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Abstract 

Retinopathy is a common eye disease in Indonesia, ranking fourth after cataracts, glaucoma, and refractive errors. It can be overcome by early 
diagnosis with optical coherence tomography (OCT), but this manual reading of imaging technique takes much time. Retinal imaging was carried 
out to reduce the time using an expert system. The expert system in this study was formed using the convolutional neural network (CNN or 
ConvNet) method. CNN is an algorithm of deep learning that uses convolution operations to process two-dimensional data, such as images and 
sounds. This research consisted of 4 stages: data collection, preprocessing, model design, and model testing. Based on the research that has been 
carried out, a CNN model was formed with three configurations consisting of two convolutional layers and one pooling layer. The ReLU 
activation function, zero padding, and batch normalization were used in all three formats. Then, the flattening process was carried out, and the 
Softmax activation function was used at the end of the architecture. The model was built using 8 epochs and Adaptive Momentum (Adam) 
optimization, resulting in training, validation, and test data accuracy values of 97.32%, 92.64%, and 98.96%. The resulting model can identify 
retinal diseases with high accuracy, which positively contributes to improving the treatment of retinal diseases.   

Keywords: Convolutional Neural Network, Adaptive Momentum, Batch Normalization  

1. Introduction  

Retinopathy is an eye disease that attacks the retina and can cause vision problems. The causes of retinopathy vary 

depending on the type. According to the WHO report, the kinds of retinopathy that cause blindness with the highest 

cases are diabetic retinopathy (DR) and age-related macular degeneration (AMD), with percentages of 1% and 5%, 

respectively, of the total cases of blindness. Retinopathy can be treated with proper early diagnosis using optical 

coherence tomography (OCT), whose manual reading of images by medical personnel takes much time. Therefore, 

with sophisticated technological developments and the strong computing capabilities of computers, it is possible to 

have an expert system. For experts, using expert systems also helps their activities as experienced assistants. 

Artificial intelligence (AI) is an area of research that plays a critical role in developing expert systems. Ghorbanzadeh 

et al. [1] define machine learning (ML) as an AI approach frequently used to mimic human behavior when completing 

or automating tasks. Deep learning (DL) is a subfield of ML in which the algorithms are inspired by how the human 

brain works. Some people have heard of artificial neural networks. Because of its exceptional performance, DL has 

recently been the focus of ML development. This is influenced by more powerful computational factors, large datasets, 

and techniques for training deeper networks. The DL method currently being developed is the convolutional neural 

network (CNN). CNN is a multilayer perceptron (MLP) invention commonly used to analyze image data. Research on 

the implementation of CNN can be found in Trnovszky et al. [2], Nugroho et al. [3], Krizhevsky et al. [4], Ge et al. [5], 

Nielsen [6], Kurt [7], and Fukushima [8]. MLP is less accurate in some circumstances regarding image categorization 

because it does not preserve spatial information and treats each pixel as a separate feature [9]. 

Srinivasan et al. [10] investigated using OCT images in diagnosing and analyzing AMD and DME. This investigation 

used the support vector machine (SVM) approach to extract a histogram of oriented gradient (HOG) characteristics 

from OCT images. Furthermore, Trnovszky et al. [4] compared many image-processing algorithms, including CNN, 
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principal component analysis (PCA), linear discriminant (LDA), local binary patterns histograms (LBPH), and SVM. 

The results showed that the CNN method gave the best results with 98% accuracy. Kermany et al. [11], in their study, 

found a multi-class comparison between CNV, DME, Drusen, and Normal with an accuracy of 96.6%, a sensitivity of 

97.8%, a specificity of 97.4%, and an error of 6.6%.  

