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Abstract 

This study explores the use of machine learning algorithms, specifically SVM and RF, for predicting tsunamis, a crucial aspect of disaster 
management. The research utilized earthquake data from 2001 to 2023, evaluating these models based on accuracy, precision, recall, F1-score, 
and ROC AUC, emphasizing features like magnitude, depth, and alert levels. The SVM model demonstrated an accuracy of 65.61%, precision 
of 70.59%, recall of 19.67%, F1-score of 30.77%, and ROC AUC of 62.15%. In comparison, the RF model showed an accuracy of 61.15%, 
precision of 50.00%, higher recall of 36.07%, F1-score of 41.90%, and ROC AUC of 63.84%. These results highlight the distinct strengths of 
each model: SVM's precision makes it suitable for minimizing false positives, while RF's higher recall indicates its effectiveness in detecting 
actual tsunamis. The findings underscore the significance of selecting the appropriate model for tsunami prediction based on specific disaster 
management needs and the inherent trade-offs in model selection. The research concludes that SVM and RF models provide valuable yet distinct 
contributions to tsunami prediction. Their application should be customized to disaster management requirements, balancing accuracy and 
operational efficiency. This study contributes to disaster risk management and opens avenues for further research in enhancing the accuracy and 
reliability of machine learning in natural disaster prediction and response systems.      
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1. Introduction  

Tsunamis, while infrequent, are among the most catastrophic natural disasters, often striking with little warning and 

leaving a trail of devastation. The 2011 Tohoku earthquake and subsequent tsunami, which resulted in over 15,000 

deaths and significant nuclear incidents, serves as a stark reminder of the urgent need for improved predictive models. 

In a world where technology and data science have advanced rapidly, the potential to enhance tsunami prediction 

through sophisticated algorithms presents a critical opportunity in disaster preparedness. This paper explores the 

application of two such algorithms, SVM and RF, in tsunami prediction. By leveraging the strengths of these machine 

learning techniques, we aim to contribute to the development of more accurate and reliable models, potentially saving 

lives and minimizing the impact of future tsunamis. In this context, the comparative analysis of SVM and RF is a 

scientific endeavor and a step towards more effective disaster risk management. 

Predictive modeling in natural disasters is crucial for effective disaster management and risk reduction. Various studies 

have emphasized the significance of spatial modeling and data-based methods for predicting natural and engineering 

disasters [1]. These methods are essential for understanding the influences of disasters on the environment and for 

establishing effective predictive models.  

Furthermore, the limitations of physics-based models in predicting natural disasters have been acknowledged, as these 

models may have prediction errors due to the complexity and dynamic nature of natural disaster behavior [2]. This 

underscores the importance of integrating data-driven approaches in predictive modeling. Research and development 

efforts are ongoing to develop and improve simulation and prediction modeling systems in the field of natural disasters, 

indicating the continuous pursuit of more effective predictive models [3]. 
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A tsunami is a series of ocean waves with very long wavelengths (typically hundreds of kilometers) caused by large-

scale ocean disturbances, such as earthquakes, volcanic eruptions, and meteorite impacts [4]. These disturbances 

displace a substantial volume of water, generating waves that can travel across entire ocean basins at high speeds. 

When these waves approach shallow coastal areas, their energy becomes compressed, dramatically increasing wave 

height and causing devastating flooding and destruction. Tsunamis can have catastrophic effects on coastal 

communities, resulting in the loss of human lives and properties. 

Tsunami prediction and disaster preparedness are critical components of mitigating the impact of tsunamis. Predictive 

modeling plays a crucial role in anticipating and preparing for such disasters. [5] conducted numerical experiments on 

tsunami flow depth prediction for clustered areas using regression and machine learning models, emphasizing the 

importance of prediction methods with robust and light computational loads for preparing for unforeseen situations 

during large-scale earthquakes and tsunami disasters. [6] demonstrated the potential of machine learning-based models 

as surrogates for conventional physics-based models to predict near-field tsunami inundations in real-time, highlighting 

the advancement in predictive modeling techniques for tsunami events. Collectively, these studies underscore the 

significance of predictive modeling in tsunami prediction in reducing the vulnerability of communities to tsunami 

disasters. 

Applying machine learning algorithms in disaster prediction has gained significant attention in recent research. [7] 

highlighted the potential of predictive data analytics, enabled by machine learning algorithms, for assessing the long-

term impacts of disasters, emphasizing the role of technological advancements in predicting the effects of disasters 

over time. Furthermore, [8] compared the performance of machine learning algorithms, including Artificial Neural 

Network (ANN), SVM, and Decision Tree (DT), in flood prediction models, indicating the diverse applications of 

machine learning techniques in disaster prediction.  

Accurately predicting tsunamis is crucial for mitigating the devastating impact of these natural disasters. Tsunami 

prediction models, particularly those utilizing machine learning algorithms, are crucial in providing timely warnings 

and enabling effective disaster preparedness and response efforts. This highlights the practical significance of efficient 

prediction models in ensuring timely and effective disaster management. 

After discussing the broader context of predictive modeling in natural disasters and the specific challenges associated 

with tsunami prediction, it becomes evident that innovative approaches are required to enhance prediction accuracy 

and reliability. In this vein, machine learning algorithms have emerged as powerful tools, offering significant potential 

in predicting such catastrophic events. Among these algorithms, SVM and RF have shown considerable promise in 

various domains of environmental prediction and disaster management. However, their specific utility and comparative 

effectiveness in tsunami prediction still need to be explored. This gap in research forms the crux of our study. Our 

research specifically focuses on these two algorithms, delving into a comparative analysis of SVM and RF for 

predicting tsunamis. This comparison is crucial for understanding each algorithm's strengths and weaknesses within 

the unique challenges posed by tsunami prediction and is pivotal in advancing the field of disaster predictive modeling. 

