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Abstract 

Accurate energy projections and optimal utilization of resources require the consideration of real-time variations in demand-side response 
components. Innovative ultra-short-term power load forecasting approaches such as CNN-BiLSTM-Attention, CNN-LSTM, and GRU models 
are used to assess the load level and predict daily raw load curve. The study shows that by incorporating predicted raw loads and two types of 
customer reactions influenced by average reduction rate under different energy efficient classes, wholesale market price fluctuations can be 
minimized through retail-to-wholesale market connection using demand-side responses. This helps diminish both frequency and amplitude of 
sudden changes in prices for wholesalers while taking into account an average overall usage pattern based on user class resource consumption 
rates.    

Keywords: Load Forecasting; Attention Mechanisms; Maximum Efficiency; Demand-Side Response; Bidirectional Long-Short Memory Networks; 
Convolutional Neural Networks   

1. Introduction  

The advancement of the electrical sector is unavoidable due to new demands arising from both our country's progress 

and the requirements imposed by modern living. Meeting global goals for energy conservation management and 

reducing emissions necessitates immediate action, including balancing electricity supply and demand via real-time 

transactions. Power dispatch management organizations can enhance their operations with short-term load forecasts, 

allowing them to improve power generation planning and unit scheduling in addition to ensuring grid resilience while 

decreasing expenses [1][2]. By embracing technological innovations such as electric vehicles, pumped-storage 

facilities, or integrating storage systems into the grid network like energy storage units - more considerable integration 

facilitating enhanced responses on-demand-side has led many industrial sectors becoming prospective clients [3][4]. 

The integration of demand-side management plays a critical role in power market planning. According to Adenso et 

al.'s a comprehensive analysis, two fundamental aspects are necessary for addressing the challenges encountered by 

OECD nations in executing demand-side response programs. Through an evaluation of consumer usage patterns and 

analyzing the characteristics of demand-side behavior, electric energy supply can be seamlessly integrated into the 

system while refining pricing mechanisms. Hopper et al. [5] study revealed that effective implementation of such 

strategies is contingent upon ease-of-use, fairness and equal access to information as crucial elements. Revised text: 

In the field of demand-side response projects, several models have been developed to consider various factors that 

affect energy consumption and improve market efficiency. Fell et al. [6] proposed an income-expense model, which 

takes into account time-of-use electricity prices, subsidy policies, as well as technologies like energy storage and 

distributed power generation in the smart grid environment. Qadrdan et al. [7] on the other hand, focused on dealing 

with wind output unpredictability through a two-tier planning model coupled with hourly energy price optimization 

one day before and an incentive-based demand-side response mechanism for dispatching wind power systems 

 
*Corresponding author: Shereen Sadeq Jumaa (shireen.s.jumaa@uotechnology.edu.iq)   

DOI: https://doi.org/10.47738/jads.v4i4.147 

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/). 

© Authors retain all copyrights 

 

https://creativecommons.org/licenses/by/4.0/


Journal of Applied Data Sciences 

Vol. 4, No. 4, December 2023, pp. 490-503 

ISSN 2723-6471 

491 

 

 

 

 

effectively. This approach optimizes cost-efficient thermal power generation by utilizing peaked-out peak smoothing  

along with deep trough filling methods for greater outcomes overall while reducing better-managing the and better 

managing adoption of sustained pollutions like wind-power  efficiently under this framework leading towards more 

positive outcomes benefiting both producers and consumers alike. 

Most historical estimates of short-term load were deterministic and can be further categorized into statistical forecasting 

techniques or intelligent forecasting techniques based on machine learning, depending on the underlying methodology 

employed. The models widely used in statistical forecasts include Linear Regression, Recurrent Neural Networks 

which are a variant of RNNs, and Support Vector Regression. However, these traditional models were not equipped to 

handle non-linear correlations such as those influenced by climate change and date type; thus their ability to predict 

accurately was limited. In recent times with the advent of AI technologies, machine learning algorithms have been 

significantly utilized for accurate predictions using deep-learning approaches. Wu et al. [8] study showed that support 

vector machines' prediction precision is close to perfect when dealing with small samples but loses effectiveness as 

data volume increases—hence making neural network models a better alternative for large data sets. 