Krizhevsky et al. [4] conducted research by training a CNN to classify 1.2 million ImageNet LSVRC-2010 images into 

1000 different classes, and the test data had the smallest error compared to other methods. Trnovszky et al. [2] 

conducted research comparing several image processing methods, namely CNN, PCA, LDA, LBPH, and SVM. The 

research results show that the CNN method provides the best results with an accuracy of 98%. Abdolamanafi et al. [12] 

also conducted research comparing three classification methods, namely CNN, random forest (RF), and SVM on 

Kawasaki disease, which attacks children; the result was that CNN was the best result with an accuracy of 92% 

Danukusumo et al. [13] researched classifying GPU-based temple images using the CNN method. The research results 

show an accuracy of 98.99% on training data and 85.57% on test data, with a training time of 389.14 seconds. In [3], 

research to identify skin diseases was done using the CNN method on the HAM 10000 dataset. The research results 

obtained accuracy from the training, validation, and test processes of 83%, 85%, and 85.5%, respectively.  This study 

uses the CNN method to identify retinopathy in OCT image data. Many researchers have researched retina OCT image 

data. We refer to Hamet and Tremblay [14], Srivastava [15], Mikolajczyk and Schmid [16], and Iofee and Szeged [17] 

as examples. In Hamet and Tremblay [14], identification was made by classifying retinal diseases into four classes: 

choroidal neovascularization (CNV), diabetic macular edema (DME), Drusen, and Normal. 

2. The Materials and Methods 

The data used were secondary ones obtained from Kaggle.com, consisting of 4 classes: CNV, DME, Drusen, and 

Normal. This study's secondary data, retinal OCT, is obtained from Kaggle.com. Retinal OCT is a non-invasive 

imaging technique that allows for high-resolution cross-sectional imaging of the retina, which is the light-sensitive 

layer at the back of the eye. It utilizes light waves to capture detailed images of the retina's layers and structures, 

providing valuable information for diagnosing and managing various eye conditions. The dataset is organized into three 

folders, i.e., train, test, and val, with subfolders for each picture category. There are 84,495 JPEG X-ray images in four 

categories, i.e., CNV, DME, drusen, and normal. Images are tagged with (disease)-(randomized patient ID)-(image 

number by this patient), then arranged into 4 categories: CNV, DME, drusen, and normal.  

2.1. Data Preprocessing  

In preprocessing, the data were grouped into four classes: CNV, DME, Drusen, and Normal. After that, the data were 

divided into training, validation, and test data. In this research, optical coherence tomography image data amounted to 

84,495 data. The data was separated into four classes: CNV, DME, drusen, and normal. Figure 1 shows examples of 

CNV, DME, drusen, and normal images. 

  

(a) (b) 
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Figure 1. (a). CNV (b). DME (c). Drusen (d). Normal 

2.2.  CNN Model Design 

The convolutional neural network is one of the DL algorithms used to process data in two-dimensional forms, such as 

images and sounds. Based on its name, CNN is a neural network that uses a mathematical operation, namely 

convolution. CNN is an extension of the MLP. MLP, in some cases, is less accurate in image classification because it 

assumes that each pixel is an independent feature and does not store spatial information from image data, resulting in 

poor results [9]. CNN is a layer of 3-dimensional neurons (width, height, depth). Width and height represent layer 

sizes, while depth refers to the number of layers. In general, the CNN model design was built with several layers. The 

layers in CNN were divided into convolutional layers, pooling layers, and fully connected layers. Figure 2 presents 

CNN Architecture. 

 

Figure 2. CNN Architecture 

The convolutional layer is the layer that receives the input image first. At this stage, the convolution operation was 

performed. The equation for convolution operation is as follows:  

s(t)=(x*w)(t) (1) 

s(t) in (1) notes a convoluted function called a feature map; x denotes the input, and w denotes the kernel. If the input 

was a two-dimensional image, we could assume t was a pixel and replace it with i and j. Therefore, the operation for 

convolution to input with two dimensions is presented in the following formula: 

S(i, j) = (K ∗ I)(i, j) =∑∑I(i − m, j − n)K(m, n)

nm

 (2) 

Equation (2) is a basic calculation in the convolution operation where i and j are the pixels of the image. The analysis 

is commutative, where I is the input, and K is the kernel. 

The polling layer is a matrix size using the merge operation. Pooling layers will reduce the spatial size and number of 

parameters in the network to speed up the computing process and control overfitting. A sliding window is applied with 
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a kernel size of 2x2 and a stride value of one in this process. The method used is max pooling, which means that each 

window in the feature map matrix resulting from the convolution will take the largest value. 

