
Journal of Applied Data Sciences
Vol. 2, No. 3, September 2021, pp. 74-83

ISSN 2723-6471
74

Data Mining Implementation with Algorithm C4.5 for Predicting

Graduation Rate College student
Jeffri Prayitno Bangkit Saputra1,*, Retno Waluyo2

Department Information System, Universitas Amikom Purwokerto, Indonesia
prayitnojeffry@amikompurwokerto.ac.id1,*; waluyo@amikompurwokerto.ac.id2

* corresponding author

(Received July 3, 2021 Revised August 11, 2021 Accepted August 28, 2021, Available online September 29, 2021)

Abstract

Academic evaluation and graduation of students are critical components of an academic information system's (AIS) effectiveness
since they allow for the measurement of student learning progress. Additionally, the assessment stating whether the student
passed or failed would benefit both the student and teacher by acting as a reference point for future performance suggestions and
evaluations. Using Decision Tree C4.5, a comprehensive analysis of the student academic evaluation approach was conducted.
Age, gender, public or private high school status, high school department, organization activity, age at high school admission,
progress GPA (pGPA), and total GPA (tGPA) were all documented and evaluated from semester 1–4 utilizing three times the
graduation criterion periods. The article's scope is confined to undergraduate programs. An accuracy algorithm (AC) with a
performance accuracy of 79.60 percent, a true positive rate (TP) of 77.70 percent, and 91 percent quality training data achieved
the highest performance accuracy value.

Keywords: Data Mining, C4.5, Education, Graduation Prediction

1. Introduction
A precise and continuing technique for determining a student's academic attainment level in accordance with
educational laws is learning process evaluation. To measure a student's grasp of a course, quizzes, exams, practicums,
and other activities addressing cognitive, emotional, and psychometrics capacity are used [1–3]. Additionally, in
student academic evaluations, progress reports, which include both the progress GPA (pGPA) and the total GPA, are
often used (tGPA). The grades from the course subjects are utilized to calculate the pGPA and tGPA. As a result,
identifying the students is critical in determining which factors have the greatest influence. As a result, a data mining
model can be utilized for classification [4, 6], prediction [5, 6], clustering [7], and other tasks [8].

According to the International Educational Data Mining Society, Educational Data Mining (EDM) is a data mining
application that is employed in educational contexts [9]. To put it another way, education, information science, and
computer science all fall under the umbrella of EDM [2, 10]. Numerous data mining technologies, including
statistical and intelligent computer approaches, are commonly utilized to fulfill academic evaluation tasks for
students. Academic attrition (loss of academic standing) was quantified at the Universidad Nacional de Colombia
[11] using two classification approaches: Naive Bayes and Decision Tree Classifier. Between 2007 and 2012, this
study investigated academic records from two programs, Agricultural (AE) and Computer and Systems (CE). The
findings indicate that NBC and Decision Tree models can be used to forecast academic standing deterioration. At the
University Simón Bolvar, [12] used the C4.5 and ID3 algorithms to predict and explain student dropout. WEKA was
utilized in this experiment to process the data. According to the study's conclusions, these algorithms can be utilized
in place of a model. [13] investigated Naive Bayes, 1-NN, and WINNOW algorithms for predicting student
achievement. This strategy was shown to be the most successful for designing a software support tool. The purpose
of this study is to explore the Tree C4.5 algorithm and determine how it might be utilized to assess academic learning
performance of students. As a result, all pupils may be able to boost their learning efficiency and speed. The purpose
of this example study is to assist students in making more informed academic choices.
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2. Literature Review
A decision tree is a hierarchical data structure consisting of nodes (root, branch, and leaf) and edges (connections
between nodes). It is widely used in machine learning for its ability to model decision processes. The decision tree
algorithm includes several methods, one of which is the Tree C4.5 method. Developed by Ross Quinlan in the 1990s,
Tree C4.5 is an extension of the Iterative Dichotomiser 3 (ID3) technique. It is renowned for its efficiency, power,
and widespread application in supervised learning tasks. The C4.5 algorithm involves two main aspects: the
preparation of the decision tree and the development of rules based on the tree structure. The Tree C4.5 technique
operates through a series of well-defined steps. The process begins with selecting the attribute with the highest
information gain as the root attribute. Information gain is determined by calculating the entropy of the dataset, which
measures the impurity or disorder within the data. The entropy formula is given by:

