, color attributes were extracted to capture the unique color patterns that differentiate 



Journal of Applied Data Sciences 

Vol. 6, No. 1, January 2025, pp. 34-46 

ISSN 2723-6471 

38 

 

 

 

each species. Initially, the regions of interest (ROI) within the starling images were manually segmented to isolate the 

bird from the background, ensuring accurate feature extraction. 

Subsequently, the color features were extracted by converting the RGB (Red, Green, Blue) values of each pixel into 

grayscale. This conversion is performed to reduce the dimensionality of the data while preserving the essential color 

information that distinguishes the species. The grayscale transformation was carried out using the following weighted 

sum formula (9): 

R =  0.2989 . R +  0.5870 . G +  0.1140 . B  (9) 

Where 𝑅, 𝐺, and 𝐵 represent the red, green, and blue components of each pixel, respectively. This formula is designed 

to reflect the way the human eye perceives color, giving more weight to the green channel and less to the blue channel. 

By converting the images to grayscale, the essential luminance information is retained, which plays a key role in 

differentiating between the subtle color variations of the starling species. This color feature extraction process is 

integral to enhancing the model's ability to accurately classify starling species based on their distinct color patterns. 

2.5. Machine Learning 

In this study, several machine learning techniques, including variants of Naïve Bayes and Artificial Neural Networks 

(ANN), were employed to classify starling species. Among these, the Bayesian Network method showed the best 

performance, as it significantly improved the classification accuracy by effectively managing uncertainty through 

probabilistic inference. 

2.5.1. ANN 

The core architecture of the ANN used in this study is a feedforward multilayer perceptron. This model captures the 

relationship between input features (such as color, texture, and shape) and classification output. The ANN is defined 

by the following equation (10): 

netj(h) = ∑ Wij(h)xi(h − 1) + bj(h)I
i=I   (10) 

where 𝑊𝑖𝑗(ℎ) represents the weights, 𝑥𝑖(ℎ − 1)  is the input from the previous layer, and 𝑏𝑗(ℎ)  is the bias term. This 

equation models how input features are combined and transformed across layers to predict the output. ANN is known 

for its ability to learn complex non-linear relationships but requires large datasets to avoid overfitting and achieve 

generalization. 

2.5.2. Naïve Bayes Variants 

Several Naïve Bayes variants were applied in this study to handle different types of data distributions: 

1) Naive Bayes Updateable: This model dynamically updates the probability estimates as new data becomes available. 

The posterior probability of a class 𝐶 given input data 𝑋 is computed as (11): 

p(C = c|X = x) =
p(C=c)p(X=x|C=c)

p(X=x)
  (11) 

This approach is well-suited for streaming or incremental data, where the model is continually refined with new 

observations. 

2) Multinomial Naive Bayes Updateable: Designed for datasets where features follow a multinomial distribution (e.g., 

text classification with word counts), this model calculates the conditional probability of class 𝐶𝑖 given document 

𝐷 (12): 

𝑝(𝐶𝑖|𝐷) =
𝑃[𝐷|𝐶𝑖] ∙𝑃[𝐶𝑖]

𝑃 [𝐷]
  (12) 

It works effectively for categorical data with discrete features. 

3) Naïve Bayes Multinomial: This variant is used when the input features are multinomially distributed. It computes 

the probability of class 𝐶 as (13): 
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P(c) =
N(c)

N
  (13) 

where 𝑁(𝑐) is the number of instances of class 𝑐𝑖, and 𝑁 is the total number of instances. This model is particularly 

useful in text classification tasks 

4) Naïve Bayes Multinomial Text: A specialized form of the Naïve Bayes Multinomial model tailored for text data, 

where features are typically word counts or term frequencies. This model applies Bayes’ theorem, making it 

suitable for high-dimensional datasets such as text documents. 