Thus, we aim to bridge the gap in current research by thoroughly evaluating these models, focusing on their predictive 

performance in the context of tsunamis, a critical aspect of disaster preparedness and risk reduction. 

Machine learning models have been increasingly utilized for their predictive capabilities in natural disaster prediction. 

The comparison between SVM and RF models is fascinating in tsunami prediction. Several studies have explored the 

performance of these models in various domains, shedding light on their strengths and weaknesses. 

[9] demonstrated the effectiveness of a stacking algorithm, which included SVM and RF, in predicting forest canopy 

height. This suggests that SVM and RF have been successfully applied in environmental prediction tasks, showcasing 

their potential for natural disaster prediction. 

[10] compared machine learning models for predicting forest fires and found that RF exhibited high accuracy and 

precision. This highlights the robustness of RF in environmental risk assessment, which could be relevant to the 

predictive modeling of tsunamis. 

In conclusion, the comparison of SVM and RF in various domains demonstrates the versatility and effectiveness of 

both models in predictive tasks. While RF has shown promise in environmental prediction and risk assessment, SVM 
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has also been successful in diverse applications. The findings from these studies provide valuable insights for the 

comparative analysis of SVM and RF in the context of tsunami prediction, offering a foundation for further exploration 

and experimentation. 

The application of SVM and RF algorithms in disaster prediction has been investigated in various studies. [11] 

demonstrated the prediction effectiveness of the SVM algorithm in assessing sensitivity to coal ash blasts for different 

degrees of deterioration, highlighting the potential of SVM in predicting and assessing disaster-related events. 

Additionally, [12] showcased the use of RF in flood risk assessment, emphasizing its relevance in predicting natural 

disasters such as floods.  

In pursuit of advancing the field of tsunami prediction, this research sets forth two interconnected objectives. Firstly, 

it seeks to rigorously evaluate the predictive performance of SVM and RF algorithms within the intricate context of 

tsunami forecasting. This evaluation entails a comprehensive analysis of both algorithms' capacity to accurately predict 

tsunami events, considering their proficiency in recognizing seismic data patterns and their ability to deliver timely and 

reliable predictions. Furthermore, the research endeavors to compare the strengths and weaknesses of SVM and RF 

algorithms in tsunami prediction. This comparison focuses on three critical dimensions: accuracy, computational 

efficiency, and scalability. By scrutinizing these aspects, the study aims to provide valuable insights into which 

algorithm exhibits superior predictive performance while shedding light on the specific attributes that make one 

algorithm more adept than the other in addressing the unique challenges posed by tsunami prediction. 

As we stand on the cusp of significant advancements in predictive modeling, this study aims to contribute to a pivotal 

shift in disaster management strategies, particularly in the context of tsunami prediction. The comparative analysis of 

SVM and RF algorithms in this research is not just a theoretical exercise; it has profound practical implications. Our 

findings could enhance the accuracy and reliability of tsunami prediction models, which are crucial for early warning 

systems. Improved prediction models can lead to better preparedness and quicker response times, significantly reducing 

the loss of life and property damage in coastal communities vulnerable to tsunamis. 

Furthermore, the insights gained from this study could inform the development of more sophisticated, data-driven 

approaches in the broader field of disaster management. By understanding the strengths and weaknesses of SVM and 

RF algorithms in predicting natural disasters, we can better tailor predictive models to suit these events' complex and 

dynamic nature. This could lead to more efficient allocation of resources and more effective evacuation plans, 

ultimately contributing to the resilience and safety of at-risk populations. 

2. Literature Review  

In selecting appropriate machine learning algorithms for tsunami prediction, it is essential to consider the characteristics 

of the data typically encountered in this domain and the specific requirements of disaster prediction models. SVM and 

RF algorithms were chosen for this comparative analysis due to their distinct yet complementary strengths in handling 

such challenges. 

SVM is renowned for its effectiveness in classification tasks, particularly in high-dimensional data situations. Its 

capability to model complex, non-linear relationships makes it a strong candidate for tsunami prediction, where the 

data often involve intricate patterns and many influencing factors. The robustness of SVM in dealing with overfitting, 

even in cases of limited training data, is particularly advantageous, considering the relative rarity of tsunami events. 

Additionally, SVM's flexibility in kernel choice allows for fine-tuning the model to accommodate the specific nature 

of seismic data associated with tsunamis. 

On the other hand, RF is chosen for its proficiency in handling large datasets and its inherent feature selection 

capability, which is crucial in analyzing the vast and diverse datasets typical in natural disaster prediction. RF's 

ensemble approach, aggregating multiple decision trees, provides high accuracy and stability, reducing the risk of 

overfitting. This is particularly beneficial in tsunami prediction, where the model must be robust against the variability 

and noise inherent in environmental data. Moreover, RF's ability to provide insights into feature importance is 

invaluable in understanding which factors most significantly influence tsunami genesis and propagation. 
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Together, these algorithms offer a comprehensive approach to the complex task of tsunami prediction. By comparing 

their performance, we aim to determine which algorithm is more effective and gain insights into their strengths and 

limitations in disaster predictive modeling. This comparison will contribute to developing more accurate and reliable 

tsunami prediction models, ultimately aiding in better disaster preparedness and risk reduction efforts. 

2.1. Description of SVM Algorithm 

SVM is a widely used algorithm in various fields due to its effectiveness in classification, regression, and prediction 

tasks. It has been applied in real-time crash risk evaluation [13], power prediction for PV power smoothing [14], and 

fire detection and recognition optimization [15]. Additionally, it has been found to outperform other algorithms in 

terms of accuracy and prediction error rates in various applications [16].  