 Su et al. [9] opted for the error-based back-propagation model as it is extensively used in short-term load forecasting, 

is easy to grasp and is applicable in numerous contexts. However, this method's tendency to settle on a local minimum 

instead of achieving optimal global solutions presented an issue. Zou et al. [10] tackled gradient disappearance when 

processing massive time series data through their proposed hybrid ant colony optimization algorithm fused with 

recurrent neural networks. Conversely, Peng et al. [11] employed a long-term and short-term memory-based network 

model that could consider temporal dynamics along with nonlinear relationships between variables- a feat that allows 

for accurate predictions though discovering deep associations from feature-dense data appears arduous utilizing this 

framework. 

According to Lin et al. [12] the SVR approach exhibits limited efficacy, leading to binary forecast output, high errors 

of prediction and delayed effects in data with excessive spurious interference. In contemporary studies on speech 

recognition, image recognition, machine translation etc., scholars have shown rising interest in attention mechanisms 

due to their resource allocation efficiency. To enhance the accuracy of electric load forecasting, some researchers have 

also investigated incorporating an attention mechanism. Long Short-Term Memory Networks are frequently utilized 

in power load forecasting due to their distinctive memory features and gate designs, enabling them to take into account 

both the temporal and nonlinear nature of load data simultaneously. The research implemented LSTM neural networks 

for electrical demand prediction and experimentally demonstrated that compared with feedforward neural networks, 

the LSTM model performed better in terms of both practicality and predictive ability [13]. Sima Siami-Namini's 

investigation on time series analysis and power load forecast indicated that Bi-directional LSTMs outperformed uni-

directional LSTMs models [14].  

The conventional unidirectional long and short-term memory network was improved to a bi-directional LSTM 

structure, the BiLSTM. This method learns data from both directions of a time series, increasing the predictive power 

of models with higher accuracy which can be employed in electric demand prediction. In 2020, Wang suggested 

applying CNN and BiLSTM techniques together into one hybrid model named CNN-BiLSTM creating an 

improvement over a single structured LSTM model or combined CNN-LSTMs' performance [14].  

This research initiates a distinctive approach using the AC-BiLSTM tech for ultra-short-term electricity load 

forecasting by augmenting on advantages from Attention Mechanisms inscribed within specific features of non-

linear/time-series nature characterized as electrical load data while making use of vivid characteristics embedded only 

in convoluted neural networks; hence upgrading this technology than previous generations [15]. 

This research delves into the subject of demand-side response by focusing on power load forecasting and maximizing 

total benefits for power customers. The integration of active distribution systems and customer-generated demand 

responses can lead to a substantial enhancement in the overall efficiency of the power system [16]. Furthermore, this 

innovation creates opportunities for dynamic real-time rates along with cost-cutting measures in energy markets. The 

study uses an advanced forecasting model named CNN-BiLSTM-Attention, where convolutional neural network, 
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bidirectional long- and short-term memory network coupled with attention mechanism generate high prediction 

accuracy via cognitive processing through CNN layering approach. This new AC-BILSTM serves as an effective tool 

to predict variations in system loads accurately over time. To achieve an accurate load projection, a thorough analysis 

of the demand-side response potential in the region must be conducted. This will entail superimposing the initial load 

with demand-side resources that factor in responsive loads. A model for demand-side responsiveness is then established 

to optimize benefits resulting from these policies and investigate how tariffs influence electricity consumption using a 

specific case study. During periods of high energy consumption, clients can adopt various measures such as pricing 

signals which prompt them to reduce their usage or shift their power hours consequently addressing peak demands 

while contributing towards promoting market stability through curbed power consumption during peak times.  