The pooling layer is usually located after the convolution layer and consists of a filter and a particular stride that shifts 

throughout the feature map area. The layer reduces the spatial size and the number of parameters in the network to 

speed up the computing process and control overfitting. Figure 3 presents the pooling layer process. Two types of 

pooling commonly used are max pooling and average pooling [18], [19], [20].  

 

 

Figure 3. Pooling Layer Process 

The fully connected layer process is a process where the feature map is changed to flatten or vector. In this model, 

160,000 flattened neurons will be input to the fully connected layer, while the number of neurons in the hidden layer 

used is 128 neurons. Figure 4 shows the architecture formed in a fully connected network. Generally, these networks 

should be fully connected, where each pixel is considered a separate neuron. However, a dropout method is applied to 

avoid overfitting so that several edges connected to each neuron are disabled. The dropout process is carried out 

randomly according to the random value used. In the fully connected layer, a dropout value of 0.5 is used, meaning 

that half of all the edges in that layer are disabled. 

 

Figure 4. Fully Connected Layer 

Generally, these networks should be fully connected, where each pixel is considered a separate neuron. However, a 

dropout method is applied to avoid overfitting so that several edges connected to each neuron are disabled. The dropout 

process is carried out randomly according to the random value used. In the fully connected layer, a dropout value of 

0.5 is used, meaning that half of all the edges in that layer are disabled. The ReLU activation function is applied to the 

hidden layer, and Softmax is applied to the output layer in the fully connected layer.  

The fully connected layer is where all activation neurons from the previous layer are connected to the neurons of the 

next layer. Each activation of the prior layer must be converted into one-dimensional data to connect to all neurons in 

the fully connected layer. This layer is usually used in the MLP method to process data so that it can be classified. The 

difference between the fully connected layer and the convolutional layer lies in the neurons; the convolutional layer is 

connected only to some regions of the input, while the fully connected layer is connected as a whole. Since the two 

layers still operate the dot operation, their function is not that different. 
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2.3.  Comparison of CNN Models 

In comparing models, two optimizations are used to find the best result in this study: Stochastic Gradient Descent 

(SGD), as in Kingma and Adam [18] and Adam. In addition, the model has been implemented using batch 

normalization and without batch normalization. SGD is a variation of gradient descent optimization that always updates 

parameters. SGD does not repeat itself when updating parameters, so its performance is faster for large datasets. An 

important parameter for the SGD algorithm is the learning rate. SGD uses a fixed learning rate η. In practice, it is 

necessary to carry out SGD gradually to reduce the learning rate over time. The learning rate at iteration k is expressed 

as ηk [11].   

Adam is another adaptive learning rate optimization algorithm [12]. Adam is a combination of RMSProp and 

momentum with some crucial differences. First, in Adam, momentum is combined directly to approximate the 

gradient's first-order moment (with exponential weight). Second, Adam incorporates bias corrections into the estimates 

of first-order and second-order moments to account for early initialization.  Batch normalization has been proven 

effective in reducing the number of epochs required to train neural networks [13]. Batch normalization speeds up 

network training by normalizing the activations of an input volume before passing it to the next layer. The goal is to 

reduce covariate shifts. The weakness of batch normalization is that it can slow down the time to train a network 

(although it requires fewer epochs to get maximum accuracy). 

2.4.   Testing CNN Model 

The confusion matrix in Figure 5 is usually used to calculate accuracy in decision support systems. In this measurement, 

four terms represent the classification results. The four terms are true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN). 

 

Figure 5. Confusion Matrix 

Accuracy is the ratio of correct predictions, both positive and negative, on the overall data, which the following 

equation can calculate as in (3). 