SVM operates by searching for optimal classification hyperplanes in both linearly separable and inseparable cases, 

utilizing structured risk minimization to construct the optimal hyperplane in the attribute space, ensuring the classifier 

achieves the global optimum and meets the expected risk at a certain upper bound [15].  

Kernel functions are crucial in the effectiveness of SVM algorithms. These functions enable SVM to handle non-

linearly separable data by mapping it to a higher-dimensional space, where linear separation becomes feasible [17].  

The application of SVM in tsunami prediction has been a subject of interest in recent research. [18] developed a real-

time tsunami prediction system utilizing an ocean floor network for local regions, providing outputs such as tsunami 

arrival time, height, inundation area, and depth. Furthermore, [6] focused on machine learning-based tsunami 

inundation prediction derived from offshore observations, highlighting the potential of machine learning in enhancing 

tsunami prediction capabilities. 

2.2. Description of RF Algorithm 

RF is a popular machine learning algorithm widely used in various domains due to its robustness and effectiveness. It 

is an ensemble learning method based on decision trees, where multiple decision trees are trained independently and 

combined to make predictions [19]. The algorithm has been applied in diverse areas such as security risk assessment 

[20], cyber-attack prediction [21], and geoscience data analysis [22]. 

Moreover, various studies have compared the RF algorithm with other machine learning algorithms, demonstrating its 

superior performance in different applications. For example, in the context of predicting the yield of non-breakeven 

financial products, the practical results of five machine learning algorithms were compared, and the RF was found to 

have the best prediction effect [23]. 

The algorithm has several hyperparameters that need to be set by the user, such as the number of observations drawn 

randomly for each tree, the number of variables drawn randomly for each split, and the minimum number of samples 

that a node must contain [24].  

The application of RF in tsunami prediction has gained attention due to its potential to improve the accuracy and 

reliability of forecasting models and develop a practical evaluation method for tsunami debris and accumulation, 

demonstrating the use of prediction analysis to reveal hazards undetected by conventional tsunami inundation analysis 

[18]. Collectively, these studies underscore the growing interest in leveraging machine learning, including RF, to 

enhance the prediction and forecasting of tsunamis.  

2.3. Relevance of Algorithms to Tsunami Prediction 

The selection of the SVM algorithm for this study is grounded in several compelling reasons: 

1) SVM has demonstrated robustness when dealing with high-dimensional data, making it well-suited for handling 

tsunami prediction dataset’s complex and multi-dimensional nature. Tsunami prediction often relies on a wide 

range of variables, including seismic data, oceanographic parameters, and historical tsunami records, all of which 

contribute to a high-dimensional feature space. 

2) SVM's structural risk minimization principle enables it to find an optimal classification hyperplane that generalizes 

well to unseen data. This ensures the model does not overfit the training data, which is essential for reliable tsunami 

prediction. 
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The RF algorithm complements SVM in several critical aspects, justifying its inclusion in this study: 

1) RF's ensemble learning approach, which combines multiple decision trees, enhances prediction accuracy and 

robustness. This is essential in tsunami prediction, where the combination of various predictive factors and data 

sources can significantly improve forecasting. 

2) The ensemble nature of RF allows for model interpretability, which can provide insights into the relative 

importance of features in tsunami prediction. Understanding the importance of features aids in identifying key 

indicators of tsunami events. 

In summary, the selection of both SVM and RF is well-justified due to their complementary strengths and suitability 

for addressing the challenges posed by tsunami prediction. Combining SVM's high-dimensional data handling and non-

linearity handling capabilities with RF's ensemble learning and resilience to noisy data forms a robust framework for 

accurate and reliable tsunami forecasting. 

3. Method 

3.1. Data Collection 

The dataset is sourced from Kaggle, a comprehensive collection of earthquake records from January 1, 2001, to January 

1, 2023. It consists of 782 detailed earthquake entries. Each record in the dataset includes various attributes crucial for 

understanding and analyzing seismic events. These attributes encompass the title of the earthquake, its magnitude, date 

and time, various intensity measures such as CDI (Community et al.) and MMI (Modified Mercalli Intensity), and the 

alert level which ranges from green to red, indicating the severity of the earthquake. 

Significantly, the dataset includes a 'tsunami' field, marked "1" for oceanic events and "0" otherwise, which is vital for 

tsunami prediction studies. This field, along with others such as magnitude, depth, and location coordinates (latitude 

and longitude), plays a crucial role in assessing the potential for a tsunami following an earthquake. The 'sig' attribute 

quantifies the significance of each event, factoring in magnitude, MMI, felt reports, and estimated impact, providing a 

comprehensive overview of the earthquake's overall impact. 

The dataset also details the source of the data ('net'), the number of seismic stations involved in the data collection 

('nst'), and the distance from the epicenter to the nearest station ('dmin'). The 'gap' attribute describes the azimuthal gap 

between stations, essential for determining the reliability of the earthquake's location data. The 'magType' field 

indicates the method used to calculate the earthquake's magnitude, and the 'depth' field specifies the depth at which the 

earthquake began. Additionally, the dataset includes the specific location within the country, the affected continent, 

and the country, offering a complete geographical context of each seismic event. 

3.2. Data Preprocessing 

In the data preprocessing stage, meticulous attention was paid to preparing the dataset for practical machine learning 

analysis. This process was essential to ensure the reliability and validity of the subsequent model predictions. 

The initial task involved a thorough examination of the dataset to identify and address missing values. Several columns, 

such as 'location,' 'continent,' and 'country,' exhibited many missing entries. Decisions regarding the imputation or 

removal of these values were made based on their criticality to the study and the extent of the missing data. 