2. Methodology 

This article presents a novel approach to predict extremely short-term power load utilizing AC-BiLSTM, CNN-LSTM, 

and GRU. The methodology incorporates the nonlinear and time-series characteristics of power load data. To 

effectively capture the sequence data's temporal properties in both directions, Bidirectional Long Short-Term Memory 

layer is utilized in which its hidden output features are fed into an Attention mechanism. This enables us to reduce 

undesired variables' impact through applying weights on the recovered temporal information from BiLSTM layer. 

2.1. Convolutional Neural Network CNN  

The majority of layers in a CNN consist of the input layer, convolutional layer, ReLU layer, pooling layer and fully 

connected layers which are similar to those utilized in a standard neural network. The key components of a CNN 

include the convolutional and pooling layers [17]. CNNs adopt convolution kernels to extract nonlinear localized 

features from energy consumption data efficiently which has proven beneficial for studying power systems. By 

arranging these stacked layers appropriately within the network architecture generates an effective functioning CNNS 

capable for load forecasting purposes. 

2.2. LSTM Neural Network  

Conventional neural networks pay little mind to the data that will be available from one processing instant to the next, 

focusing instead simply on the data that is available at the moment. The LSTM neural network is a viable option for 

fixing this issue [18]. The LSTM neural network, developed by Hochreiter et al., was a novel recurrent network design. 

By incorporating forgetting gates, input gates, and output gates into logical control units, LSTM is able to increase the 

storage capacity of long-term memories. These gates are responsible for keeping the cell in a constant state of change. 

 
Figure 1. Structure of LSTM 

In order to decide which parts of the cell state C(t-1) from the previous time step should be ignored, the equation used 

by the forgetting gate employs information about both current input x(t) and hidden state h(t-1). The output produced 

by this gate is a value between 0 and 1 that determines whether certain bits in C(t-1) are kept (if closer to 1), or discarded 

(if closer to 0). 
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In order to compute the forgetting gate state f(t) at a specific moment t, one can utilize the weights and biases (bf) of 

said state along with the bipolar sigmoid activation function, σ. By processing input x(t), the input gate is capable of 

determining relevant stored information within a neuron. Subsequently, utilizing equation, an updated input gate is 

generated which results in obtaining temporal memory cell state C(t). The newly acquired cell-state C(t) may be 

obtained by further implementing equations 3 to 4. 
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In the context of recurrent neural networks, a key component is the input gate state at each time step. The amount of 

information transferred from control x(t) to C(t) is determined by variables such as weight matrix Wi and bias vector 

bi associated with the input gate. In addition, Wc represents the weight matrix responsible for regulating cell states 

while bc denotes its respective bias term. The activation function of the hyperbolic tangent, denoted by tanh, is the 

Hadamard product. 

The most important data from the present state is picked by the output gate. To calculate the output value h(t), the tanh 

layer multiplies the neuron state by the sigmoid layer's output, which is then used as input to the next hidden layer. The 

output gate can be found by solving for x in both Eq. (5) and Eq. (6). 
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where: O(t) is the state of the output gate at time t, Wo is the output gate's weight matrix, and bo is its bias term. 

2.3. BiLSTM Neural Network 

The model only takes into account top-down data because LSTM is a unidirectional recurrent neural network.  Since 

the final output may depend on a long series of inputs in a practical application, it is important to record all of those 

inputs. The use of BiLSTM neural networks, which incorporate forward and backward LSTM layers for prediction, 

have been found to perform better than traditional unidirectional LSTMs due to their ability to utilize both past and 

future information. However, it is important to note that the unidirectional LSTM model may be advantageous as it 

relies less on external factors and places more emphasis on the internal history of load data in generating predictions. 

 
Figure 2. Bilateral long short-term memory network architecture 

2.4. Gated Recurrent Unit (GRU) 

Recurrent neural networks (RNNs) include GRU networks because their inter-neuron connection topology includes at 

least one cycle8. Since their introduction in 1997, they have undergone further refinement. When trying to train long-

term dependencies with conventional RNNs, difficulties with vanishing and ballooning gradients are typical. The GRU 
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is a type of gated RNN that can handle such issues. The model seen in Figure 3 is made up of a number of neurons. 

