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Abstract

In this paper, Infiltration rate of the soil is investigated by using predictive models of Random forest regression and their
performance were compared with Artificial neural network (ANN) and M5P model tree techniques. We utilized 132 field
measurements comprising this dataset. 88 models were trained using observations, while the remaining 44 were used to validate
it. The cumulative time (Tf), the impurity type (It), the impurity concentration (Ci), and the moisture content (Wc) were utilized
as input variables, and the rate of infiltration was employed as the output. To evaluate the efficiency of the two modeling
methodologies, correlation coefficients we estimated root mean square error (RMSE), mean absolute error (MAE), relative
absolute error (RAE), and root relative square error are all terms that may be used to describe errors (RRSE). The random forest
regression approach outperforms the other two models when compared to evolutionary data (ANN and M5P model tree). Using a
random forest as a model, regression can properly estimate the infiltration rate within a 25% error range. According to the results
of the sensitivity research, cumulative time plays an important influence in determining the soil's penetration rate.
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1. Introduction
The term "infiltration" refers to the process through which water percolates through the soil. It is a significant
parameter in a variety of applications, including hydrological runoff modeling, irrigation management, and watershed
modeling. Infiltration capacity varies geographically and temporally as a result of soil heterogeneity, meteorological
variables, clogging processes, and temperature fluctuations, among other things [1]. The soil's capacity to hold
moisture varies according to its texture. Sand has a larger pore size than clay, which results in a faster infiltration rate
and a decreased capacity for water storage [2]. Additionally, runoff prediction is crucial for hydraulic structure
building, as well as for water resource planning and management [3]. The reclamation site's infiltration rates were
found to be considerably different from those of undisturbed places in the same region. Agriculture depends on
infiltration, which has piqued the curiosity of soil and water scientists [4].

Throughout the past several decades, many prediction algorithms effectively used civil and environmental
engineering [5,6]. Numerous linear regression techniques were used to estimate and forecast infiltration rates. The
process of modeling neural networks requires the specification of a set of parameters that have been established by
the user (number of hidden layers, learning speed, momentum and number of iterations). The number of training
rounds affects the reliability of neural network models [7,4]. Another disadvantage of backpropagation neural
networks is their lack of training local minima phase. In comparison to neural network techniques, approaches based
on support vector and Gaussian process regression outperformed neural network techniques and created global
minima. In light of the promising performance of Tree This research investigates the predictive abilities Random
forest regression, Tree ANN, SVM, GP, and M5-based regression are all examples of machine learning techniques
algorithms. for predicting soil infiltration rates.
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2. Literature Review

2.1. Regression on a Random Forest

Random forest (RF) is a classification and regression approach that is composed of a succession of prediction trees,
each of which is generated using a randomly chosen random vector that is unrelated to the vector input [8]. A
numerical value is given to the prediction tree instead of a class label, as is done with the random forest classifier [9].
When using the random forest regression approach, which was used in this study, the tree was formed by selecting
one or more variables at each node at random. For each feature combination, bagging is a strategy that includes
randomly selecting N replacement samples from the original training set or a randomly chosen subset of the original
training set in order to generate unique trees for each feature combination in the training set [10]. Using the bagging
(bootstrap sample) example, the training set contains around 67% of the data from the initial training set, implying
that approximately a third of the data is trailing behind each tree planted. The phrase "out-of-bag data" refers to data
that has been left over from a previous project (out of bootstrap sampling). Predictor trees need the selection of
variable sizes as well as the implementation of a pruning process [11]. Several different techniques for variable
selection for tree induction have been presented in the literature, the vast majority of which are directly associated
with quality metrics (such as reliability and validity). Variable selection criteria such as the Information Gain Ratio
and the Gini Index criterion are the most often employed in tree induction, and they are described in detail below.
The Gini Index is used as a selection criterion for variables in the random forest regression technique presented in
this article, which is a random forest regression approach. The Gini Index is a measure of the impureness of a
variable's output value.

By including a range of factors, the random forest regression design enables trees to grow to their maximum depth
using only fresh training data. At the time, the tree is not being pruned.This is one of the most significant benefits of
random forest regression over other tree modeling approaches, such as the M5 tree model, in terms of accuracy.
According to research, the pruning approach used, rather than the size of the variable selection, has an influence on
the performance of tree-based algorithms. According to Mayer et al., [12], the generalization error always converges
as the tree population grows, even in the absence of tree trimming, and due to the Strong Law of Large Numbers,
overfitting is not a concern.