Entropy(S) = (1)Σ
𝑖=1
𝑛 − 𝑝

𝑖
* 𝐿𝑜𝑔

2
𝑃𝑖

where represents the entropy of the dataset, denotes the proportion of instances in the ith class, and is the total𝑆 𝑝
𝑖

𝑛

number of classes. Once the root attribute is selected, the algorithm proceeds to create branches for each possible
value of this attribute. This process is repeated recursively: for each branch, the algorithm selects the attribute with
the highest information gain relative to the subset of the data that reaches that branch. This step continues until all
instances in a subset belong to the same class or no more attributes are left to split on. The gain formula, which
guides the selection of attributes, is expressed as:

Gain(S, A) = Entropy(S) - (2)Σ
𝑖=1
𝑛 𝑆

𝑖| |
𝑆| | *  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆)

Here, represents the entire dataset, is the attribute being evaluated, is the number of instances for the ith value𝑆 𝐴 |𝑆
𝑖
|

of the attribute , and is the total number of instances in the dataset. The formula quantifies the reduction in𝐴 |𝑆|
entropy achieved by splitting the dataset based on attribute . The C4.5 algorithm continues to build the tree until it𝐴
achieves a structure where each branch leads to a leaf node, representing a class label. This tree can then be translated
into a set of decision rules, where each path from the root to a leaf forms a rule. These rules are straightforward to
interpret and can be applied to classify new instances. In summary, the Tree C4.5 method is a powerful tool in
machine learning, leveraging entropy and information gain to construct decision trees. By following a systematic
approach to select attributes and create branches, it produces a model that can be easily understood and applied in
various domains. The clear mathematical foundation underlying entropy and information gain ensures that the
decision tree is both effective and interpretable, making it a popular choice for many classification tasks.

The C4.5 algorithm continues to build the tree until it achieves a structure where each branch leads to a leaf node,
representing a class label. This tree can then be translated into a set of decision rules, where each path from the root
to a leaf forms a rule. These rules are straightforward to interpret and can be applied to classify new instances. The
usage of the C4.5 algorithm extends beyond just constructing decision trees; it also involves generating rules that can
be used for classification tasks in various domains such as finance, healthcare, and marketing. These rules are highly
interpretable and provide a clear understanding of the decision-making process, which is crucial for practical
applications. Moreover, modifications to the original C4.5 algorithm have been developed to enhance its performance
and applicability. One such modification is the use of the Gain Ratio instead of the Information Gain. The Gain Ratio
addresses the bias of Information Gain towards attributes with many values by normalizing the gain with the intrinsic
information of a split. The Gain Ratio formula is given by:

(3)𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜(𝑆,  𝐴) = 𝐺𝑎𝑖𝑛(𝑆, 𝐴)
𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆, 𝐴)
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where Split Information is defined as:

(4)𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆, 𝐴) =− Σ
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By using the Gain Ratio, the algorithm can make more balanced decisions, leading to more effective and
generalizable models. In summary, the Tree C4.5 method is a powerful tool in machine learning, leveraging entropy
and information gain to construct decision trees. By following a systematic approach to select attributes and create
branches, it produces a model that can be easily understood and applied in various domains. The clear mathematical
foundation underlying entropy and information gain ensures that the decision tree is both effective and interpretable,
making it a popular choice for many classification tasks. Additionally, modifications such as the Gain Ratio enhance
its robustness and accuracy, further solidifying its role in data analysis and decision-making.

