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Abstract

This study tried to demonstrate the role of time series models in modeling and forecasting process using long-term records of monthly mean sea
level from January 1978 to October 2020 at Grand Isle, Louisiana. Following the Box–Jenkins methodology, the ARIMA(1,1,1)(2,0,0)12 with
drift model was selected to be the best fit model for the time series, according to its lowest AIC value. Using the LM algorithm, the results
revealed that the NARNN model with 9 neurons in the hidden layer and 6 time delays provided the best performance in the nonlinear
autoregressive neural network models at its smaller MSE value. The Mixed model, a combination of the SARIMA and NARNN models has
both linear and nonlinear modelling capabilities can be a better choice for modelling the time series. The comparative results revealed that the
Mixed-LM model with 9 neurons in the hidden layer and 3 time delays yielded higher accuracy than the NARNN-LM model with 9 neurons in
the hidden layer and 6 time delays, and the ARIMA(1,1,1)(2,0,0)12 with drift model, according to its lowest MSE in this study. Thus, this study
may provide an integrated modelling approach as a decision-making supportive method for formulating local mean sea level forecast in
advance. Understanding past sea level is important for the analysis of current and future sea level changes. In order to sustain these
observations, research programs utilizing the resulting data should be able to improve significantly our understanding and narrow projections of
future sea level rise and variability.

Keywords: Mean Sea Level; Time Series; Modeling; Forecasting; SARIMA; NARNN; Mixed SARIMA-NARNN Model; Levenberg-Marquardt Algorithm;
Grand Isle, Louisiana.

1. Introduction
Climate change has been addressed intensively. At the same time, the issues of sea level rise at an increasing rate has
been discussed comprehensively as well. There are two major factors related to climate change caused sea level rise
globally: the added water from ice melting (ice sheets and glaciers) into the ocean, and the thermal expansion of
warming waters. Locally, the amount and speed of sea level rise varies by location, particularly, the slowing Gulf
Stream and sinking land affect some areas at varying rates in the United States (https://sealevelrise.org/). National
Oceanic and Atmospheric Administration (NOAA) 2019 Global Climate Annual Report summarized that the global
annual temperature has increased at an average rate of 0.07°C (0.13°F) per decade since 1880. This rate (+0.18°C /
+0.32°F) of increase has doubled since 1981 (https://www.ncdc.noaa.gov/sotc/global/201913).

According to NOAA Climate.gov, global average sea level has risen about 8-9 inches (21-24 cm) since 1880. The
Intergovernmental Panel on Climate Change (IPCC) [18] estimated that the sea level has risen by 26-55 cm (10-22
inches) with a 67% confidence interval. If emissions remain very high, the IPCC projected sea level could rise by
52-98 cm (20-39 inches). In its Fourth National Climate Assessment Report [27] the U.S. Global Change Research
Program (USGCRP) estimated that sea level has risen by about 7-8 inches (about 16-21 cm) since 1900, with about 3
of those inches (about 7 cm) occurring since 1993 (very high confidence). Relative to the year 2000, sea level was
very likely to rise by 1.0-4.3 feet (30-130 cm) in 2100, and 0.3-0.6 feet (9-18 cm) by 2030.

There were many studies pointed out that sea level is rising at an increasing rate [10] [11] [12] [8] [13] [9] [17] [21]
[16]. Thus, understanding past sea level is important for the analysis of current and future sea level changes.
Modeling sea level changes and understanding its causes has considerably improved in the recent years, essentially
because new in situ and remote sensing observations have become available [14] [28] [3] [25]. Despite the
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importance of sea level rise and its consequences, there is a lack of studies in the technical literature available on
forecasting schemes at the local consideration.

Recently, there is increasing interest in using neural networks to model and forecast time series [30], particularly in
the sea level rise issues [23] [6] [29] [7]. Hence, the primary purpose of this study was to demonstrate the role of time
series model in predicting process and to pursue analysis of time series data using long-term records of monthly mean
sea level from January 1978 to October 2020 at Grand Isle, Louisiana.