Several user-defined parameters must be specified for random forest regression to be effective: the number of
variables utilized to build trees at each node (m) and the number of trees to be planted (k). At each node, the ideal
split is determined using just the supplied variable. Therefore the random forest regression process is composed of k
trees, where k is the number of trees to be planted, which may be any value specified by the user and is represented
by the symbol k. The random forest regression process is composed of k trees in this manner. As a result of the
quantitative nature of the output of forest random-based regression, the average generalization error for each
numerical predictor may be calculated. We generated random forest predictors by averaging the generalization error
over k trees.

2.2. Model tree M5P

The M5 tree model may be thought of as the binary decision tree is built on top of a linear regression function as its
foundation (leaf) that is capable of predicting continuous numeric characteristics [13]. For the purpose of building the
tree-based model, the approach of divide and conquer is used. The creation of a model tree is divided into two parts
that must be completed independently [14]. The first step is to construct a decision tree based on the separation
criteria. The tree model M5 algorithm rules are essentially based If you want to calculate the predicted decrease in
this error as a consequence of evaluating each attribute at a node, utilize the standard deviation of the class values
reaching that node as a proxy for the fault at that node [14, 15]. In the process of splitting data, the data in the child
nodes has a smaller standard deviation than the data in the parent node, resulting in the data in the child nodes being
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more pure. M5 selects the split that will result in the greatest predicted error reduction after taking into account all
feasible splits [16]. In many cases, this division leads to the formation of a gigantic tree-like structure, which is
characterized by overfitting. In order to remedy the issue of overfitting, the tree must be retrimmed, for example, by
removing the subtree and replacing it with leafy growth. The second phase of the tree model creation procedure
entails trimming the tree and replacing it with a linear regression function [17] in order to prevent the tree from
becoming overgrown. Tree model generation divides the parameter space into regions in order to build linear
regression models for each sector of the parameter space. This allows for the production of a linear regression model
for each sector of the parameter space (subspaces).

2.3. Models of artificial neural networks

Neural networks are composed of components that are easily parallelizable. These components are inspired by the
neurological system of animals [18]. As is the case in nature, the primary determinant of a network's functioning is
the connections between its components. By altering the connection weight values between pieces, neural networks
may be taught to execute certain tasks [19]. In general, neural networks are altered, or trained, to produce certain
outputs in response to specific inputs. The network is changed in accordance with the output-to-target ratio until the
total of the squared discrepancies between the target and output values equals zero. Typically, the network is trained
using numerous such target input/output pairs [20]. Following the presentation of each individual input vector, more
training is performed to alter the weights and biases of the network as appropriate. Neural networks are used in a
variety of domains of application, including pattern recognition, identification, classification, voice, vision, and
control systems, among others. Neural networks are used in a variety of domains of application, including pattern
recognition, identification, classification, voice, vision, and control systems.

3. Method

The data set comprises 132 observations, of which 88 are utilized for training and 42 for model testing. The
cumulative time (Tf), the kind of impurity (It), the impurity concentration (Ci), and the water content (Wc) are
regarded as the input data, whereas the rate of infiltration is regarded as the output.

Table. 1. Data sets used for training and testing have certain characteristics.

Parameters
for Input

Train Information Test Results

Min. Max. Mean St. Dev. Min. Max. Mean St. Dev.

Tf 5.5 180 58.144 55.651 5.3 186 51.031 43.32

It 1.5 2 1.477 0.504 1.6 2.5 1.548 0.511

Ci 1.5 15 7.057 5.302 1.5 15.2 6.897 4.890

Wc 4.81 13.68 8.342 3.761 3.87 13.87 9.09 3.625

Coefficients of correlation, correlation coefficients, For the purpose of evaluating performance, the metrics mean
square root error, mean absolute error, relative absolute error, and root relative square error were all utilized in
combination. Multiple modeling strategies are studied and evaluated on the test data set, which is used to generate the
models. Unless the ideal values for the user-defined parameters are provided, the M5P tree model, the artificial neural
network, and the random forest techniques will not deliver satisfactory prediction performance. The correlation
coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), relative absolute error (RAE), and
root relative square error (RRSE) values of a large number of user-defined parameters were calculated and compared
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to a test dataset using a variety of machine learning algorithms in order to determine the optimal value for each
parameter.