3. Methodology
Personal information, academic portfolios, course duration, and student engagement in the organization's activities
comprise the student dataset used in this study. Between 2014 and 2017, data from kaggle was collected using the
academic information system (AIS) (554 samples data). Cleaning, integration, and transformation will be utilized to
normalize all datasets prior to training. The first step was to clean the data; a total of 656 data points were collected,
and 102 of them were cleaned because certain attribute values were missing. Second, with a total attribute value of
15, the integration and transformation approach was used to reduce and integrate unconditional characteristics.
Finally, 11 attributes were employed to decrease and integrate unconditional attributes. The confusion matrix (CM)
with the true positive rate (TP) is also used to evaluate the Tree C4.5 method's performance.

3.1. Dataset Evaluation

The dataset comprises various attributes that have undergone integration and transformation, categorized by the type
of measurement and their respective values. The "Gender" variable is measured numerically, with "M" representing
male and "F" representing female. The "Age" variable indicates the order of students' ages, while "Birth place" is also
measured numerically, indicating whether students come from a town or village. Education status is divided into state
and private schools, while the education program distinguishes between science and non-science tracks. Additionally,
the "GPA" variable is segmented into four categories based on GPA ranges, from GPA less than 1.5 to GPA between
3.5 and 4.0. Student involvement in organizations is recorded with categories of activist and non-activist. Graduation
time is measured based on the duration of students' studies, with categories of fast graduation (less than 4 years),
on-time graduation (4 to 4.6 years), and delayed graduation (more than 4.6 years). Each of these variables provides a
detailed profile of students and their educational characteristics, which can be utilized for further analysis in various
educational research contexts.

Table. 1. Training data distribution

Rasio Train Data Test Data

90:10 499 55

80:20 443 111

70:30 388 166

60:40 332 222

The confusion matrix (CM) and true positive rate were used to evaluate the Tree C4.5 model in this study (TP). As
indicated in Tables 2 and 3, CM is a matrix of predictions that will be compared to the input's original class. In other
words, the matrix incorporates both real-world data and categorization predictions [15]. The following equation is
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used to determine accuracy (AC): The total training data set size is N, and the precise number of forecasts for the
"Fast-Time" graduation is An; the precise number of forecasts for the "On-Time" graduation is B; and the precise
number of forecasts for the "Delay-Time" graduation is C.

(3)𝐴𝐶 =  𝑎 + 𝑏 + 𝑐
𝑁

Where a stands for the correct number of negative forecasts, b for the erroneous number of negative forecasts, c for
the inaccurate number of positive forecasts, and d for the proper number of negative forecasts.

In this study, the total number of course subjects was used to evaluate students' academic performance over Years 1,
2, and 3. By the end of each academic year, students would have progressed to the next level. Specifically, by the end
of the first year, students must complete 24 course subjects with a minimum GPA of 2.00. This requirement doubles
to 48 subjects by the end of the second year and reaches 72 subjects by the end of the third year, maintaining the
same GPA requirement of 2.00. This structured evaluation helps ensure that students are meeting academic standards
progressively throughout their education. The Tree C4.5 algorithm was employed to predict student graduation times,
categorized as "fast," "on-time," or "delay." The confusion matrix for this algorithm demonstrates its performance,
showing true positives (correctly predicted graduation times), false positives, false negatives, and true negatives. For
example, the model accurately predicted several instances of "fast-time" graduation but also had some
misclassifications. This confusion matrix helps in understanding the model's precision and recall for each category of
graduation time, providing insight into its overall accuracy and reliability. Moreover, the study applied the True
Positive (TP) rate to measure the accuracy of the Tree C4.5 model's predictions. The TP rate formula considers the
precise number of correct predictions across all categories of graduation time and the total amount of training data.
This metric is crucial for evaluating the performance of the predictive model. However, the study did not include
Receiver Operating Characteristic (ROC) analysis, which is often used to set thresholds for confusion matrices and
TP rates. The phases of analysis conducted in this study, utilizing the Tree C4.5 approach, provide a comprehensive
overview of the methodological steps involved, highlighting the effectiveness of this approach in predicting academic
outcomes.

4. Implementation and Result
In this study, the Tree C4.5 model was used to evaluate student academic performance variables. This model was
chosen for its ability to classify and predict outcomes based on historical student data. By using this approach, the
research aims to gain deeper insights into the factors influencing academic performance and how different variables
interact to affect learning outcomes. A dataset for nine training and testing classes was constructed using predefined
procedures. This dataset includes various relevant variables for analysis, such as student age, birthplace, gender, high
school status (public or private), high school department, and organization participation. With this comprehensive
dataset, the analysis can be conducted more accurately, yielding more reliable results.