Additionally, the dataset was scrutinized for errors, focusing on rows containing incomplete information in the 'title' or 

'location' fields. Appropriate measures were taken to correct or exclude these inaccuracies, thereby preserving the 

dataset's overall integrity. 

Feature selection and extraction constituted another vital component of the preprocessing phase. The study specifically 

targeted features that were deemed pivotal for tsunami prediction. These included 'magnitude,' 'depth,' 'latitude,' 

'longitude,' and the target variable 'tsunami.' While the dataset's manageable size rendered dimensionality reduction 

unnecessary, feature engineering was employed to augment its predictive power. This involved innovative approaches 

like amalgamating latitude and longitude data into a singular feature indicative of the distance from the nearest coast. 

Normalizing and scaling the data were critical steps in the preprocessing strategy, especially for numerical features 

such as 'magnitude,' 'depth,' and 'dmin.' The application of standardization ensured that these features were transformed 
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to a standard scale without distortion. This step is crucial for models sensitive to the scale of input features, as it 

enhances their performance by providing a level playing field for all input variables. 

Finally, the data imbalance issue, particularly in the 'tsunami' field, was rigorously addressed. Given its potential impact 

on model performance, strategies like resampling were considered to ensure a balanced representation of both classes 

in the model training process. This approach is critical in machine learning contexts to mitigate biases towards the 

majority class. 

The dataset was primed for further analytical procedures after completing these preprocessing steps. It was now suitably 

structured and standardized for in-depth exploratory data analysis, advanced feature engineering, and the development 

of robust predictive models tailored for tsunami prediction. 

3.3. Data Splitting into Training and Testing Datasets 

In machine learning, partitioning the dataset into training and testing subsets is critical, serving as the cornerstone for 

model evaluation. This process is instrumental in determining the efficacy of the models developed for tsunami 

prediction. 

The methodology for splitting the data adhered to a well-established rationale. The fundamental purpose of dividing 

the dataset was to create two sets: one for training the model, encompassing features and the target variable, and another 

for testing to evaluate the model's accuracy and generalization capability. The training set enables the model to learn 

and adapt to the patterns within the data. In contrast, the testing set offers a means to assess the model's predictive 

performance against unseen data rigorously. 

In this study, the earthquake dataset underwent a strategic division, adhering to standard practices in the field. An 80-

20 split was employed, allocating 80% of the data (comprising 625 records) to the training set and the remaining 20% 

(157 records) to the testing set. This allocation was based on the dataset's size and characteristics, aiming to provide a 

comprehensive learning base for the models while reserving a substantial portion for their evaluation. 

The process of splitting the data also encompassed elements of randomization and stratification. The randomization 

ensured that both the training and testing sets were representative of the dataset's overall distribution, thus eliminating 

potential biases associated with ordered or non-random datasets. Additionally, stratification was employed given the 

slight imbalance in the 'tsunami' variable within the dataset. This approach ensured that both subsets maintained a 

similar proportion of tsunami and non-tsunami events, approximately 38.8%, thereby addressing any potential 

skewness in class distribution. 

The culmination of this data-splitting process was pivotal in the study. It guaranteed that the machine learning models 

were trained on a dataset that was not only representative of the diverse range of scenarios but also unbiased. 

Simultaneously, it provided a distinct and equally representative subset of data for validating the models' predictive 

prowess. This meticulous division of data into training and testing sets thus laid the foundation for a fair and 

comprehensive assessment of the models' performance in tsunami prediction. 

3.4. SVM Model Training 

The training of the SVM model was a pivotal component of our research, aimed at harnessing its capabilities for 

tsunami prediction. This section encapsulates the comprehensive methodology undertaken for training the SVM model, 

including its theoretical framework, kernel choice, training process, and hyperparameter optimization. 

The SVM algorithm, renowned for its robustness in supervised learning tasks, plays a crucial role in classification and 

regression scenarios. In tsunami prediction, a classification challenge, the SVM algorithm's objective is to delineate an 

optimal hyperplane that distinctly segregates different classes within the feature space. The essence of the SVM 

methodology lies in its use of support vectors, the closest data points to the hyperplane, which are pivotal in defining 

the hyperplane that maximizes the margin between the classes. This characteristic renders the SVM algorithm 

particularly effective in high-dimensional spaces and highlights its computational efficiency, making it an apt choice 

for complex classification tasks such as tsunami prediction. 

In selecting the appropriate kernel for the SVM model, the study gravitated toward the Radial Basis Function (RBF) 

kernel, recognized for its proficiency in managing non-linear relationships. This choice was informed by the nature of 
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the dataset and the specific requirements of tsunami prediction. The kernel selection process was complemented by 

careful parameter tuning, focusing on the regularization parameter (C) and the kernel coefficient (gamma), both crucial 

in enhancing the model's performance. 

The training of the SVM model was grounded in a robust mathematical framework centered around solving an 

optimization problem aimed at maximizing the margin between the classes. This process involved intricate quadratic 

programming to ascertain the most effective hyperplane. The training steps included: 

1) Select the RBF kernel and initialize the parameters. 

2) Transforming the training data using the selected kernel. 

3) Training the SVM model to find the hyperplane that maximizes the margin between classes. 

4) Utilizing the support vectors and the hyperplane to classify new data points. 

Hyperparameter tuning emerged as an integral aspect of the training process, encompassing the exploration of various 

parameter combinations through grid search and cross-validation techniques. This meticulous approach aimed to 

identify the optimal set of parameters that would culminate in the highest level of predictive accuracy. 

The outcomes of the SVM model training were promising, identifying the best-performing model characterized by a 

regularization parameter (C) of 10 and a kernel coefficient (gamma) of 'auto.' The model exhibited a commendable 

accuracy of approximately 63.2%, as determined through a 5-fold cross-validation approach. While this accuracy 

serves as a positive initial indicator of the model's potential, it also opens avenues for further enhancements. Continuous 

improvements, including more refined feature engineering and the exploration of alternative kernels or other advanced 

machine learning models, could further elevate the model's efficacy in accurately predicting tsunami events. 