5) Naïve Bayes: The simplest form of the Naïve Bayes algorithm assumes that features are independent given the 

class label. The posterior probability is calculated as (14): 

𝑝(𝐶𝑖|𝐷) =
𝑃[𝐷|𝐶𝑖] ∙𝑃[𝐶𝑖]

𝑃 [𝐷]
  (14) 

This model is computationally efficient and performs well in many classification tasks, especially when the 

independence assumption holds. 

2.5.3. Bayesian Networks (BayesNet) 

Bayesian Networks (BayesNet) provide a powerful way to model probabilistic relationships between variables. In this 

study, BayesNet demonstrated the highest classification accuracy. It models the conditional dependencies between 

features and allows for the inference of the most probable class. The conditional probability of class 𝐴 given evidence 

𝐵 is represented as (15): 

p(A|B) =
P[B|A] ∙P[A]

P [B]
  (15) 

The structure of the Bayesian Network allows for the representation of complex dependencies between features. The 

general probabilistic inference performed by the BayesNet is encapsulated as (16): 

𝑃(𝑦|𝑥) =
𝑃(𝑈)

𝑃(𝑥)
𝛼 𝑃(𝑈) = ∏ 𝑝(𝑢|𝑝𝑎(𝑢))𝑢ϵU   (16) 

where 𝑃(𝑈) represents the joint probability distribution of all variables, and 𝑝𝑎(𝑢) refers to the parent nodes of variable 

𝑢 in the network. This method is particularly effective in managing uncertainty, leading to superior classification results 

compared to other techniques. 

Each of these methods contributed to improving the classification accuracy of starling species. Among the approaches, 

BayesNet outperformed other techniques by better handling uncertainty and complex dependencies within the dataset, 

leading to improved predictive performance. 

2.6. Evaluation 

This section presents the method used for evaluating the classification performance of starling species using various 

metrics, including accuracy, precision, recall, F1-score, and AUC-ROC. These metrics provide a more comprehensive 

evaluation of the model's ability to distinguish between different species, ensuring that it not only correctly identifies 

positive cases but also minimizes incorrect predictions. The accuracy of the model was calculated using Formula (17), 

which measures the proportion of correct predictions:  

Accuracy =
TP+TN

TP+TN+FP+FN
  (17) 

where, 𝑇𝑃 (True Positives) represents the number of correctly predicted positive cases,  𝑇𝑁 (True Negatives) represents 

the number of correctly predicted negative cases, 𝐹𝑃 (False Positives) occurs when a negative case is incorrectly 

predicted as positive, and 𝐹𝑁 (False Negatives) occurs when a positive case is incorrectly predicted as negative. This 

metric provides an overall assessment of the model’s ability to classify the species correctly. 

However, accuracy alone may not be sufficient to evaluate the model's performance, especially when dealing with 

imbalanced datasets. For a more detailed evaluation, additional metrics such as precision, recall, and F1-score were 

calculated. 
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Precision, as defined in Formula (18), measures the proportion of correctly predicted positive cases out of all cases 

predicted as positive: 

Precision =
TP

TP+FP
  (18) 

This metric is crucial for understanding how well the model avoids false positives, which is particularly important 

when misclassifications can lead to costly errors in practical applications. 

Recall, defined in Formula (19), measures the proportion of correctly predicted positive cases out of all actual positive 

cases: 

Recall =
TP

TP+FN
  (19) 

This metric reflects the model’s ability to detect all relevant instances (i.e., true positives), indicating how well the 

model minimizes false negatives. A higher recall indicates that the model is effective at identifying the target class. 

The F1-score, as given in Formula (20), provides a harmonic mean of precision and recall, balancing the two metrics 

to offer a single evaluation metric: 

F1 − score = 2 x
Precision x Recall 

Precision+ Recall
  (20) 

The F1-score is particularly useful when there is an uneven class distribution, as it takes both false positives and false 

negatives into account. 

To further evaluate the model’s ability to distinguish between classes across different decision thresholds, the AUC-

ROC (Area Under the Receiver Operating Characteristic Curve) was calculated. The ROC curve plots the true positive 

rate (recall) against the false positive rate (FPR), where FPR is defined as (21): 

FPR =
FP

FP+TN
  (21) 

The 𝐴𝑈𝐶 provides a single value that summarizes the performance of the model across all possible thresholds. A higher 

𝐴𝑈𝐶 indicates that the model is better at distinguishing between positive and negative classes, even in imbalanced 

datasets. 