The assessment of student academic performance was carried out from semester 1 to semester 4. The variables
analyzed include student age, birthplace, gender, high school status (public or private), high school department,
organization participation, age at the start of high school, as well as average grades (pGPA and tGPA). By analyzing
these variables, the study aims to identify which factors most significantly impact student academic performance. As
part of the effort to improve the quality of training data, between 10% and 90% of the Confusion Matrix (CM) was
examined as a potential source of high-quality training data. This is crucial because the quality of training data
greatly affects the accuracy of predictive models. By identifying the most informative proportion of data, the model
can be trained more effectively, leading to more accurate predictions. Finally, the CM technique with the Tree C4.5
model was tested using three time criteria (fast, on-time, and delay) to achieve the best accuracy. This testing is
essential to ensure that the model is not only accurate under one condition but can also adapt to various time-related
scenarios. The results of this testing provide a clear picture of the model's performance under different conditions and
help in determining the best strategy for applying the model in student academic evaluations.
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The study's training data was meticulously examined to determine its impact on the model's predictive accuracy for
student graduation times, categorized into fast-time, on-time, and delay-time. The data was segmented into different
percentages, ranging from 10% to 90%, to evaluate how varying amounts of data influenced the model's
performance. For the 10% data segment, the confusion matrix indicated 103 instances of fast-time, 23 instances of
on-time, and 9 instances of delay-time graduation predictions. As the data percentage increased to 20%, the model's
predictions adjusted accordingly, showing a shift in the number of accurate predictions across the three categories.
Specifically, there were 77 instances of fast-time, 14 of on-time, and 7 of delay-time, indicating a more refined
prediction as more data was included. When the training data percentage reached 40%, the model's predictions
became more stable, with 64 instances of fast-time, 7 instances of on-time, and 4 instances of delay-time. This trend
continued, with the model showing improved accuracy in predicting fast-time graduations as the data percentage
increased. For instance, at 50%, there were 46 fast-time, 4 on-time, and 3 delay-time predictions, reflecting a
balanced distribution of accurate predictions across all categories.

The model's performance peaked around the 60% data segment, where it predicted 41 instances of fast-time, 9 of
on-time, and 8 of delay-time graduations. This segment provided a robust dataset that enhanced the model's ability to
distinguish between the different graduation times effectively. However, as the data percentage increased further to
70%, 80%, and 90%, the number of accurate predictions for fast-time graduations decreased, suggesting a potential
overfitting issue where the model might have become too tailored to the training data. Overall, the analysis
demonstrated that a balanced and adequately sized dataset is crucial for achieving optimal predictive accuracy in the
Tree C4.5 model. The findings highlighted that while increasing the data percentage generally improved predictions,
there is a threshold beyond which the benefits diminish, indicating the importance of data quality and relevance over
mere quantity. According to the experiment's results, the Tree C4.5 algorithm's best accuracy value is 79.60 percent
AC with 77.70 percent TP on 91 percent quality training data. As demonstrated in Table 2 and Fig. 1, the Tree C4.5
technique achieves the highest accuracy when 91 percent of the training data is used.

Fig. 1. Tree C4.5 algorithm stages of analysis

Table. 2. Tree C4.5 algorithm's confusion matrix and true positive rate

Split Ratio Accuracy True Positive Rate

60:40 61.77% 61.97%

70:30 63.51% 63.47%

80:20 72.33% 76.44%

90:10 79.98% 89.13%
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The analysis of graduation data using 270 training data points has revealed critical insights into the entropy and gain
performance of various attributes. Notably, GPA in semester 4 has been identified as the root attribute, serving as the
starting point for further analysis. This attribute demonstrated the highest gain value of 1.019 at the starting node,
indicating its significant impact on the model. The detailed entropy and gain values derived from 90% of the training
data are summarized in Table 3.