3.5. RF Model Training 

The training of the RF model, aimed at leveraging its ensemble learning capabilities for tsunami prediction, was a 

critical aspect of this study. This section details the comprehensive approach adopted for the RF model training, 

including its conceptual framework, ensemble learning principles, decision tree construction, and hyperparameter 

optimization. 

The RF algorithm is a sophisticated ensemble learning method widely utilized in classification and regression tasks. It 

creates an array of decision trees during the training phase. It outputs the mode of the classes (for classification) or the 

mean prediction (for regression) derived from these individual trees. The RF model operates by constructing multiple 

decision trees, each developed from a bootstrap sample (a sample drawn with replacement) from the training set. These 

decision trees are then aggregated to produce a more accurate and stable prediction. 

Ensemble learning, the underlying principle of the RF algorithm, is a technique that employs multiple learning 

algorithms to achieve better predictive performance than what might be obtained independently from any single 

learning algorithm. In the context of the RF model, it amalgamates predictions from several decision trees to enhance 

accuracy over any individual model. This approach effectively reduces overfitting, a common pitfall in machine 

learning, by averaging the results. 

The construction of decision trees within the RF model incorporates an element of randomness, with each tree being 

built on a different subset of the data. This methodology introduces substantial diversity into the model, contributing 

to a more robust and accurate ensemble than a solitary decision tree. The RF model's decision trees are built on different 

samples and involve selecting the best split among a random subset of features at each node. This strategy further 

augments the model's robustness. 

Optimizing the performance of the RF model involved tuning key parameters, including the number of trees 

(n_estimators), maximum depth (max_depth), minimum samples required to split an internal node 

(min_samples_split), and minimum samples required at a leaf node (min_samples_leaf). The tuning process, akin to 

that used for the SVM model, involved a combination of grid search and cross-validation to identify the most effective 

set of parameters. 

The target variable for the model was 'tsunami,' with predictors including 'magnitude,' 'alert,' previous tsunami 

occurrence, 'depth,' and 'location/continent.' These features were carefully selected and prepared for the training 
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process. However, the training of the RF model encountered challenges due to its time-intensive nature, particularly 

given the extensive hyperparameter grid and the use of cross-validation. This highlighted one of the potential 

limitations of RFs: their computational intensity during hyperparameter tuning. 

A more streamlined approach was adopted for the RF model training. This involved simplifying the hyperparameter 

grid, reducing the cross-validation folds, and implementing incremental training. These modifications allowed for a 

more efficient training process while still capturing the essential characteristics of the model. The outcomes of this 

streamlined training indicated that the best-performing model configuration had no limit on tree depth, required a 

minimum of 2 samples at each leaf node, 5 samples to split an internal node, and consisted of 200 trees. The model 

achieved an accuracy of approximately 57.1% using 3-fold cross-validation. 

This initial performance provided insights into the RF model's capability to predict tsunamis. While the model showed 

promise, the accuracy indicated potential areas for improvement. Future enhancements include further hyperparameter 

tuning, advanced feature engineering, or exploring alternative modeling techniques. Notably, the balance between 

model complexity and its ability to generalize is critical in achieving optimal performance in ensemble methods like 

RF. 

3.6. Evaluation Metrics 

In evaluating the performance of machine learning models, particularly for classification tasks like tsunami prediction, 

various evaluation metrics are employed, each offering unique insights into the model's performance. These metrics 

are crucial in understanding how effectively a model can predict and classify data, and they play a pivotal role in 

guiding the model selection process. 

Accuracy is the most straightforward and intuitive metric, representing the proportion of correct predictions made by 

the model out of the total number of predictions. While it provides a general overview of the model's overall 

effectiveness, accuracy may only sometimes be the most reliable metric, especially in cases where the classes in the 

dataset are imbalanced. 

Precision, another key metric, measures the model's accuracy in predicting positive observations. It is calculated as the 

ratio of true positives (correctly predicted positive observations) to the sum of true positives and false positives 

(incorrectly predicted positive observations). Precision is essential in scenarios where avoiding false positives is more 

critical than detecting all positive instances. 

Recall, also known as sensitivity or the true positive rate, quantifies the model's ability to correctly identify actual 

positives. It is calculated as the ratio of true positives to the sum of true positives and false negatives (missed positive 

observations). Recall becomes a critical metric in situations where the cost of missing a true positive is significant. 

The F1-Score, which is the harmonic mean of precision and recall, serves as a more balanced metric, especially useful 

in datasets with uneven class distributions. It effectively combines the aspects of both precision and recall into a single 

measure, providing a more comprehensive view of the model's performance. 

The Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) are used to assess a model's 

ability to discriminate between classes. The ROC curve plots the true positive rate against the false positive rate at 

various threshold settings, and the AUC provides an aggregate measure of the model's performance across all possible 

classification thresholds. This metric is particularly valuable for evaluating models in scenarios with imbalanced class 

distributions. 

This study evaluated both the SVM and RF models using these metrics. The SVM model exhibited higher accuracy 

(65.61%) and precision (70.59%), suggesting its overall effectiveness and reliability in predicting tsunamis. However, 

its relatively low recall (19.67%) indicated a potential limitation in identifying many actual tsunami events. In contrast, 

the RF model demonstrated slightly lower accuracy (61.15%) and precision (50.00%) but achieved a higher recall 

(36.07%) and F1 score (41.90%). This suggested the RF model's enhanced ability to identify actual tsunamis, albeit at 

the expense of a higher rate of false positives. The ROC AUC scores for both models were relatively close, with the 

RF model slightly outperforming the SVM, indicating its marginally better capability in distinguishing between 

tsunami and non-tsunami events. 
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These evaluation metrics collectively provided a nuanced understanding of the strengths and weaknesses of each model. 