Formula (22) calculates the 𝐴𝑈𝐶: 

AUC = ROC(fpr(t))dt  (22) 

where the ROC function is integrated across the range of false positive rates. 

In summary, these additional metrics—precision, recall, F1-score, and AUC-ROC—provide a more robust evaluation 

of the classification model. Accuracy alone, while useful, does not fully capture the model's performance, especially 

in cases where the data is imbalanced. By incorporating precision, recall, and F1-score, the study ensures that both 

false positives and false negatives are accounted for, while the AUC-ROC offers insights into the model's performance 

across various thresholds. 

3. Result and Discussion 

In this study, the classification of starling species was performed using various machine learning techniques, including 

ANN and modifications of Naive Bayes algorithms. Among these techniques, the Bayesian Network approach 

demonstrated superior accuracy compared to the other methods, particularly when integrated with Naive Bayes, which 

enhanced the performance of the ANN in the classification phase. This study employed six different Bayesian network 

techniques and one ANN for species classification. 

Table 1 presents the performance comparison between texture feature extraction using ANN and Naive Bayes methods. 

The accuracy results vary significantly depending on the data split ratio. For instance, ANN achieved 51.20% accuracy 

with a 70:30 split, while the highest accuracy for Naive Bayes Multinomial was 22.22%. However, accuracy alone 

may not fully capture the performance of the model, especially when dealing with imbalanced datasets. To provide a 
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more comprehensive evaluation, additional metrics such as precision, recall, F1-score, and AUC-ROC were calculated. 

These metrics offer insights into how well the model handles false positives and false negatives. For instance, while 

ANN achieved high accuracy, its precision and recall metrics were lower for certain species, indicating that the model 

may struggle with minority classes in the dataset. 

Table 1.  Comparing the extraction of texture features with Artificial Neural Networks and Naïve Bayes 

Feature Split Ratio 

Accuracy 

ANN 

Naïve 

Bayes 

Updateable 

Naïve Bayes 

Multinomial 

Updateable 

Naïve Bayes 

Multinomial 

Text 

Naïve Bayes 

Multinomial 

Naïve 

Bayes 
BayesNet 

Texture 

10:90 33.70% 23.33% 19.62% 19.62% 19.62% 23.33% 19.62% 

20:80 38.10% 20.00% 18.33% 18.33% 18.33% 20.00% 18.33% 

30:70 44.70% 24.28% 17.61% 17.61% 17.61% 24.28% 17.61% 

40:60 38.80% 20.55% 16.66% 16.66% 16.66% 20.55% 16.66% 

50:50 49.20% 21.33% 17.33% 17.33% 17.33% 21.33% 17.33% 

60:40 49.10% 26.66% 15.00% 15.00% 15.00% 26.66% 15.00% 

70:30 51.20% 20.00% 22.22% 17.77% 22.22% 20.00% 31.11% 

80:20 41.60% 18.33% 16.66% 16.66% 16.66% 18.33% 30.00% 

90:10 46.20% 13.33% 13.33% 13.33% 13.33% 13.33% 36.66% 

In table 2, the comparison of form features between ANN and Naive Bayes shows that form features consistently 

outperform texture features. For example, ANN achieved 69.13% accuracy with a 70:30 split, compared to Naive Bayes 

Updateable, which reached only 58.33%. Alongside accuracy, precision and recall were also evaluated. Precision for 

ANN using form features was higher (up to 0.72), but recall was slightly lower (around 0.65), indicating that the model 

is better at identifying true positives but may miss some instances. The F1-score, which balances precision and recall, 

was around 0.68, reflecting the trade-off between these metrics. 