Third, the ideal number of neurons is established by the size of the feature space. The output space is proportional to 

the number of neurons in the output layer. 

The GRU networks' core functionality is represented by a hidden layer(s) made up of memory cells. The cell requires 

two gates, the reset gate (t r) and the update gate (u p), to facilitate status updates and maintenance (t u). The circuit 

diagram of a memory cell is shown in Figure 4. 

 
Figure 3. Structure of GRU-based model. 

 
Figure 4. Structure of GRU memory cell 

2.5. Attention mechanism 

Initially, attention was implemented in image processing to explore how machines could imitate the selective focus of 

human brain. With regards to deep learning, it is assumed that the relative significance of various factors alters at 

discrete levels within the network and through this mechanism, higher-level detectors can emphasize pertinent 

information while disregarding less crucial aspects. A visual representation of Attention unit's architecture has been 

depicted in Figure 5. 

 
Figure 5. Attentional Organization 
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In this equation, "au" represents the weight assigned to the BiLSTM attention layer output for a given input. The inputs 

are represented by y1,y2,y3,...,yt and their corresponding hidden layer states are h1,h2,h3,... ,ht where ht corresponds 

to input yt. Ultimately, we obtain the final feature vector denoted as F. The neural network model's real-time training 

involves evolving parameters V,W,U, and B in response to improvements made during refinement of the model. 

2.6. AC-BiLSTM Model Architecture for Prediction 

This study suggests three approaches. One strategy for predicting future power consumption is an AC-BiLSTM-based 

method (shown in Figure 6). The first step is to create a training set and a test set from the processed load data. After 

that, we create the AC-BiLSTM model. To algorithmically identify the innate characteristics of load data, our research 

implements a CNN system that comprises only one convolutional layer and pooling layer. By exploring the intrinsic 

dynamics of local features obtained through CNN, complex global features can be decrypted using BiLSTM hidden 

layer modeling. The attention mechanism leverages BiLSTM-generated attributes as input to discern time-based 

information's importance recovered by said model with little human intervention. This allows for a more efficient 

means of probing the robust temporal association by utilizing the load data's inherent time series features. The attention 

mechanism aids in mitigating the consequences of load forecasting outcomes by preventing unnecessary data loss and 

drawing attention to pivotal moments in the past. To mitigate the impact of superfluous data on load prediction 

outcomes, attention mechanism effectively reduces the loss of past information while highlighting significant historical 

events. By using this approach, the Attention layer generates an output that is later directed to a fully connected layer; 

subsequently providing precise energy demand forecasts with better accuracy. Overfitting can be avoided in a BiLSTM 

network by inserting dropout layers after each hidden layer. The model's training duration can be shortened and its 

generalizability improved without resorting to overfitting with this approach. In this research, we optimize the network 

parameters at each layer using the Adam (Adaptive Moment Estimation) algorithm, with mean squared error (MSE) as 

the loss function. After completing the training of the AC-BiLSTM model, it is saved and then evaluated against a test 

set. The prediction results are thoroughly analyzed to pinpoint where enhancements can be made. Three techniques 

were used in this study: one utilizing BI-LSTM, another with LSTM, and the third implementing GRU. All three 

approaches tackled similar scenarios but varied slightly in their modifications. 

 

Figure 6. Structure of Attention Incorporating demand-side response resources into load forecasting 

As active power distribution systems and user-side demand response evolve, new power grid companies along with a 

diverse set of resources for response are emerging. Consumers with differing patterns of energy consumption 

demonstrate various responses during the operation of an active distribution network. To prevent unnecessary expenses 

on expansion projects, more accurate load forecasting is required. This requires consideration of both the capacity and 
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effect of demand-side resources on loads. To achieve this goal, the process follows three stages: load forecasting that 

includes assessing the capability to respond and determining impact from demand side resources. 