2. Materials

2.1. Study Site
Grand Isle is a town at latitude 29.2366 and longitude -89.9873 in Jefferson Parish, Louisiana, located on a barrier
island at the mouth of Barataria Bay where it meets the Gulf of Mexico (Figure 1). According to the United States
Census Bureau, the town covered a total area of 7.8 square miles (20 km2), of which 6.1 square miles (16 km2) is land
and 1.7 square miles (4.4 km2) is water. Grand Isle has a humid subtropical climate bordering on a tropical monsoon
climate, with mild winters and long, hot, humid summers. Grand Isle has been repeatedly pummeled by hurricanes
through its history. On average, Grand Isle has been affected by tropical storms or hurricanes every 2.68 years since
1877, with direct hits on average every 7.88 years. Hurricane Katrina, for example, pounded Grand Isle for two days,
August 28–29, 2005, destroying or damaging homes and camps along the entire island. Katrina's surge reached 5 ft
(1.5 m) at Grand Isle.

Fig. 1. Grand Isle, Louisiana, USA. Source: Google Map (adapted from: https://www.google.com/maps/place/Grand+Isle,+LA/)

2.2. Data Source
The long-term records of monthly mean sea level from January 1978 to October 2020 at Grand Isle, Louisiana, used
for this study is available to the public from NOAA Tides and Currents (https://tidesandcurrents.noaa.gov/).
According to NOAA Tides and Currents, the term mean sea level can refer to a tidal datum, which is locally-derived
based on observations at a tide station, and is typically computed over a 19-year period, known as the National Tidal
Datum Epoch (NTDE). Mean sea level as a tidal datum is computed as a mean of hourly water level heights observed
over 19-years. Monthly means generated in the datum calculation process, which is used to generate the relative local
sea level trends observed at a tide station.
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Fig. 2. Time Series Plot of Monthly Mean Sea Level at Grand Isle, Louisiana, January 1978 ~ October 2020 (Source: own work)

3. Methods

3.1. Seasonal ARIMA (SARIMA) Model
A time series is a set of observations, each one being recorded at a specific time t. The sequence of random variables
{yt: t = 1, 2, ⋯, T} is called a stochastic process and serves as a model for an observed time series. Statistically, the
ARIMA(p,d,q) model can be expressed in backshift notation as:

ϕp(B)(1 – B)dyt = c + θq(B)et (1)

where p = the order of the autoregressive process, d = the number of differences required to make the time series
stationary, q = the order of the moving average process, ϕp(B) = (1 – ϕ1B - … - ϕpBp) = (1 – Σp

i=1 ϕiBi), θq(B) = (1 -
θ1B - … - θqBq) = (1 – Σq

j=1 θjBj), c is a constant, and et is the error term. The purpose of each of these parts is to make
the model better fit to predict future points in the time series [24].

The ARIMA(p,d,q)(P,D,Q)S model is used to represent the SARIMA model that can be written in backshift notation
as:

ϕp(B)Φp(Bm)(1 – B)d(1 – Bm)Dyt = c + θq(B)ΘQ(Bm)et (2)

where P = the order of the seasonal autoregressive process, D = the number of seasonal differences applied to the
time series, Q = the order of the seasonal moving average process, S = the seasonality of the model (i.e., the number
of time steps for a single seasonal period), ΦP(Bm) = (1 – Φ1Bm - … - ΦPBmP) = (1 – ΣP

i=1 ΦiBmi), and ΘQ(Bm) = (1 -
Θ1Bm - … - ΘQBmQ) = (1 – ΣQ

j=1 ΘjBj).

In time series forecasting, the Box-Jenkins methodology [4] refers to a systematic method of identifying, estimating,
checking, and forecasting ARIMA models [5], that can be applied to find the best fit of the time series. The
Box-Jenkins methodology also can be used as the process to forecast the SARIMA model in this study based on its
autocorrelation function (ACF) and partial autocorrelation function (PACF) as a means of determining the stationarity
of the univariate time series and the lag lengths. Thus, the Box-Jenkins methodology starts with the assumption that
the time series should be as on stationary status. If the time series is not stationary, it needs to be stationarized
through differencing.

Empirically, plots and summary statistics can be used to identify trends and autoregressive elements to get an idea of
the amount of differencing and the size of the lag that will be required for model identification. In order to figure out
good parameters for the model, Akaike’s Information Criterion (AIC) or Bayesian Information Criterion (BIC) can be
used to determine the orders of a SARIMA model that is obtained by minimizing the AIC or BIC value. In the
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diagnostic checking step, plots and statistical tests of the residual errors can be used to determine the model fitting, to
evaluate the fitting model in the context of the available data, and to check where the model may be improved.