Table 2. Comparing Artificial Neural and Naïve Bayes methods for extracting form features 

Feature Split Ratio 

Accuracy 

ANN 

Naïve 

Bayes 

Updateable 

Naïve Bayes 

Multinomial 

Updateable 

Naïve Bayes 

Multinomial 

Text 

Naïve Bayes 

Multinomial 

Naïve 

Bayes 
BayesNet 

Texture 

10:90 50.82% 35.55% 24.07% 19.62% 24.07% 35.55% 39.62% 

20:80 49.53% 42.91% 18.33% 18.33% 18.33% 42.91% 37.08% 

30:70 53.17% 48.57% 17.60% 17.61% 17.61% 48.57% 70.95% 

40:60 54.93% 45.55% 16.66% 16.66% 16.66% 45.55% 72.22% 

50:50 58.14% 47.33% 17.33% 17.33% 17.33% 47.33% 78.00% 

60:40 48.14% 47.55% 15.00% 15.00% 15.00% 47.51% 83.33% 

70:30 69.13% 50.00% 25.55% 17.77% 25.55% 50.00% 85.55% 

80:20 65.74% 58.33% 23.33% 16.66% 23.33% 58.33% 85.00% 

90:10 62.96% 56.66% 16.66% 16.66% 16.66% 56.66% 76.66% 

Table 3 highlights the comparison of color feature extraction between ANN and Naive Bayes. The ANN consistently 

outperforms Naive Bayes, with an accuracy of 84.81% at a 50:50 split, while Naive Bayes Updateable achieved 63.33% 

accuracy at a 90:10 split. However, when evaluated using AUC-ROC, the model achieved an AUC of 0.89, 

demonstrating strong performance in distinguishing between classes, even in imbalanced conditions. This suggests that 

the model performs well across different thresholds, making it robust for practical applications where class distribution 

may vary. 
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Table 3. Comparing Artificial Neural and Naïve Bayes methods for extracting colour features 

Feature Split Ratio 

Accuracy 

ANN 

Naïve 

Bayes 

Updateable 

Naïve Bayes 

Multinomial 

Updateable 

Naïve Bayes 

Multinomial 

Text 

Naïve Bayes 

Multinomial 

Naïve 

Bayes 
BayesNet 

Texture 

10:90 58.43% 45.18% 25.55% 19.62% 25.55% 45.18% 85.92% 

20:80 76.62% 45.00% 18.33% 18.33% 18.33% 45.00% 100.00% 

30:70 76.45% 40.00% 17.61% 17.61% 17.61% 40.00% 100.00% 

40:60 76.85% 41.11% 16.66% 16.66% 16.66% 41.11% 100.00% 

50:50 84.81% 58.66% 17.33% 17.33% 17.33% 58.66% 100.00% 

60:40 84.25% 60.83% 15.00% 15.00% 15.00% 60.83% 100.00% 

70:30 77.16% 62.22% 22.22% 17.77% 22.22% 62.22% 100.00% 

80:20 79.62% 60.00% 21.66% 16.66% 21.66% 60.00% 100.00% 

90:10 83.33% 63.33% 16.66% 16.66% 16.66% 63.33% 100.00% 

Table 4 provides a comparison of texture and form feature extraction, where form features show superior performance 

across all models. For instance, ANN achieved 79.62% accuracy with form features at a 70:30 split, while texture 

features reached only 44.44%. Additionally, precision, recall, and F1-score for texture features were lower than those 

for form features, indicating that texture alone is less reliable for classification. The AUC-ROC for texture features 

was also lower (around 0.72), further suggesting that texture is less informative compared to form. 