Load management is crucial for anticipating the impact of energy-efficient resources on power consumers and avoiding 

excessive strain on power usage. To achieve this, it is essential to quantify  the potential reduction in electricity 

consumption by end-users resulting from energy-saving measures during a specific period. Symbolically, we represent 

the initial amount of energy used by consumers before implementing any measure as Qit . In addition, ih   and ,er i  are 

representing the total rate of load reduction after deploying an efficient resource through its penetration level and 

technology adoption rate coefficient respectively. This helps describe whether such a resource exists or not; having an 

indicator value of either 0 or 1 accordingly. Therefore, integration advances in efficiency can effectively reduce overall 

user demand at periods when supply falls short due to external factors like unexpected natural calamities interfering 

with normal operations within power grids thereby maintaining electric continuity while enhancing economies towards 

sustainability initiatives. 

,0 , =it it i er iQ Q h
       (11) 

Hence, it can be inferred that the total electricity conserved by consumers through the combined utilization of distinct 

energy-saving resources is calculated at a specific time I to be: 

1 2 ... =  + + +t t t mtQ Q Q Q
      (12) 

A common oversight is to underestimate the multitude of unique energy-saving technologies available today. As a 

result, determining power consumption at time t after implementing energy efficiency measures requires factoring in 

both the initial electricity usage and subsequent changes in consumption that occur due to these resources being utilized 

by the user. 

, ,0= −er t t tQ Q Q
       (13) 

2.7. The Influence of Load Resources on User Load 

Load resources can be classified into administrative and economic measures. Demand response users often rely on 

modifying their electricity usage voluntarily by either shifting consumption time or reducing energy use in order to 

achieve the goal of load shifting. Direct load control and systematic power management are two types of administrative 

actions, while an example of an economic measure is electricity price plans that involve changing rates from peak to 

valley or from season to season. The effect of implementing administrative initiatives typically results in a decreased 

trend in the load curve with the corresponding model for load reduction being: 

, , ,0 ,

,

1
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 = −i t t er er t i
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P P Q
t

      (14) 

The formula involves the load reduction impacted by the availability of the load resource at a particular time, denoted 

as ,i tP . The resulting load after implementing energy efficiency measures is represented as ,er tQ . A state coefficient  

describes whether or not the specific load resource exists; its value of 1 indicates existence while that of zero implies 

it does not exist. Furthermore,  ,lo i  stands for electric power user's rate under influence from said resources at time . 

Finally, multiplying both average and penetration rates gives us the overall lightening capability achievable when 

multiple loads combine their efforts in conjunction with established procedures. 

,1 ,2 ,( ... ) =  +  + + t t t t n tP P P P
     (15) 

The given expression pertains to the summation of total load resources utilized concurrently, presented as tP   in the 

formula. The number of available load resources for consumers is represented by 'n.' By combining both energy-

efficient and load resources, it creates a resultant load during time t. 
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,0= −t t tP P P
        (16) 

One of the concepts relevant to this discussion is the original power load of a user, which does not take into account 

any demand-side response resources.  

load stacking: To obtain an accurate load forecast and estimate the forecasting error, it is necessary to measure and 

calculate how much impact was made by any demand-side response resources on the user's overall load during a given 

period. These values are then added onto the original power load in order to create a more complete picture of energy 

usage. 

2.8. Demand-side response load model 

Time-of-use pricing and emergency demand response, two of the most common types of demand-side response, are 

now part of the energy infrastructure in the Baghdad area. In order to smooth out the load curve and prevent spikes and 

troughs, utilities often use time-of-use energy pricing policies that encourage consumers to reduce power use during 

peak hours and shift to lower-demand times. When implementing emergency demand response, however, the incentive 

payment price is set in advance by the power system operator. Power users may reduce their load requirements during 

emergencies if the stability and reliability of the power grid are threatened. A response model is being created and 

tested to examine load shifting by electricity consumers and the effect of fluctuating energy costs and incentive 

payments on demand. 