While the SVM model was more precise in its predictions, the RF model's higher recall and F1 score suggested its 

potential suitability for situations where the cost of missing an actual tsunami is more critical than generating false 

alarms. The comparative analysis of these metrics was instrumental in assessing the models' capabilities and guiding 

the selection process based on the specific requirements of tsunami prediction. 

3.7. Tsunami Classification and Prediction Process 

The tsunami classification and prediction process using machine learning models encompasses several critical stages, 

from data preparation to practical decision-making. This section outlines the systematic approach adopted for tsunami 

prediction using the SVM and RF models. 

1) Data Preparation 

The initial step in the prediction process involved carefully selecting relevant features that significantly influence 

tsunami prediction. This study identified crucial features such as 'magnitude,' 'depth,' and 'alert.' Additionally, data 

encoding was performed, particularly for categorical variables like 'alert,' converting them into a numerical format 

compatible with the machine learning models. Furthermore, scaling and normalization were applied, especially for 

the SVM model, to adjust the features to a uniform scale, as this model is sensitive to the scale of the data. 

2) Model Prediction 

The prepared input data was then formatted appropriately, typically structured into a format such as a pandas 

DataFrame or a NumPy array, to align with the requirements of the models. The prediction phase involved the 

application of the prediction function of the trained models. For the SVM model, this was executed through 

svm_model.predict(X), and for the RF model, through rf_model.predict(X). 

3) Interpretation of Outputs 

The interpretation of the models' outputs is crucial for understanding their predictions. Both models produce binary 

outputs (0s and 1s), with '1' indicating a tsunami prediction and '0' indicating no tsunami. The SVM model, known 

for its higher precision, is more likely to predict tsunamis accurately, but it may miss several actual events due to 

its lower recall. In contrast, with its higher recall, the RF model is better at identifying actual tsunamis, though it 

may result in more false positives. 

4) Post-Processing and Additional Analyses 

Post-processing involves evaluating the confidence measures provided by the RF model, which offers probabilities 

of each class, which is essential in high-stakes decision-making. Error analysis was also conducted to identify and 

understand the models' errors, such as false positives and false negatives, providing insights for future 

improvements. Additionally, combining outputs from both models could enhance the reliability of the predictions, 

especially when both models concur. 

5) Practical Decision-Making 

The final stage involved integrating the models' predictions into practical decision-making processes. This included 

using the predictions in conjunction with historical data, geographical information, and seismic activity patterns 

for comprehensive risk assessment. Balancing the metrics of precision and recall was crucial, especially in 

scenarios where the implications of false positives and negatives vary significantly. Moreover, integrating model 

outputs into broader tsunami alert systems involving advanced GIS mapping, public warning systems, and 

coordination with emergency response teams was considered. Responsive action plans were developed based on 

the level of risk indicated by the models, ensuring preparedness and prompt response in the event of a tsunami.  

4. Result and Discussion 

4.1. Analysis of SVM Model Results 

In the evaluation of the SVM model for tsunami prediction, several vital metrics were employed to assess its 

performance. The model demonstrated an accuracy of 65.61%, precision of 70.59%, recall of 19.67%, F1-score of 

30.77%, and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) of 62.15%. These results 

illuminated the SVM model's strengths and limitations in its application to tsunami prediction. 
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The model's relatively high precision indicated its effectiveness in correctly identifying tsunami events when it 

predicted them, which is crucial in scenarios where the goal is to minimize false alarms. Additionally, SVM's known 

proficiency in handling high-dimensional datasets was evident, showcasing its adaptability and strength in managing 

complex classification tasks. 

However, the model exhibited a low recall rate, a significant shortcoming, as it needed to identify many actual tsunami 

events. This limitation is particularly critical in real-world tsunami prediction scenarios, where missing an event could 

lead to catastrophic consequences. The ROC AUC score, while moderate, suggested potential room for improvement 

in the model's discriminatory power between tsunami and non-tsunami events. 

A visualization approach was undertaken to understand the SVM model's performance better. The initial attempt to 

visualize the model's decision boundaries faced challenges due to discrepancies in the number of features used in 

training versus those represented in the visualizations. Addressing this, the SVM model was retrained using only 

'magnitude' and 'depth', facilitating a more accurate visual representation of the model's decision boundaries and 

predictions.  

 
Figure 1. Comparison of the actual tsunami events and the model's predictions 

The visualizations comprised a side-by-side comparison of the actual tsunami events and the model's predictions, 

focusing on magnitude and depth. These visualizations were crucial in assessing the alignment of the model's 

predictions with actual events. 

 
Figure 2. The decision boundary plots 

The decision boundary plots further revealed the intricacies of the classification task, showing how the SVM model 

distinguished between tsunami and non-tsunami events based on these critical features. The predictive visualization 

highlighted the model's conservative nature in forecasting tsunamis, evidenced by its higher precision but lower recall. 

The decision boundary complexity depicted in the visualization underscored the model's capability to differentiate 

between the classes, albeit with limitations. Moreover, the visualizations emphasized the significant role of magnitude 

and depth as determinants in tsunami prediction, underscoring the model's reliance on these features. 

In conclusion, the analysis and visualization of the SVM model provided a comprehensive view of its capabilities and 

limitations in tsunami prediction. While the model showed a degree of accuracy, the insights from the visualizations 
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pointed to the need for further enhancement, particularly in improving its recall rate and ability to differentiate between 

tsunami and non-tsunami events more effectively. This highlights an area for future research and development to bolster 

the model's performance in accurately predicting tsunami occurrences. 