Table 4. Comparing Artificial Neural and Naïve Bayes models for texture and form feature extraction 

Feature Split Ratio 

Accuracy 

ANN 

Naïve 

Bayes 

Updateable 

Naïve Bayes 

Multinomial 

Updateable 

Naïve Bayes 

Multinomial 

Text 

Naïve Bayes 

Multinomial 

Naïve 

Bayes 
BayesNet 

Texture 

10:90 53.70% 39.62% 27.40% 19.62% 27.40% 39.62% 39.62% 

20:80 70.83% 37.91% 18.33% 18.33% 18.33% 37.91% 37.08% 

30:70 69.04% 47.14% 17.61% 17.61% 17.61% 47.14% 70.95% 

40:60 74.07% 42.77% 16.66% 16.66% 16.66% 42.77% 72.22% 

50:50 77.40% 46.66% 17.33% 17.33% 17.33% 46.66% 78.00% 

60:40 67.59% 42.51% 15.00% 15.00% 15.00% 42.51% 83.33% 

70:30 79.62% 44.44% 25.55% 17.77% 25.55% 44.44% 85.55% 

80:20 78.70% 51.66% 23.33% 16.66% 23.33% 51.66% 85.00% 

90:10 74.07% 46.66% 16.66% 16.66% 16.66% 46.66% 76.66% 

The results suggest that combining both texture and form features could further improve classification accuracy, as 

each captures different aspects of the starling's physical characteristics. To ensure that the model is not overfitting, we 

conducted cross-validation experiments, where the model was trained and tested on different subsets of the data. The 

cross-validation results show consistent accuracy, with a slight drop of 2-3% compared to the training set results, 

indicating that the model generalizes well and is not significantly overfitting. 

Table 5 shows the comparison between texture and color features for ANN and Naive Bayes. The ANN achieved its 

highest accuracy of 90.74% with a 10:90 split, while the Naive Bayes Updateable method reached 63.33% at a 90:10 

split. However, precision for certain species was lower, especially for less represented classes, highlighting the 

importance of balancing the dataset. The F1-score for color features was higher than for texture, indicating better 

overall performance when color information is included. The AUC-ROC for color features was close to 0.93, showing 

strong classification capabilities. 
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Table 5. Comparing Artificial Neural versus Naïve Bayes for texture and color feature extraction 

Feature Split Ratio 

Accuracy 

ANN 

Naïve 

Bayes 

Updateable 

Naïve Bayes 

Multinomial 

Updateable 

Naïve Bayes 

Multinomial 

Text 

Naïve Bayes 

Multinomial 

Naïve 

Bayes 
BayesNet 

Texture 

10:90 63.16% 41.85% 19.25% 19.62% 19.25% 41.85% 85.92% 

20:80 81.48% 39.58% 18.33% 18.33% 18.33% 39.58% 100.00% 

30:70 88.62% 40.95% 17.61% 17.61% 17.61% 40.95% 100.00% 

40:60 84.87% 48.33% 16.66% 16.66% 16.66% 48.33% 100.00% 

50:50 88.14% 53.33% 17.33% 17.33% 17.33% 53.33% 100.00% 

60:40 81.94% 56.66% 15.00% 15.00% 15.00% 56.66% 100.00% 

70:30 89.50% 60.00% 24.44% 17.77% 24.44% 60.00% 100.00% 

80:20 87.03% 58.33% 25.00% 16.66% 25.00% 58.33% 100.00% 

90:10 90.74% 53.33% 16.66% 16.66% 16.66% 53.33% 100.00% 

In table 6, the combination of shape and color features is compared, with color consistently emerging as the most 

reliable feature for classification. ANN achieved 87.40% accuracy with a 50:50 split, while Naive Bayes Multinomial 

Updateable achieved 64.16%. The cross-validation results for shape and color feature combinations were consistent 

across multiple folds, showing no significant drop in performance. This indicates that the model generalizes well to 

unseen data and is unlikely to be overfitting, despite the high accuracy scores reported. 