Accuracy (%) = (TP+TN)/(TP+FN+FP+TN) x100% (3) 

3. Results 

3.1. Data Prepossessing 

The data downloaded from Kaggle.com was then preprocessed by dividing the data into three parts: training, validation, 

and test data. We do not provide any information on whether data augmentation techniques were used because, in this 

work, we do not consider data augmentation. We refer to [13] that data augmentation is not necessarily needed for 

image transformations since the orientation change does not affect this algorithm. We have added the normalization 

methods in data preprocessing, i.e., Pixel Scaling. Data normalization aims to ensure that all variables in the dataset 

have the same scale and that no variable dominates the analysis process. This scaling process is carried out to change 

each pixel value from the range [0.255] to [0.1]. Table 1 presents the type of data.  
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Table 1. Data Type 

Class Type Data Type 

 Training Data Validation Data Test Data 

CNV 29764 7441 243 

DME 9079 2269 243 

Drusen 6893 1723 243 

Normal 21052 7441 243 

3.2.  CNN Model Design 

The preprocessing data was generated by rescaling the training, validation, and test data. Rescale was done to change 

each pixel value from the range [0,255] to [0,1]. The CNN architecture used in this system is shown in Table 2 This 

architecture used an image size of 128x128x3 as input. This means that the image size used was 128x128 pixels, while 

the number three indicates the number of channels: red, green, and blue (RGB). 

Based on Table 2, the CNN architecture was formed by making layers consisting of one convolution layer and one 

pooling layer of three layers. The first layer used a filter size of 32, kernel 3x3, and pooling 2x2. The second layer used 

a filter size of 64, kernel 3x3, and pooling 2x2. The third layer used a filter size 128, kernel 3x3, and pooling 2x2. The 

ReLU activation function and zero padding were used in these three layers. ReLU was used to change the negative 

output value to zero. Zero padding was used to produce an output equal to the input size. Then, the flattening process 

was done by changing the feature map into vector form and dropping out. At the end of the architecture, the Softmax 

activation function is used to classify it into four classes. 

Table 2. Architectural Design of CNN 

No Name Size Parameter 

1 Input 128*128*3 0 

2 Conv2d_1 128*128*32 896 

3 MaxPooling2d_1 64*64*32 0 

4 Conv2d_2 64*64*64 18.496 

5 MaxPooling2d_ 32*32*64 0 

6 Conv2d_3 32*32*128 73.856 

7 MaxPooling2d_3 16*16*128 0 

8 Flatten 32,768 0 

9 Dense_1 32 1.048.608 

10 Dropout 32 0 

11 Dense_2 4 132 

Total   1.141.988 

3.3.  Comparison of CNN Models 

The CNN model that has been formed is implemented on training data and validation data to train the model to 

recognize patterns. Two optimizations were used to find the best in this research: Adam and SGD. The first optimization 

used is Adam with normalization by initializing hyperparameters in the form of learning rate η = 0.001, exponential 

decay rate ρ1= 0.9 and ρ2= 0.999, small constant δ = 10-7 and parameters in the form of weight and bias. 

At this stage, a convolution process occurs for each channel and image. The convolutions at this stage correspond to 

the filter size used, namely 32 in the first configuration, 64 in the second configuration, and 128 in the third 

configuration. 
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In the next stage, padding is carried out so that the output matrix values have the same size as the input matrix. In 

addition, the model will be implemented using batch normalization and without batch normalization. A comparison of 

models can be seen in Table 3. 

Table 3. Model Comparison 

 

Parameter 

Model 

Adam 

without 

normalization 

Adam 

with normalization 

SGD 

without 

normalization 

SGD 

with 

normalization 

Epochs 6 8 6 8 

Accuracy 88.28% 97.32% 77.88% 93.39% 

Validation Accuracy 88.98% 92.64% 79.49% 91.16% 

Loss 0.3319 0.0854 0.6037 0.2055 

Validation Loss 0.3277 0.2383 0.5357 0.2812 

Table 3 shows the output of each model that has been tested. In the training data, the highest accuracy is 97.32%, and 

the lowest loss value is 0.0854, using the normalized Adam model for each layer. In the validation data, the highest 

accuracy is 92.64%, and the lowest loss value is 0.2383 using the same model. From these results, the Adam model 

was chosen for normalization. The architectural design was carried out to conduct CNN model training. The accuracy 

values on the training data and validation data showed how well the model was used on the test data. The training 

process used an epoch value of 8 and was repeated eight times to train the model.  

The choice of eight epochs for training has been made for the case of Adam optimization with batch normalization. 