4.2. Analysis of RF Model Results 

The performance of the RF model in tsunami prediction was rigorously evaluated through a comprehensive set of 

metrics. The model demonstrated an accuracy of 61.15%, precision of 50.00%, recall of 36.07%, F1-score of 41.90%, 

and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) of 63.84%. These metrics provide a 

detailed assessment of the model's capabilities in accurately predicting tsunami events. 

In assessing the RF model's predictive accuracy and reliability, it was observed that the model correctly predicts 

tsunamis approximately 61% of the time, indicating a moderate level of accuracy. The ROC AUC score, reflecting the 

model's ability to differentiate between tsunami and non-tsunami events, also suggested moderate discrimination. The 

RF model's balance between precision and recall indicates a cautious approach in prediction, not significantly biased 

toward avoiding false positives or capturing all positive tsunami cases. 

The model's strengths in tsunami prediction were highlighted by its comparatively higher recall than the SVM model, 

indicating an enhanced capability in identifying actual tsunami events. This is a critical feature in tsunami prediction, 

where missing a real event can have dire consequences. Additionally, the RF model exhibited an effective handling of 

non-linear relationships between features, a significant advantage in dealing with complex patterns inherent in natural 

disaster data. However, the model encountered challenges, including a lower precision, which implied a higher 

incidence of false positives. There was also an indication that the model might struggle to interpret complex underlying 

patterns specific to tsunami occurrences, a potential limitation in its predictive power. 

A series of visualizations were created to gain a deeper understanding of the RF model's performance. These 

visualizations aimed to compare the actual tsunami events with the model's predictions, provide insight into the 

diversity of decision-making processes within the RF ensemble, and illustrate the importance of various features in the 

model's predictions. The visualization process, however, faced challenges similar to those encountered with the SVM 

model due to the initial training of the RF model on a different set of features than those represented in the 

visualizations. To address this, the model was retrained using only 'magnitude' and 'depth', enabling more accurate 

visual representations of its performance. 

 
Figure 3. The comparative plots of actual tsunami events and the RF model's predictions 

The resulting visualizations offered valuable insights into the model's performance. The comparative plots of actual 

tsunami events and the RF model's predictions highlighted how closely the model's predictions aligned with actual 

events, particularly in magnitude and depth. 
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Figure 4. Individual Decision Tree 

Visualizing individual decision trees within the RF ensemble provided a window into the diverse decision-making 

processes within the model, with each tree contributing uniquely to the final prediction. This diversity in approach 

underscored the model's robustness and adaptability in predicting tsunamis. 

 
Figure 5. Feature Importance Chart 

Additionally, the feature importance chart elucidated the relative significance of 'magnitude' and 'depth' in the model's 

predictions, offering clarity on the critical drivers of tsunami prediction within the model. In conclusion, the 

visualizations provided a comprehensive understanding of the RF model's strengths and limitations in predicting 

tsunamis. The model demonstrated a reasonable ability to discern between tsunami and non-tsunami events, with noted 

areas for improvement in accuracy. The insights gained from the visualizations, particularly regarding feature 

importance and the diversity of decision trees within the RF ensemble, are invaluable for refining the model. These 

insights will guide future enhancements, aiming to bolster the model's predictive accuracy and reliability in the critical 

context of tsunami prediction. 

4.3. Performance Comparison Between SVM and RF 

This study conducted a detailed comparative analysis between the SVM and RF models, focusing on their application 

in tsunami prediction. This comparison was rooted in evaluating various key performance metrics, providing insights 

into each model's strengths and weaknesses and their practical implications. 

The accuracy of the SVM model stood at 65.61%, surpassing the RF model, which recorded an accuracy of 61.15%. 

This higher accuracy of the SVM model indicates its superior capability in correctly identifying both tsunami and non-

tsunami events. Regarding precision and recall, the SVM model exhibited a precision of 70.59% and a recall of 19.67%, 

reflecting its higher propensity to avoid false positives but at the expense of missing a significant number of actual 
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tsunamis. Conversely, the RF model demonstrated a lower precision of 50.00% but a notably higher recall of 36.07%, 

suggesting its enhanced ability to identify actual tsunamis, albeit with an increased likelihood of false positives. 

The F1-Score, which balances precision and recall, was higher in the RF model at 41.90%, compared to 30.77% in the 

SVM model. This suggests that the RF model achieves a better equilibrium between precision and recall, a crucial 

factor in scenarios with imbalanced classes. Additionally, the RF model slightly outperformed the SVM in the ROC 

AUC metric, with scores of 63.84% and 62.15%, respectively. This marginal superiority indicates the RF model's better 

ability to distinguish between tsunami and non-tsunami classes. 

The efficiency and scalability of the two models also presented a contrast. The SVM model tends to be more 

computationally demanding, particularly with larger datasets and requires meticulous hyperparameter tuning. This 

characteristic may limit its scalability in handling huge datasets. In contrast, the RF model demonstrates robustness 

against overfitting and efficiently manages larger feature sets, making it more scalable and suitable for increasing data 

sizes and complex feature spaces. 

The selection between the SVM and RF models for tsunami prediction is contingent on the specific requirements of 

the task. The SVM model, with its higher precision and overall accuracy, is preferable in situations where the primary 

concern is to minimize false positives, and the dataset is manageable. In contrast, the RF model, characterized by its 

higher recall and F1-Score, is more suitable for scenarios where failing to detect an actual tsunami is more critical than 

avoiding false alarms. This model is also favorable for large datasets or those involving numerous features, particularly 

when handling non-linear relationships is vital. 