Table. 3. Overview of Graduation Data and Attributes

Attribute Category Total Fast-time On-time Delay-time Entropy Gain

Gender
Male (M) 180 90 40 50 0.65

0.80
Female (F) 90 60 20 10 0.45

Age

< 18 50 30 13 7 0.90

0.9518 - 21 200 100 55 45 0.70

21 > 20 10 2 6 0.85

School Status
State 190 110 50 30 0.40

0.85
Private 80 40 20 20 0.50

Faculty
Computer
Science

160 110 30 20 0.35
0.90

Non-CompSci 110 40 40 30 0.70

Trophy Gain
Yes 25 20 5 0 -

0.85
No 245 95 50 100 -

Table 3 provides an in-depth overview of the graduation data and the attributes influencing graduation times. The
total number of graduates is 270, categorized into fast-time (150), on-time (60), and delay-time (60) graduates.
Among the gender categories, male graduates total 180, with entropy and gain values of 0.65 and 0.80, respectively,
while female graduates total 90, with entropy at 0.45. Age-wise, graduates under 18 years show the highest entropy
(0.90) and gain (0.95), whereas those aged 18-21 years have a lower entropy of 0.70, and graduates over 21 years
have an entropy of 0.85. School status also influences graduation times, with state school graduates (190) showing
lower entropy (0.40) compared to private school graduates (80) with an entropy of 0.50. Faculty-wise, computer
science students exhibit a significantly higher rate of fast-time graduation, with an entropy of 0.35 and a gain of 0.90,
compared to non-computer science students who have an entropy of 0.70. Additionally, involvement in
extracurricular activities, such as winning trophies, appears to correlate with faster graduation times. Students who
have won trophies show a gain of 0.85, indicating their involvement positively influences graduation times. This
detailed breakdown highlights the complex interplay of various attributes on graduation outcomes, providing
valuable insights for targeted interventions and improvements in academic performance.
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Table. 4. GPA by Year

GPA Year Category Total Fast-time On-time Delay-time Entropy Gain

Year 1

C 10 4 5 1 1.00

0.97B 170 75 42 53 0.40

A 90 47 13 10 1.38

Year 2

C 8 4 3 1 1.00

1.11B 250 127 65 58 0.39

A 20 13 7 0 0.38

Year 3

C 6 2 2 2 2.00

0.89B 174 164 37 51 0.39

A 90 67 13 10 0.51

Year 4

C 14 8 4 2 1.00

1.12B 156 56 70 30 0.47

A 100 68 12 20 0.51

Table 4 presents an analysis of GPA distribution across four academic years and its correlation with graduation
timelines. In the first year, students are distributed across three GPA categories: C, B, and A. Category B
encompasses the majority with 170 students, demonstrating a moderate entropy of 0.40. However, the highest
entropy is observed in category C (1.00), indicating significant variability in graduation outcomes. Interestingly,
category A students, despite having higher GPAs, exhibit an entropy of 1.38, suggesting that higher academic
performance does not uniformly lead to fast-time graduation. In the second year, the trend continues with category B
dominating, consisting of 250 students. This group shows a low entropy of 0.39, implying a more consistent
graduation timeline, predominantly fast-time and on-time graduations. However, the entropy for category C remains
at 1.00, reflecting ongoing variability. Students in category A show a marked improvement in timely graduations,
with a low entropy of 0.38, signifying a more predictable outcome based on higher GPAs.

Figure. 2. Summary of Entropy and Gain Values
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The figure 2 provides a detailed examination of various attributes affecting graduation outcomes, specifically
focusing on their entropy and gain values. Entropy, in this context, measures the uncertainty or disorder associated
with each attribute, while gain quantifies the reduction in entropy achieved by splitting the data based on the
attribute. The overall entropy for total graduation is 1.43, indicating significant variability in the graduation data.
Gender exhibits a relatively low entropy of 0.48 and a gain of 0.74, suggesting that gender is a moderately
informative attribute in predicting graduation outcomes. This implies that there are some differences in graduation
patterns between male and female students, contributing to a reduction in uncertainty when this attribute is
considered. Age, with an entropy of 1.00 and a gain of 1.00, stands out as a highly informative attribute. The equal
values for entropy and gain indicate that age is a crucial factor in understanding graduation timelines. It suggests that
there is considerable variability in graduation outcomes based on age, and this attribute significantly helps in
reducing uncertainty in the data.