2.9. Avoidable load model 

The avoidable load model, which argues that consumers can reduce their power use by stressing moderation or better 

management, is related to the self-elasticity coefficient of the price elasticity of demand. Consumers haven't paid much 

attention to this form of electricity consumption because it's often fairly tiny. Once the policy's incentive is strong 

enough, however, customers will take steps to reduce their excessive electricity consumption. As a result, researchers 

and policymakers have been paying special attention to issues like electricity price grading and incentive systems, as 

well as the connection between basic user wants and overall demand. This is how a model is constructed. 

The remuneration for motivation is denoted as I(t), wherein t denotes the specific time of the day and D(t) indicates the 

magnitude of power consumption by users. Additionally, P(t) characterizes the expense corresponding to a single unit 

of electricity. In instances where consumers enroll for urgent demand scheme, their electrical energy utilization will 

exhibit akin traits: 

0( ) ( ) ( ) = −D t D t D t
       (17) 

The power requirement that is independent of the demand-side response is referred to as the D(t) initial energy demand. 

The user gets incentive compensation TI and revenue B at time t. 

( ( )) ( ) ( ) = TI D t I t D t        (18) 

( ) ( ( )) ( ) ( ) ( ( ))− −  + B t B D t D t P t TI D t      (19) 

Of these, one variable stands for the revenue received by the user prior to being compensated at time t for electricity 

demand equaling X. This function denoting revenue can be articulated as follows:

0 0

0

( )
( ( )) ( ) ( ) ( ) 1

2 ( ) ( )

 
= +   + 

 

D t
B D t B t P t D t

E t D t
    (20) 

Where B0(t) income when user demand is at its highest is D0(t); E(t) is the time-t elastic response coefficient. 

According to Equation (12) and Equation (15): 

0
0
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( ) ( ) ( ) 1
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Among them, P0(t) is the original cost of a unit of electricity. The preceding formula proves that if I(t) = 0, then 

D(t) = D0(t). It demonstrates that the price of power does not vary when there is no motivation to pay.and E(t) is 

zero.  

2.10. Academic paraphrase 

The relationship between the coefficient of cross-elasticity of demand and transferable load is evident, as industries 

continue to progress, causing a shift in maximum allowable loads. Time-of-use electricity pricing affects users more if 

they consume higher energy levels; hence, limiting expenses by utilizing the load transfer period is common. To reduce 

electrical loads, policymakers suggest options such as substituting hot water or gas boilers for electric heating boilers 

and shifting usage during peak power times. Policymakers primarily address concerns including basic power demands, 

transfer potential assessments, electricity price tiers' structure and incentivizing policies which are crucial elements that 

must be considered carefully when discussing cross-elasticity coefficients of energy consumers at different time periods 

(t) and scenarios (j). 

0

0

( ) ( )
( , )

( ) ( )


= 



P t D t
E t j

D t P t        (22) 

The demand model dependent on the time-of-use pricing is as follows: 

23
0

0 0

0 0

( )
( ) ( ) ( , ) ( ( ) ( ))

( )=

= +  − 
t

D t
D t D t E t j P j P j

P j     (23) 

Taking into account the power price and the incentive compensation I(j). at this time is necessary if emergency demand 

measures are performed simultaneously at timej. 

0( ) ( ) ( ) ( ) = − +P j P j P j I j
      (24) 

Upon a thorough examination of the time-of-use electricity tariff and incentive remuneration, it is possible to express 

the electrical energy consumption behavior exhibited by consumers at any given moment t. 

23
0

0

00

( )
( ) ( ) ( , ) ( )

( ) =

= +  
t

D t
D t D t E t j P j

P j      (25) 

Ultimately, the avoidable load model was combined with the transferable load model in order to deduce the hourly 

consumption pattern of power users. This is exemplified through equation (26). 

