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Abstract 

Nowadays, sentiment analysis research in social media is rapidly developing. Sentiment analysis typically falls under supervised learning, which 
requires annotating data. However, the annotation process for sentiment analysis tasks is notoriously time-consuming. An effective strategy to 
overcome this challenge, known as active learning, has emerged. Active learning involves labeling only a small subset of the dataset, leaving the 
rest for annotation through sampling strategies. This study focuses on comparing two active learning strategies: random sampling and boundary 
sampling. These strategies are applied to machine learning models such as logistic regression and random forests. In addition, we present an 
evaluation of the model performance and data savings achieved by implementing these strategies in the context of traditional machine learning 
for sentiment analysis on Twitter, and the dataset consists of two labels: positive and negative sentiments. The results of our investigation show 
that an uncertainty sampling strategy can significantly reduce the amount of training data required, saving up to 65% of the total training data 
required to achieve peak model accuracy. The best model obtained in this experiment is a random forest with a margin sampling strategy, yielding 
an accuracy of 81.12% and an F1 score of 88.60%. This research highlights the effectiveness of active learning strategies in sentiment analysis, 
demonstrating their potential to improve model performance and resource efficiency. The results underscore the viability of employing active 
learning methods, particularly the combination of random forest models with margin sampling, which can achieve more efficiency regarding data 
usage in social media sentiment analysis.    
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1. Introduction  

Recently, the rapid development of Information Technology has been intensely felt, which means that using the Internet 

cannot be avoided on a daily basis. According to a report by We Are Social [1], the number of internet users in Indonesia 

reached 212.9 million as of January 2023. This means that about 77% of the Indonesian population uses the Internet. 

The internet is used for online socializing through social media, and one of the most popular social media platforms is 

Twitter. Many posts are uploaded by users, including images, videos, and text. All the posts uploaded to social media 

represent a considerable amount of data that can be mined and analyzed to uncover new useful information. The data 

found on Twitter can be used to obtain specific information, making it attractive for deeper analysis. When evaluating 

public opinions on Twitter, sentiment analysis can be used to categorize those opinions as positive or negative. 

However, a challenge in sentiment analysis is the informal language used on Twitter [2]. The obtained data must be 

preprocessed before it is ready for processing. Sentiment analysis has several methods, and one of the approaches is 

machine learning [3]. The machine learning approach creates models that are used in the classification process. Text 

classification categorizes text data into predefined groups or classes. 

Data annotation or labeling assigns one or more labels to a data set, allowing algorithms to learn and predict labeled 

data. In supervised learning, labeled training data is used in the training process to produce the output of a model. 

Obtaining labeled training data can be a time-consuming task, as acquiring labeled data typically requires human 

assistance, especially when dealing with very large training datasets [4]. Therefore, it is necessary to implement a 

mechanism for selecting informative and valuable data during model development, thus reducing the required training 
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data while still achieving optimal performance results [5][6]. One of the methods that can be used to address the above 

problem is active learning. This problem is addressed in data-centric AI frameworks [7]. 

Active learning is a method where a classifier can actively select the most informative training data to build a model 

[8]. A common questioning strategy for active learners is uncertainty sampling. Like humans asking questions about 

things they do not know, uncertainty sampling labels the most uncertain points. In general, the unlabeled data that 

confuses the algorithm the most is the most valuable and is labeled and added to the training data.  

Previous study found that uncertainty sampling has proven effective and efficient [9], and there have been many 

developments in uncertainty sampling methods [10]. A study by [11] provides a framework for active learning 

strategies involving uncertainty sampling. This study concluded that active learning using uncertainty sampling could 

reduce human labeling. Another study by [12] conducted a survey comparing various active learning strategies and 

found that, in general, the least confidence and margin sampling strategies performed better than other query strategies, 

and overall, active learning outperformed passive learning. Furthermore, Agharwal et al. [13] use a margin sampling 

strategy and conditional random field (CRF) as a classifier to classify disease names in biomedical text datasets. 

Based on the previous studies, this study aims to implement active learning with uncertainty sampling in sentiment 

analysis. The sentiment analysis task on Indonesian Twitter related to COVID-19 and daily conversations will be 

conducted. In addition, the study will compare the performance of the margin sampling and random sampling that 

affect the performance of logistic regression and random forests in the active learning scenarios.  

2. Method 

2.1. Active Learning  

Active learning is a machine-learning approach that allows humans to participate actively in the learning process [14]. 