Table. 2. Optimal values for user-defined parameters

Classified Used Parameters Defined by the User

Model Tree M5P M = 5

ANN 0.3 learn rate, 0.2 velocity, 11 iterations, 5 hidden
layers

Random Forest K = 2, m = 2, I = 100

4. Conclusions and Discussion

It is necessary to employ performance assessment metrics in order to assess the predictive capabilities of the
modeling technique. A variety of statistics were calculated from the data set, including correlation coefficients, root
mean squared errors, mean absolute errors, relative absolute errors, and relative square root errors, all of which were
returned as values. The plots of actual and anticipated infiltration rates from the training and test datasets illustrate the
outcomes of the applied modeling approaches. The three methodologies (tree model M5P, artificial neural network).
We examined logistic regression with random forest regression. When the data are compared, it is clear that the
random forest regression strategy surpasses all others assessment metrics. The random forest approach's significant
increase in prediction accuracy implies that it may be used successfully to forecast the influence of water quality on
soil infiltration rates.

Table. 3. Parameters used to evaluate performance using the On the training and testing data sets, M5P model trees,
ANNs, and random forest regression were used.

Approaches Train Data Test Data

CC MAE RMSE RAE RRSE CC MAE RMSE RAE RRSE

M5P Tree
model

0.895 5.061 9.342 40.630 51.570 0.892 4.751 5.658 55.201 56.548

ANN 0.960 3.851 5.572 30.847 32.000 0.883 4.265 5.712 49.531 58.000

Random
forest

0.990 1.578 3.515 12.453 19.32 0.927 3.185 4.854 36.928 48.491
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Figure. 1. Actual infiltration rate vs. anticipatedM5P, ANN, and random forest with infiltration rate of training data
set

Figure. 2. Actual infiltration rates compared to projections using M5P, ANN, and random forest models.

The graphs in Figures 1 and 2 illustrate the relationship between actual and anticipated infiltration rates using the
M5P, AUsing training and testing datasets, we develop NN and random forest tree models. As shown in Figure 1,
when the training data set is utilized, the majority, ANN, and random forest are all within a 25% inaccuracy of the
perfect agreement line in terms of projected values for each model.

The test dataset, as shown in Figure 2, predicts values that are within a 25% error of the perfect agreement line for
M5P, ANN, and Random forest models when employed in conjunction with the test dataset. The ANOVA findings
for a single factor indicate that the F value (0.246082) is less than the f-critical value (3.066391) and the P value
(0.782224) is more than 0.05, showing that the projected value for the M5P, ANN, and Random tree models is
different. Forests are trivial.
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The variance in the actual and anticipated infiltration rates as a function of the total number of participants test
datasets employing M5P, ANN, and Random forest trees is shown in Figure 3. As demonstrated in this image, the
random forest model is capable of accurately predicting the infiltration rate and has a good match to the actual soil
infiltration rate. The random forest predicts values in the same way as the genuine values do.

Table. 4. Result of ANOVA Single Factor Tes

Model F P-value F-critical Distinction in
predicted

All Models 0.246 0.783 3.07 Insignificant

Figure. 3. Variations in the expected infiltration rate compared to the actual infiltration rate of the soil

Table. 5. Random forest regression was used to analyze the sensitivity of the data.

Combination
of inputs

Removed
input

parameter

Regression with a random forest

CC MAE RMSE RAE RRSE

Tf , It , Ci ,
WC

0.917 3.180 4.851 36.932 48.490

It , Ci , WC Tf 0.152 11.230 11.817 118.933 118.211

Tf , Ci , WC It 0.811 4.537 6.791 50.650 67.890

Tf , It , WC Ci 0.809 5.011 6.970 59.043 69.671

Tf , It , Ci WC 0.847 4.490 7.672 52.184 76.493
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5. Conclusion

The purpose of this research was to determine the predictive capability of computational tools for forecasting the
effect of contaminants on the infiltration rate of soils with varied geometries, such as ash and organic fertilizers. The
given findings are highly promising and indicate that soil infiltration rates can be analyzed using the M5P, ANN, and
Random forest tree models. The Single Factor ANOVA revealed a non-significant difference in predicted values
between ANN, tree model M5, and Random Forest. When performance assessment parameters were evaluated, it was
discovered that the random forest technique performed better than the M5 tree model and the model considered by
ANN for this data set. According to the findings of the sensitivity analysis, cumulative time is the most essential
factor in calculating the penetration rate. With increasing cumulative time, the rate of infiltration decreases.
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