In conclusion, the choice of the SVM or RF model in tsunami prediction should be informed by carefully considering 

factors such as dataset size, feature complexity, and computational resources. This decision is crucial in determining 

the effectiveness and reliability of the tsunami prediction task, with each model offering distinct advantages that must 

be weighed against the specific needs and constraints of the scenario. 

4.4. Discussion of Findings and Their Implications 

The comparative analysis conducted between the SVM and RF models in the context of tsunami prediction offers 

insightful revelations, each with significant implications for the application of machine learning in disaster management 

and preparedness. 

The analysis highlights a crucial trade-off between precision and recall, with the SVM model demonstrating higher 

precision, thereby making it more suited for scenarios where reducing false positives is a priority. In contrast, with its 

higher recall, the RF model proves more effective in correctly identifying actual tsunami events. This attribute is 

particularly critical in disaster scenarios, where the consequences of missing an event can be severe. Despite the SVM's 

superior accuracy, indicating its effectiveness in general classification tasks within tsunami prediction, the often higher 

cost of false negatives in disaster management could necessitate a preference for the RF model. 

The practical implications of this comparative analysis are profound, particularly concerning disaster response and alert 

systems. The selection of either model significantly impacts the strategy for disaster response. For instance, while an 

RF model may trigger more alerts, potentially including false alarms, it offers a greater assurance of capturing actual 

tsunami events. On the other hand, due to its high precision, the SVM model might reduce public panic caused by false 

alarms but at the risk of overlooking critical events. This consideration is pivotal in enhancing public safety, as models 

like the RF could provide more reliable alerts for potential tsunamis with their comprehensive coverage potential. 

In the realm of decision-making for disaster management and preparedness, both models can be integrated into broader 

risk assessment frameworks. This integration provides valuable insights for decision-makers, assisting in informed 

policy formulation and emergency planning. It ensures that resources are allocated effectively and that response 

mechanisms are robust and well-prepared. 

Future research and improvement in this area could focus on several key aspects. Advancements in feature engineering 

and selection, particularly incorporating temporal and geographical data, could enhance the models' predictive 

performance. Exploring ensemble techniques that combine the strengths of various models might offer a more nuanced 

approach to tsunami prediction. Integrating real-time seismic and oceanographic data can lead to more dynamic and 
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responsive prediction models. Furthermore, aligning these models with the needs and expectations of end-users, 

including emergency responders and the public, is essential. This alignment involves ensuring the interpretability and 

actionability of model outputs, which is crucial in human-centered design. 

In conclusion, the findings from this comparative analysis emphasize the complexities and considerations involved in 

employing machine learning for tsunami prediction. The selection between the SVM and RF models is influenced by 

specific demands and constraints inherent in disaster management scenarios. Continuous refinement and adaptation of 

these models, guided by ongoing research and feedback from real-world applications, are essential for enhancing 

disaster preparedness and strengthening response efforts. This ongoing development is critical in ensuring these 

technological advancements effectively contribute to public safety and disaster management initiatives. 

5. Conclusion 

The analysis conducted on the SVM and RF models for tsunami prediction has elucidated their respective performances 

and characteristics. The SVM model exhibited a notable strength in precision, effectively minimizing false positives, 

a crucial aspect in situations where prediction accuracy is paramount. Conversely, the RF model demonstrated a 

superior recall ability, indicating its effectiveness in identifying actual tsunami events. This characteristic is precious 

in disaster scenarios where the failure to detect an event can have grave consequences. The evaluation of both models 

encompassed a range of metrics, including accuracy, precision, recall, F1-score, and ROC AUC. The SVM model 

excelled in accuracy and precision, suggesting its effectiveness in classifying tsunami and non-tsunami events. On the 

other hand, the RF model achieved a more balanced performance between precision and recall and marginally 

outperformed the SVM in ROC AUC. Additionally, the visualizations created for both models provided more profound 

insights into their classification behaviors and highlighted the importance of critical features in tsunami prediction. 

The decision to select between the SVM and RF models for tsunami prediction should be carefully considered, 

considering the task's specific requirements. The trade-offs between the potential consequences of false negatives and 

false positives are pivotal in this decision-making process. In disaster management, where the costs associated with 

missed tsunamis (false negatives) are often significantly high, models with higher recall, such as RF, may be more 

appropriate. 

The SVM model is characterized by its high precision and effectiveness in high-dimensional spaces, making it a 

suitable choice for certain classification tasks. However, it is limited by a lower recall and potential computational 

challenges when handling large datasets. The RF model, in contrast, is proficient in managing non-linear data, shows 

robustness against overfitting, and offers scalability for large datasets. Its primary limitations include a tendency to 

produce more false positives and potential difficulties in interpretability due to its ensemble nature. 

Future research in this area could explore developing hybrid or ensemble models that leverage the strengths of both 

SVM and RF to enhance tsunami prediction capabilities. Future feature engineering advancements, incorporating data 

such as real-time seismic information, geographical factors, and historical records, could improve predictive accuracy. 

Developing real-time prediction systems that integrate current data for dynamic and responsive tsunami prediction is 

another promising area of research. Additionally, focusing on user-centric design to ensure prediction systems are 

accessible and actionable for disaster management authorities and the public is crucial. Enhancing the interpretability 

of these models is also essential for fostering trust and reliability among users. 

This study underscores the potential and inherent challenges of using machine learning models like SVM and RF in 

the context of tsunami prediction. The effectiveness of these models in real-world scenarios hinges on various factors, 

including the nature of the data, the specific requirements of the prediction task, and the overall disaster management 

framework. Continued research and development, particularly in integrating these models into comprehensive disaster 

response systems, are essential for maximizing their practical utility. The ongoing advancement in this field is crucial 

for harnessing technological innovations to improve disaster preparedness and response efforts.  
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