Figure 6 shows the model's accuracy using Adam optimization with batch normalization for each layer. The accuracy 

of the training and validation data experiences an upward trend pattern from the first epoch to the last epoch. The model 

experiences convergence with Adam optimization at the eighth epoch. The accuracy of the training data when 

converging is 97.32%, and the accuracy of the validation data when converging is 92.64%. Figure 7 shows each epoch's 

accuracy and loss values, which converge with the eighth epoch. The model converges at the eighth epoch because the 

difference between the loss value at the ninth and eighth epoch is less than 0.01. 

  

Figure 6. Model's accuracy using Adam optimization 

with batch normalization 

Figure 7. Plot loss and best model loss values 

3.4.  Testing CNN Model 

Model testing was performed on 972 test data sets, with 243 data sets for each class. Table 4 depicts the results of the 

testing process. Figure 8 explains that the model that has been built can correctly classify CNV with as much as 241 

data, DME with as much as 237 data, Drusen with as much as 239 data, and Normal with as much as 241 data. 

Therefore, the accuracy of the test data obtained is 98.96%. 



Journal of Applied Data Sciences 

Vol. 5, No. 3, September 2024, pp. 1123-1133 

ISSN 2723-6471 

1130 

 

 

 

Table 4. Accuracy and loss for each Adam epoch with batch normalization 

Epochs Loss Accuracy Val loss Val accuracy 

1 591.061 789.053 913.953 765.355 

2 308.172 898.421 372.094 868.522 

3 244.518 919.393 357.323 885.617 

4 171.355 945.803 233.443 919.986 

5 14.566 952.903 224.821 923.464 

6 110.782 963.928 245.245 923.824 

7 96.547 969.081 262.277 924.424 

8 85.444 973.156 238.348 926.404 

9 80.741 975.058 250.011 925.864 

10 76.954 975.718 252.637 926.044 

 

Figure 8. Confusion Matrix 

Table 5 presents precision, recall, and F1-score information for all classes. The table presents the performance metrics 

for a classification task involving four classes: CNV, DME, DRUSEN, and Normal. Each class is evaluated using 

precision, recall, and F1-score percentages, key indicators of the model's effectiveness. The CNV class has high 

precision (97.6%) and excellent recall (99.6%), leading to an impressive F1-score of 98.6%, indicating the model's 

reliability in correctly identifying CNV instances. The DME class shows the highest precision at 99.6%, although its 

recall is slightly lower at 97.9%, resulting in an F1-score of 98.7%. DRUSEN class achieves balanced precision and 

recall at 98.8%, yielding an F1-score of 98.8%, which suggests consistent performance in identifying DRUSEN cases. 

The Normal class exhibits perfect precision at 100% and near-perfect recall at 99.6%, with an outstanding F1 score of 

99.8%, highlighting the model's accuracy in distinguishing normal instances. Overall, the average performance across 

all classes is excellent, with 99% precision, recall, and F1-score, indicating a well-performing model across different 

categories. 

Table 5. Performance of Class 

Class Precision (%) Recall (%) F1-Score (%) 

CNV 97.6% 99.6% 98.6% 

DME 99.6% 97.9% 98.7% 

DRUSEN 98.8% 98.8% 98.8% 
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Normal 100% 99.6% 99.8% 

Average 99% 99% 99% 

4. Discussion 

Based on the discussion, it can be concluded that the best CNN model was formed with three layers consisting of one 

convolutional layer and one pooling layer. ReLU activation functions, zero padding, and batch normalization were 

used in all three layers. The flattening and dropout processes were then performed, and the SoftMax activation function 

was used at the end of the architecture. The next step is to change the color pixels to numeric. Converting images to 

numeric is achieved by extracting each channel. After each channel is extracted, a rescaling process changes each pixel 

value from the range [0.255] to [0.1]. This study illustrates the ability of the CNN model to classify retinal diseases. 

Two optimizations are used, namely Adam and SGD. Both optimizations are implemented using batch normalization 

and without batch normalization.  