3.2. Nonlinear Autoregressive Neural Network (NARNN) Model
The idea behind the autoregressive (AR) process is to explain the present value of the time series, yt, by a function of
p past values, (yt-1, yt-2,⋯, yt-p). Thus, the AR process of order p, AR(p), is defined by the equation:

yt = ϕ1yt-1 + ϕ2yt-2 +⋯ + ϕpyt-p + et = ∑i=1
p ϕiyt-i + et (3)

where ϕ = (ϕ1, ϕ2, ⋯, ϕp) is the vector of model coefficients for the autoregressive process, and et is white noise, i.e.,
et ~ N(0, σ2). The NARNN is a natural generalization of the classic linear AR(p) process. The NARNN of order p can
be expressed as:

yt = Φ(yt-1, yt-2,⋯, yt-p, w) + ɛt (4)

where Φ(∙) is an unknown function determined by the neural network structure and connection weights, w is a vector
of all parameters (weights), and ɛt is the error term. Thus, it performs a nonlinear functional mapping from the past
observations, (yt-1, yt-2, ⋯, yt-p), to the future value, yt, which is equivalent to a nonlinear autoregressive model [30].
With the time series data, lagged values of the time series can be used as inputs to a neural network, so-called this the
NARNN model. Mathematically, the NARNN model [2] can be written by the equation of the form as:

yt = a0 + ∑j=1
k wj Φ(b0j + ∑i=1

d wijyt-i) + ɛt (5)

where d is the number of input units, k is the number of hidden units, a0 is the constant corresponding to the output
unit, b0j is the constant corresponding to the hidden unit j, wj is the weight of the connection between the hidden unit j
and the output unit, wij is the parameter corresponding to the weight of the connection between the input unit i and the
hidden unit j, and Φ(∙) is a nonlinear function, so-called this the transfer (activation) function. The logistic function
(i.e., sigmoid) is commonly used as the hidden layer transfer function, that is, Φ(y) = 1 / (1 + exp(-y)).

The most common learning rules for the NARNN model are the Levenberg-Marquardt, Bayesian Regularization, and
Scaled Conjugate Gradient training algorithms. In this study, the Levenberg-Marquardt (LM) algorithm was
considered, because it works without computing the exact Hessian matrix. Instead, it works with the gradient vector
and the Jacobian matrix, therefore increasing the training speed and has stable convergence [15].

3.3. Mixed SARIMA-NARNN (Mixed) Model
The SARIMA and NARNN models are good at modelling linear and nonlinear problems for the time series,
respectively. However, using the Mixed model, a combination of the SARIMA and NARNN models has both linear
and nonlinear modelling capabilities, can be a better choice for modelling the time series. Assuming that an unknown
function can be used to demonstrate the relationship between linear and nonlinear components in the time series,
which can be illustrated as follows:

yt = f(Lt, Nt) (6)

where linear component is represented by Lt, and nonlinear component is shown by Nt. Assuming that the linear and
nonlinear components in the time series have simply additive relationships. Zhang [30] states that the time series can
be considered as a combination of a linear and nonlinear components as follows:

yt = Lt + Nt (7)

These two components should be estimated from the time series. First, the linear component will be modelled by the
SARIMA model in this study. Then, the residuals from the SARIMA model will have only the nonlinear relationship,
which can be obtained by taking difference of observed values and predicted values as follows:
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et = yt - t (8)

where et is the residual of the linear model at time t, and t is the predicted value for time t. To find the nonlinear
relationship, residuals can be modelled by the NARNN model in this study as follows:

t = et = f(et-1, et-2,⋯ , et-n) + ɛt (9)

where f is the transformation function modelled by the NARNN model, and ɛt is the random error. The forecast from
the SARIMA and NARNN models are combined to obtain the forecast of the time series ŷ t which is denoted by

ŷt = t + t. (10)

4. Results

4.1. Seasonal ARIMA (SARIMA) Model
R 4.0.2 for Windows is an open source for statistical computing and graphics supported by the R Foundation for
Statistical Computing was used as the tool to model and forecast monthly mean sea level from January 1978 to
October 2020 at Grand Isle, Louisiana to achieve the purpose of this study. The function “decompose()” in R can be
applied to separate the seasonal component, trend component and irregular components of a seasonal time series. The
estimated trend component showed a steady increase over time, and the estimated seasonal component definitely
displayed seasonality, with a pattern recurrence occurring once every 12 months (yearly) (Figure 3).