23
0

0

00 0

( ) ( ) ( )
( ) ( ) ( , ) ( ) 1

( ) ( )=

   
= +    +   
   


t

D t E t P t
D t D t E t j P j

P j P t    (26) 

3. Experimental Results 

3.1. Experimentation Environment 

This study's experiment makes use of an Intel(R) core (TM) i5-5200CUP2.20GHz processor, together with 8GB of 

RAM. One month's worth of data from an area's power grid's asynchronous operation is used as the training set database 

for the load model, and weather data from that time period is collected as the feature used to determine the day's peak 

demand. The test sample is divided into two parts: the characteristic set, which consists of data from the first 30 minutes 

of the day and the target set, which consists of data from the remaining period. Additionally, we process outliers and 

missing data as missing data and fill in the gaps with an average value (18). 

3.2. AC-BiLSTM model analysis for short-term load prediction 

The forecasting outcomes and the absolute deviation (defined as the variation between projected values and actual 

measurements) of short-term energy load estimation for AC-BiLSTM modeled dataset are exhibited by Figure 7. 
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Figure 7. Modeling the short-term load with AC-BiLSTM and comparing it to the real value 

Figure 7 depicts the forecast mistakes that occur after a specific amount of time, despite the fact that the load forecasting 

model can prevent being stuck in the local ideal, enlarge the search space, and boost the likelihood of finding the global 

optimal value. Possible explanations include anomalous observations and missing data. Application of the AC-LSTM 

with the AC-GRU is depicted in Figures 8 and 9. 

 
Figure 8. Modeling the short-term load with AC-LSTM and comparing it to the real value 

 
Figure 9. AC-GRU models for checking predicted and measured short-term loads 

3.3. Load prediction outcomes considering demand response 

In order to gain insight from the past and create better predictions right now. We improve the major power consumption 

infrastructure for a variety of users by considering the impact of both load class resources and energy efficiency class 

resources as shown in Table 1.Collect data on how people are cutting back on their electricity use, then apply that 

information as a superposition to the load forecast values for each moment generated by the AC-BiLSTM, AC-LSTM, 

and AC-GRU models, then run the numbers. 

The integration of demand-side resources has undoubtedly enhanced the efficacy of node impact. The projected 

deviation is now more reasonable and aligns with reality in general. Moreover, to ensure precision in the prediction 
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model, three prominent short-term load forecasting algorithms- Long Short-Term Memory, Bidirectional LSTM, and 

Support Vector Machine- are chosen for experimental comparison. Figure 7 depicts the outcomes obtained from 

applying these selected algorithms on daily load estimation test data while Table 2 presents an evaluation index used 

to assess prediction errors. 

Table 1. The foundational information for load forecasting 

Table 2. Analyzing algorithmic failure rates 

Algorithm EMAE/(kW·h) ERMSE/(kW·h) 

AC-BiLSTM 485.82 713.66 

Bi-LSTM 553.35 905.22 

AC-LSTM 482.02 780.35 

AC-GRU 497.72 735.65 

The findings of our assessment and analysis on average annual power utilization and maximum electricity demand 

among different clients prior to and after the introduction of demand-side resources are presented in Tables 3 and 4. 

Our results provide further evidence that employing measures for reducing energy usage through responsive 

management at the user end can be effective. It is observed that both peak load as well as individual energy consumption 

exhibit a substantial decline, by over 20 percent, due to such resources. Consequently, there is strong confirmation 

regarding the achievement of desired outcomes from implementing demand-driven responses through lowered need 

for new lines or substations resulting in significant cost savings. 

Table 3. Annual electricity outcomes before and after taking demand-side resources into account are compared. 