The first model uses Adam optimization without batch normalization for each layer. The accuracy of the training and 

validation data experiences an upward trend pattern from the first epoch to the last epoch. The model experiences 

convergence with Adam optimization at the sixth epoch. The accuracy of the training data when converging is 88.28%, 

and the accuracy of the validation data is 88.98%. The training and validation data loss values experienced a downward 

trend pattern from the first to the last epochs. When converging, the training data loss value is 0.3319, and the validation 

data loss value is 0.3277. 

In the second optimization, namely Adam, without batch normalization for each layer, the accuracy of the training and 

validation data experienced an upward trend pattern from the first epochs to the last epochs. The model experiences 

convergence with Adam optimization at the eighth epoch. The accuracy of the training data when converging is 

97.32%, and the accuracy of the validation data when converging is 92.64%. The loss value from the training data 

experienced a downward trend pattern from the first epochs to the last epochs, while the validation data experienced 

fluctuations. When converging, the training data loss value is 0.0854, and the validation data loss value is 0.2383. The 

accuracy and loss values of each epoch converge at the eighth epoch. The model converges at the eighth epoch because 

the difference between the loss value at the ninth and eighth epoch is less than 0.01. 

In optimization using SGD, initialize hyperparameters in the form of learning rate η = 0.01 and parameters in the form 

of weights and bias. The model stops with this optimization when its maximum epoch is ten epochs. The model 

converges when the loss value does not increase or decrease by less than 0.01. In this model, batch normalization is 

not applied to each layer, so the input volume is not normalized before proceeding to the next layer. The accuracy of 

the training and validation data experienced an upward trend pattern from the first epochs to the last epochs. The model 

experiences convergence with SGD optimization at the sixth epoch. The accuracy of the training data when converging 

is 77.88%, and the accuracy of the validation data when converging is 79.49%. The training and validation data loss 

values experienced a downward trend pattern from the first to the last epochs. When converging, the training data loss 

value is 0.6037, and the validation data loss value is 0.5357. The model converges at the sixth epoch because the 

difference between the loss value at the seventh and sixth epochs is less than 0.01. 

For SGD Optimization with batch normalization for each layer, the input volume is normalized before proceeding to 

the next layer. The accuracy of the training data experienced an upward trend pattern from the first epochs to the last 

epochs, while the validation data experienced fluctuations. The model experiences convergence with SGD optimization 

at the eighth epoch. The accuracy of the training data when converging is 93.39%, and the accuracy of the validation 

data when converging is 91.16%. The loss value from the training data experiences a downward trend pattern from the 

first epochs to the last epochs, while the validation data experiences fluctuations. When converging, the training data 

loss value is 0.2055, and the validation data loss value is 0.2812. The accuracy and loss values of each epoch converge 

at the eighth epoch. 

On the training data, the highest accuracy was 97.15%, and the lowest loss value was 0.0899 using the Adam model, 

which was normalized for each layer. In the validation data, the highest accuracy was 92.62%, and the lowest loss 

value was 60.2581 using the same model. From these results, the Adam model with normalization was chosen. The 
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model built correctly classified 241 data of CNV, 237 data of DME, 239 data of Drusen, and 241 data of Normal. The 

test data accuracy rate is 98.96%. This accuracy value is very good and very close to the accuracy value of the training 

data, namely 97.32% 

5. Conclusion 

Based on the research results and discussions that have been carried out, it can be concluded that the best CNN model 

is formed with three arrangements consisting of one convolutional layer and one pooling layer. The ReLU activation 

function, zero padding, and batch normalization are used in these three configurations. Furthermore, the flatten dropout 

process is carried out and the Softmax activation function is used at the end of the architecture. The model was built 

using eight epochs with Adam optimization with batch normalization, which produced training, validation, and test 

data accuracy values of 97.32%, 92.64%, and 98.96%. 

The proposed method can classify the four studied retinal diseases with high accuracy. One advantage of the method 

is that the Adam optimizer computes adaptive learning rates for each parameter, allowing for faster convergence and 

better handling of sparse gradients, which is common in medical image datasets. Using batch normalization across all 

network layers is recommended, as it makes a significant difference. Applying batch normalization to a network 

architecture can help prevent overfitting and make it possible to obtain higher classification accuracy in fewer epochs 

compared to the same network architecture without batch normalization. 
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