Fig. 3. Decomposition of Monthly Mean Sea Level at Grand Isle, Louisiana, January 1978 ~ October 2020 (Source: own work)

Seasonal adjustment is the removal of seasonal effects that are not explainable by the dynamics of trends or cycles
from a time series to reveal certain non-seasonal features. This can be done by subtracting the estimated seasonal
component from the original time series. After removed the seasonal variation, the seasonally adjusted time series
only contained the trend component and an irregular component. The ACF of the time series, seasonal adjusted
monthly mean sea level from January 1978 to October 2020 at Grand Isle, Louisiana, showed strong positive
statistically significant correlations at up to 28 lags that never decay to zero. This also illustrated by the single spike
at the first lag followed by small apparently random values after the first lag for the PACF.

In terms of the non-stationary time series, differencing can be used to transform a non-stationary time series into a
stationary one. When both trend and seasonality are present, a non-seasonal first difference and a seasonal difference
may need to apply in advance. Notice that the graph of the first difference of the time series looked approximately
stationary. According to the Augmented Dickey-Fuller Test, Dickey-Fuller = -11.944 with lag order = 7 and
the p-value of the test was smaller than 0.01. It rejected the null hypothesis that is non-stationary, and suggested that
the first difference of the time series was stationary. The ACF of first difference (Figure 4) showed a significant
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positive spike at the first lag followed by correlations that were statistically significant. The corresponding PACF of
first difference (Figure 5) showed most likely a gradual decrease after the first few lags.

Seasonal differencing is defined as a difference between a value and a value with lag that is a multiple of seasonality
(S). In this case, S = 12 (months per year) is the span of the periodic seasonal behavior. Figure 5 showed the graph of
the 12th difference of the time series, which looked approximately stationary. At the same time, the test statistic of the
Augmented Dickey-Fuller Test was Dickey-Fuller = -37.923 with lag order = 7 and the p-value of the test
was smaller than 0.01. It rejected the null hypothesis that is non-stationary, and suggested that the 12th difference of
the time series was stationary. The ACF of 12th difference (Figure 6) most likely a steady decay after the first few lags
and bounce around between being positive and negative statistically significant. Meanwhile, the PACF of 12th

difference (Figure 7) mostly looks like a steady negative decay in the partial correlations toward zero. This is
consistent with the general recommendation that if the autocorrelation at the first seasonal lag is positive we should
use an autoregressive (AR) model vs. a moving average (MA) model.

Fig. 4. ACF Plot of First Difference of Seasonal Adjusted Monthly Mean Sea Level at Grand Isle, Louisiana, January 1978 ~
October 2020 (Source: own work)

Fig. 5. PACF Plot of First Difference of Seasonal Adjusted Monthly Mean Sea Level at Grand Isle, Louisiana, January 1978 ~
October 2020 (Source: own work)
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Fig. 6. ACF Plot of 12 th Difference of Seasonal Adjusted Monthly Mean Sea Level at Grand Isle, Louisiana, January 1978 ~
October 2020 (Source: own work)

Fig. 7. PACF Plot of 12th Difference of Seasonal Adjusted Monthly Mean Sea Level at Grand Isle, Louisiana, January 1978 ~
October 2020 (Source: own work)

The auto.arima() function from the “forecast” package in R 4.0.2 for Windows was employed to identify both the
structure of the time series (stationary or not) and type (seasonal or not), and sets the model's parameters, that takes
into account the AIC, AICc or BIC values generated to determine the best fit SARIMA model.

Consequently, the ARIMA(1,1,1)(2,0,0)12 with drift model was selected to be the best fit model for the time series in
this study, according to the lowest AIC value (-1612.92). The ARIMA(1,1,1)(2,0,0)12 with drift model would yield
the following forecasting equation:

(1 – ϕ1B)(1 – B)(1 – Φ1B12 – Φ2B24)Ŷt = c + (1 - θ1B) (11)

The ARIMA(1,1,1)(2,0,0)12 with drift model for the time series, seasonal adjusted monthly mean sea level from
January 1978 to October 2020 at Grand Isle, Louisiana, can be expressed as follows:

(1 – 0.4627B)(1 – B)(1 – 0.0542B12 + 0.0647B24)Ŷt = 0.0008 + (1 + 0.9671B) (12)
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A common task when building a forecasting model is to check that the residuals satisfy some assumptions that they
are uncorrelated, normally distributed, etc. The top figure of Figure 8 showed that the residuals from the
ARIMA(1,1,1)(2,0,0)12 with drift model did not violate the assumption of constant location and scale. The bottom
right figure of Figure 8 also showed that the residual histogram did not reveal a time series deviation from normality
in this case. The ACF plot of the residuals (the bottom left figure of Figure 8) illustrated that all sample
autocorrelations were within the threshold limits, indicating that the residuals appeared to be random.