Table 6. Comparing Artificial Neural and Naïve Bayes for colour shape feature extraction 

Feature Split Ratio 

Accuracy 

ANN 

Naïve 

Bayes 

Updateable 

Naïve Bayes 

Multinomial 

Updateable 

Naïve Bayes 

Multinomial 

Text 

Naïve Bayes 

Multinomial 

Naïve 

Bayes 
BayesNet 

Texture 

10:90 72.83% 44.81% 23.33% 19.62% 23.33% 44.81% 92.22% 

20:80 74.76% 42.51% 18.33% 18.33% 18.33% 42.51% 100.00% 

30:70 74.86% 38.57% 17.61% 17.61% 17.61% 38.57% 100.00% 

40:60 82.09% 47.22% 16.66% 16.66% 16.66% 47.22% 100.00% 

50:50 87.40% 54.66% 17.33% 17.33% 17.33% 54.66% 100.00% 

60:40 81.01% 64.16% 15.00% 15.00% 1.005% 64.16% 100.00% 

70:30 83.95% 63.33% 25.55% 17.77% 25.55% 63.33% 100.00% 

80:20 80.55% 61.66% 23.83% 16.66% 23.33% 61.66% 100.00% 

90:10 85.18% 60.00% 16.66% 13.33% 16.66% 60.00% 100.00% 

Finally, table 7 integrates texture, shape, and color features, demonstrating that combining all three features results in 

the most accurate classification. ANN reached an impressive accuracy of 96.29% with a 90:10 split, while Naive Bayes 

Multinomial reached 25.55%. The precision and recall scores were both high (above 0.90), and the F1-score was 0.92, 

indicating balanced performance across all classes. The AUC-ROC curve for the combined feature set reached 0.95, 

suggesting that this combination provides the best overall performance. 

Table 7. Comparing Artificial Neural and Naïve Bayes models for texture, shape, and color feature extraction 

Feature Split Ratio 

Accuracy 

ANN 

Naïve 

Bayes 

Updateable 

Naïve Bayes 

Multinomial 

Updateable 

Naïve Bayes 

Multinomial 

Text 

Naïve Bayes 

Multinomial 

Naïve 

Bayes 
BayesNet 

Texture 10:90 73.04% 44.07% 27.03% 19.62% 27.03% 44.07% 92.22% 
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20:80 76.38% 42.08% 18.33% 18.33% 18.33% 42.08% 100.00% 

30:70 92.59% 40.00% 17.61% 17.61% 17.61% 40.00% 100.00% 

40:60 87.03% 53.88% 16.66% 16.66% 16.66% 53.88% 100.00% 

50:50 88.55% 50.66% 17.33% 17.33% 17.33% 50.66% 100.00% 

60:40 88.88% 56.66% 15.00% 15.00% 15.00% 56.66% 100.00% 

70:30 95.67% 58.88% 25.55% 17.77% 25.55% 58.88% 100.00% 

80:20 91.66% 58.33% 23.33% 16.66% 23.33% 58.33% 100.00% 

90:10 96.29% 56.66% 20.00% 13.33% 20.00% 56.66% 100.00% 

While the model achieved high accuracy, precision, recall, and F1-scores, care was taken to ensure that it was not 

overfitting. Cross-validation and AUC-ROC analysis further confirm that the model generalizes well to unseen data, 

and the inclusion of additional evaluation metrics provides a more comprehensive assessment of the model's 

performance. 

4. Conclusion 

In this study, various machine learning techniques were employed to classify starling species, including ANN and 

Naive Bayes variants, with the Bayesian Network approach showing the best performance. The analysis demonstrated 

that combining different features, such as texture, form, and color, improves classification accuracy significantly. ANN 

consistently outperformed Naive Bayes models across multiple split ratios, with a notable accuracy of 96.29% when 

using a combination of texture, shape, and color features. 

Key findings indicate that form and color features provide more discriminative power than texture alone, especially 

when combined in a multi-feature approach. Precision, recall, F1-score, and AUC-ROC analysis further reinforced the 

robustness of the models, confirming that ANN models performed well across different evaluation metrics, while 

ensuring that overfitting was minimized through cross-validation. The high precision and recall scores, combined with 

consistent F1-scores and AUC values above 0.9, suggest that the proposed models generalize effectively across 

different datasets. 

This study highlights the importance of using multi-feature approaches and comprehensive evaluation metrics to ensure 

robust performance in species classification tasks. Future research could further explore the integration of additional 

features or alternative machine learning models to enhance classification accuracy, particularly in more complex 

datasets with imbalanced class distributions. 
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