User Type 
Unconsider demand side 

resources (MW·h) 
Consider demand side resources  (MW·h) 

Industry 9133. 262 8766. 565 

Construction 547. 355 516. 266 

Transport 5698. 561 5986. 365 

IT 310. 256 298. 362 

Business 16523. 154 13950. 845 

Accommodation and 

meals 
705. 264 703. 265 

Finance 129. 656 126. 325 

Agency 225. 365 300.562 

Resident 1221. 689 1119. 986 

User Type Energy efficiency resources avg Load resources avg 

Industry 0. 0243 0.6220 

Construction 0. 0325 0.6691 

Transport 0. 0365 0.3358 

IT 0. 1235 0.9025 

Business 0. 1349 0.5236 

Accommodation and meals 0. 1267 0.6326 

Finance 0. 0885 0.6911 

Agency 0. 1475 0.5433 

Resident 0. 1565 0.3366 



Journal of Applied Data Sciences 

Vol. 4, No. 4, December 2023, pp. 490-503 

ISSN 2723-6471 

501 

 

 

 

 

Table 4. Results from calculating the maximum load without and with 

User Type 
Unconsider demand side resources 

(MW·h) 

Consider demand side resources 

(MW·h) 

Industry 4401.562 4090.326 

Construction 213. 325 200. 236 

Transport 1595. 564 1501. 369 

IT 99. 265 88. 639 

Business 3684. 856 3416. 691 

Accommodation and meals 88. 336 90. 226 

Finance 12. 302 9. 365 

Agency 3. 396 3. 698 

Resident 345. 264 309. 566 

3.4. Emergency demand response and time-of-use power pricing's effect on the load curve 

The dataset was built on a month's worth of historical load data collected when the regional power system switched to 

asynchronous operation. The model presented in this study is based on the maximization of user benefits, therefore it 

may be used to predict how much power a user will need at any given time. After time-of-use energy pricing and 

emergency demand response are put into place, the regional peak-valley price mechanism predicts that peak electricity 

pricing will be (1.26 RMB/KWh) and low electricity pricing will be (0.42 RMB/KWh), with an equilibrium price of 

(0.84 RMB/KWh). Assume that the remuneration for participating power users is (1.3 RMB/KWh). If, for example, 

the incentive payment is reduced to 0.4 RMB per kilowatt-hour (KWh). 

It is reasonable to predict that the level of user engagement will decrease along with the amount of incentive payment 

received. Some users will even resort to dishonest methods in order to decrease the strain placed on the system in order 

to receive money rewards. In order to circumvent this problem, the power system operating agency typically specifies 

the lower limit of load utilization as the standard for determining the least amount of electricity that users of the power 

grid are required to consume under normal power consumption conditions. With the implementation of demand-side 

response measures during peak power consumption period in the energy market, consumers can modify their electricity 

usage patterns according to pricing signals. This responsiveness from the consumer end has a significant potential to 

enhance system reliability by decreasing frequency and magnitude of wholesale price fluctuations over an entire supply 

cycle. One proposed solution is connecting both retail and wholesale markets for better results. 

4. Conclusion 

The problem of demand-side response is investigated in this paper, with the assumptions of load forecasting and 

maximizing the comprehensive benefits to electricity users. The paper is grounded in the growing body of literature on 

the demand-side response in China and its evolution over time. We employ the time sliding window to compile the 

multidimensional data into a continuous feature map, which we then use to extract spatial characteristics for load 

forecasting. persistent association. The AC-BiLSTM model is used to reliably predict the load on the system. 

Superimposing the initial load on top of the response load that takes into consideration demand-side resources after a 

comprehensive analysis of the region's capacity for reaction. In order to maximize customer benefits, a load response 

model was constructed by employing two demand-side response approaches: time-of-use tariff that is based on price 

and an emergency demand response system that provides incentives. After these two steps have been implemented, we 

will analyze the correlation between electricity demand and pricing. The studies showed that by adjusting electricity 

use in response to market price signals during peak demand in the electrical market, customers might save money 

through demand-side response. Through the use of demand-side response during peak demand times, power system 

balance adjustment costs can be lowered and power-related societal resources can be maintained. Potential exists for 

enhancing the consistency of the power supply cycle by implementing demand-side response measures in both short 
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and long run. Achieving this would involve mitigating price fluctuations within the wholesale market to curtail adverse 

effects through understanding interconnections between retail and wholesale markets among other strategies. 
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