Fig. 8. Residuals of ACF and PACF (Source: own work)

In this study, the test statistic of the Ljung-Box Q-test [22] was Q = 20.637 with 19 degrees of freedom and
the p-value of the test was 0.3572 (model degrees of freedom: 5, total lags used: 24), indicating that the residuals
were random and that the model provided an adequate fit to the time series data. This, combined with the Ljung-Box
Q-test statistic, suggested that the ARIMA(1,1,1)(2,0,0)12 with drift model appropriately modeled the dynamics for
this time series. The following figure (Figure 9) illustrated that the black line represented the visuals of monthly mean
sea level dataset without forecasting and the red line represented the visuals of monthly mean sea level dataset with
forecasted values. Forecasting process with the ARIMA(1,1,1)(2,0,0)12 with drift model indicated a good fit of the
model for forecasting at a constant increasing rate in the short-term.

Figure 9. Observed and Forecasted Monthly Mean Sea Level at Grand Isle, Louisiana (Source: own work)
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4.2. Nonlinear Autoregressive Neural Network (NARNN) Model
In MATLAB, the NARNN model applied to time series prediction using its past values of a univariate time series can
be expressed as follows:

y(t) = Φ(y(t-1), y(t-2),⋯, y(t-d)) + e(t) (13)

where y(t) is the time series value at time t, d is the time delay, and e(t) is the error of the approximation of the time
series at time t. The function Φ(∙) is an unknown nonlinear function, and the training of the neural network aims to
approximate the function by means of the optimization of the network weights and neuron bias. This tends to
minimize the sum of the squared differences between the observed (yi) and predicted (ŷi) values (i.e., MSE = (1/n)
∑i=1

n (yi – ŷi)2) [1].

In this study, the NARNN model was applied to model and forecast the time series, monthly mean sea level from
January 1978 to October 2020 at Grand Isle, Louisiana. Furthermore, the logistic sigmoid and linear transfer
functions at the hidden and output layers were used respectively. The extracted features were trained using the LM
training algorithm for the target time series in the MATLAB (2019a) Neural Network Toolbox: 514 timesteps of one
element, monthly mean sea level from January 1978 to October 2020 at Grand Isle, Louisiana. Three kinds of target
timesteps were set aside for the training, validation and testing phases in this case study. The division of the time
series in this analytical work was 70% for the training, 15% for the validation, and 15% for the testing. Randomly,
514 data samples were divided into 360 data for the training, 77 data for the validation, and 77 data for the testing.

The development of the optimal architecture for the NARNN model requires determination of time delays, the
number of hidden neurons, and an efficient training algorithm. The optimum number of time delays and hidden
neurons were obtained through a trial and error procedure. The prediction performance of the models was evaluated
by its MSE. The error analysis showed that the NARNN model with 9 neurons in the hidden layer and 6 time delays
provided the best performance (MSE = 2.32078e-3) using the LM algorithm (NARNN-LM). The results revealed the
training progress using the LM algorithm stopped when the validation error increased for six iterations with
Performance = 0.00213, Gradient = 0.000585, and Mu = 1.00e-05 at epoch 9. In terms of the processing time, the LM
algorithm took 0:00:00 during the training process.

As illustrated in the performance plot, the best performance for the validation phase was 0.0028683 at epoch 3 for the
NARNN-LM model. The results showed a good network performance because the validation and testing errors had
similar characteristics, and did not appear that any significant overfitting has occurred. As shown in the regression
plots, the regression R value for the training phase was 0.90731, for the validation phase was 0.87905, for the testing
phase was 0.88299, and for the all samples was 0.89865, respectively, indicated good predictive abilities of the
NARNN-LM model for new datasets.