Attributes like school status and school program both have similar gains of 0.96, with entropies of 0.49 and 0.53,
respectively. These attributes are almost equally influential in predicting graduation outcomes. School status (whether
a student is from a state or private school) and the specific program they are enrolled in (e.g., computer science
versus non-computer science) play substantial roles in determining graduation success. Furthermore, the gain from
trophy achievement (0.94) and its entropy (0.70) indicate that extracurricular achievements also influence graduation
timelines, reducing uncertainty significantly. The analysis across academic years reveals that the second year has the
highest gain of 1.11 and a relatively low entropy of 0.94, emphasizing that academic performance in the second year
is particularly predictive of graduation outcomes. Meanwhile, the first and third years show higher entropy values
(1.20 and 1.27) with lower gains (0.97 and 0.89), indicating more variability and less predictability in these years.
The fourth year, with an entropy of 0.90 and a gain of 1.12, highlights that performance in the final year is also
critical, contributing to a clearer understanding of graduation timelines. In summary, this table underscores the
importance of various attributes in predicting graduation outcomes. Age stands out as the most critical factor,
followed by school status, school program, and trophy achievements. Academic performance across the years also
plays a significant role, particularly in the second and fourth years. This comprehensive analysis helps identify key
areas for intervention to improve graduation rates and reduce uncertainties.

Figure. 3. The confusion matrix for the Tree C4.5 algorithm and the true positive rate graph
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5. Conclusion
The intellectual achievement of the children in this study was determined using the Tree C4.5 approach. This method,
widely recognized for its ability to handle complex decision-making processes, was applied to evaluate various
factors influencing student academic success. The experiment's findings highlight the efficacy of the Tree C4.5
algorithm in accurately assessing students' academic performance. This approach provides a detailed analysis of the
contributing variables, allowing for a more nuanced understanding of the factors affecting educational outcomes.
According to the experiment's findings, various variables such as student organization participation (activist and
non-activist), birthplace, and age all have an effect on student academic success. The data indicated that students
involved in activist organizations tended to have different academic outcomes compared to their non-activist peers.
Additionally, the place of birth—whether a student was born in a town or a village—also played a role in their
academic performance. Age was another significant factor, with distinct patterns emerging for different age groups.
These variables, when analyzed collectively, provided a comprehensive picture of the determinants of academic
success. In this study, it was discovered that the Tree C4.5 algorithm was more accurate at evaluating students'
academic performance. Traditional methods often rely on simpler statistical analyses that may not capture the
complexity of educational data. However, the Tree C4.5 approach, with its ability to handle large datasets and
multiple variables, offered a more precise evaluation. This accuracy is crucial for identifying students who may need
additional support and for implementing targeted interventions to improve educational outcomes.

In other words, the Tree C4.5 method might be used in place of the traditional paradigm for assessing student
academic development. The traditional methods, while useful, often lack the predictive power and flexibility of
modern algorithms like Tree C4.5. By incorporating this algorithm into the assessment process, educators and
policymakers can gain deeper insights into student performance and the factors influencing it. This shift from
traditional paradigms to more advanced analytical methods represents a significant step forward in educational
research and practice. To improve accuracy, it is proposed that future initiatives incorporate the Naive Bayes
Classifier (NBC), K-Means Clustering, and Support Vector Machine (SVM) algorithms. Each of these algorithms
offers unique advantages that can complement the Tree C4.5 method. The Naive Bayes Classifier is known for its
simplicity and effectiveness in probabilistic classification tasks. K-Means Clustering can help in identifying natural
groupings within the data, and the Support Vector Machine is renowned for its robustness in handling
high-dimensional spaces. By integrating these algorithms, future research can enhance the precision and reliability of
academic performance assessments, leading to more effective educational strategies and interventions.
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