The dynamic network time-series response plots were displayed in Figure 10 for the NARNN-LM model, showed
that the outputs were distributed evenly on both sides of the response curve, and the errors versus time were small in
the training, validation, and testing phases, indicated that the NARNN-LM model was able to predict the time series
over the simulation period efficiently. The error autocorrelation function describes how the prediction errors are
related in time. For a perfect prediction model, there should only be one nonzero value of the autocorrelation
function, and it should occur at zero lag (i.e., MSE). This would mean that the prediction errors are completely
uncorrelated with each other (white noise). The correlations for the NARNN-LM model (Figure 11) except for the
one at zero lag, almost all fell approximately within the 95% confidence limits around zero, so the model seemed to
be adequate.
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Fig. 10. Network Time-Series Response of the NARNN-LM Model (Source: own work)

Fig. 11. Error Autocorrelation of the NARNN-LM Model (Source: own work)

4.3. Mixed SARIMA-NARNN (Mixed) Model
In MATLAB, the Mixed model applied to time series prediction using its past residuals from the SARIMA model can
be expressed as follows:

e(t) = Φ(e(t-1), e(t-2),⋯, e(t-d)) + ɛ(t) (14)

where e(t) is the residual of the time series at time t, d is the time delay, and ɛ(t) is the error term. This equation
describes how the Mixed model is used to predict the future residual of a time series, e(t), using the past residuals of
the time series, (e(t-1), e(t-2),⋯, e(t-d)).

Similarly, the development of the optimal architecture for the Mixed model requires determination of time delays, the
number of hidden neurons, and an efficient training algorithm. According to the results of the error analysis, it
showed that the Mixed model with 9 neurons in the hidden layer and 3 time delays also provided the best
performance (MSE = 2.29385e-3) with the LM algorithm (Mixed-LM). At the same time, the training progress using
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the LM algorithm for the Mixed-LM model stopped when the validation error increased for six iterations with
Performance = 0.00226, Gradient = 0.000875, and Mu = 1.00e-06 at epoch 9.

Fig. 12. Network Time-Series Response of the Mixed-LM Model (Source: own work)

Fig. 13. Error Autocorrelation of the Mixed-LM Model (Source: own work)

As illustrated in the performance plot, the best performance for the validation phase was 0.0028901 at epoch 3 for the
Mixed-LM model. The results also showed a good network performance because the validation and testing errors
have similar characteristics, and did not appear that any significant overfitting has occurred. The dynamic network
time-series response plots were displayed in Figure 12 for the Mixed-LM model, showed that the outputs were
distributed evenly on both sides of the response curve, and the errors versus time were small in the training,
validation, and testing phases. The results indicated that the Mixed-LM model was able to predict the time series over
the simulation period efficiently as well. For the Mixed-LM model, the correlations except for the one at zero lag, all
fell approximately within the 95% confidence limits around zero, so the model was to be adequate (Figure 13).
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5. Conclusion
There were many studies concluded that global sea level is rising at an increasing rate. While sea level changes are a
relatively slow process, therefore, understanding past sea level is important for the analysis of current and future sea
level changes. Sea level changes are driven by a variety of mechanisms operating at different spatial and temporal
scales [19]. Furthermore, forecasting future relative sea level changes at specific locations requires not just an
estimate of global mean sea level changes, but also estimates of the different processes contributing to global mean
sea level changes, as well as of the processes contributing exclusively to regional or local mean sea level changes
[20].

Forecast is a kind of dynamic filtering, in which past values of the time series are used to predict future values. This
study not only wanted to find the best fit model for the time series, but also tried to evaluate the accuracy of the
SARIMA, NARNN-LM, and Mixed-LM models used in the forecast of monthly mean sea level at Grand Isle,
Louisiana. The comparative results revealed that the Mixed-LM model with 9 neurons in the hidden layer and 3 time
delays (MSE = 2.29385e-3) yielded higher accuracy than the NARNN-LM model with 9 neurons in the hidden layer
and 36 time delays (MSE = 2.32078e-3), and the ARIMA(1,1,1)(2,0,0)12 with drift model (MSE = 2.45154e-3) in this
study.

Empirically, the SARIMA and NARNN models are good at modelling linear and nonlinear problems for the time
series, respectively. However, using the Mixed model, a combination of the SARIMA and NARNN models has both
linear and nonlinear modelling capabilities, can be a better choice for modelling the time series. According to the
results of this study, this Mixed SARIMA-NARNN model not only can provided richer information which are
important in decision making process related to the future local mean sea level impacts, but also can be employed in
forecasting the future performance for local mean sea level change outcomes.
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