The goal of active learning is to make the most informative queries from unlabeled data based on the output of the 

learning algorithm so that the labeling results of these queries can improve the model's performance [15][5]. Therefore, 

the desired performance can be achieved with fewer and faster queries with a random selection [16]. Active learning 

enhances model performance by adding well-selected data to the training data, enabling the model to learn from more 

relevant data while reducing the overall data required for training [17][18]. 

This study applies active learning to the data using query strategies, which are part of uncertainty sampling, namely 

margin and random sampling. The steps of the active learning process in this study are as follows [10]: (a) the model 

is constructed using pre-defined training data; (b) it evaluates the sentiment of previously unknown text; (c) the model 

selects data using the specified query strategy; (d) after that, the data selected by the query strategy is added to the 

training data, and the model is updated; (e) this process is repeated until the model achieves the desired performance. 

2.2. Margin Sampling 

One variant of the uncertainty sampling query strategy is margin sampling. Margin sampling addresses the 

shortcomings of the least confident strategy, which only considers information about the most likely label and 

effectively discards the remaining label distribution. This strategy considers the two most likely classes: the highest 

and second-highest probability [15]. The margin sampling can be written as 

𝑥𝑚
∗ = argminθ(𝑝𝜃(�̂�1|𝑥) −  𝑝𝜃(�̂�2|𝑥) )      (1) 

where �̂�1 and �̂�2 are the positive and negative labels, which are high probability classes when predicted using the model. 

It takes the argument of minimum values of the margins because the difference between the two most likely classes 

indicates the model's uncertainty in predicting the data sample 𝑥𝑚
∗ . Therefore, the lowest difference represents the most 

uncertain and informative sample. The algorithm for margin sampling is given below: 

INPUT: Given dataset containing two classes and a large portion of unlabeled data, also known as pool P. The number 

of batch sizes.  

OUTPUT: Model performance with respect to the number of iterations  
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Initialization: Train the model on a small portion of the labeled dataset with respect to the number of batch sizes. After 

that, remove the trained data from P. 

While P is not ∅ do 

 Apply (1) to find the candidate of data and label the data manually. 

 Update the model and remove the candidate from P. 

 Calculate the model performance. 

3. Result and Discussion 

The data used in this study consists of two datasets: Dataset 1, available in [19], focuses on Indonesian netizens' 

comments about COVID-19. The keyword used for data collection was "Covid-19 di Indonesia," it was collected from 

March 2, 2021, to March 29, 2021. The dataset used in this study comprises 26,170 tweets. It is stored in comma-

separated values (CSV) format. Dataset 2 [20] contains text content from public conversations on the social media 

platform Twitter. It was collected between September and December 2018, using common words from everyday 

conversations as keywords. During that period, a total of 454,559 tweets were collected. These tweets were then 

preselected to choose those suitable for training sentiment analysis models, resulting in a final dataset of 10,806 tweets. 

The code and data can be found at https://github.com/Estich85/ActiveLearning_MarginSampling. 

The collected data still contains various elements, such as words, image links, or unnecessary video links. Therefore, 

data cleaning is necessary. Text preprocessing is a crucial step in text mining because it makes the data cleaner and 

facilitates further analysis, reducing the chances of errors during model evaluation. The processes involved are as 

follows: Case folding: this process aims to convert the entire text into a consistent format, usually converting all 

characters to lowercase. Removing punctuation, hashtags, symbols, and numbers: this process reduces noise by 

eliminating punctuation marks, hashtags, symbols, and numeric characters. Tokenizing: involves breaking the input 

string into individual words or tokens. In this step, each word in the text is separated, and spaces are used as separators 

between words. Stopwords are words that do not have significant meaning and often occur with high frequency. This 

step removes such words to reduce noise.  Lemmatization: to reduce words to their base or root form by removing 

suffixes. It is performed to reduce the number of unique words and group words with similar meanings together. These 

preprocessing steps are essential for cleaning and structuring the text data, making it more suitable for analysis and 

reducing the potential for errors during model evaluation. For example, a sentence contains Indonesian user on Twitter 

who posted, "Wamenkes Laporkan Temuan 2 Kasus Mutasi Covid-19 dari Inggris di Indonesia: Sebab itu, dia 

mengatakan, saat ini pandemi akan semakin berat. Sehingga saatnya untuk mengembangkan riset dan studi 

epideomiologi lebih tepat. https://t.co/HEY91MIET8". After preprocessing, the sentence becomes “wamenkes lapor 

temu kasus mutasi covid inggris indonesia sebab kata pandemi semakin berat saat kembang riset dan studi 

epideomiologi lebih tepat". 

In the active learning model's initial iteration, 5% of training data is used for the training phase. At the same time, the 

rest will be available for selection by query strategies such as margin sampling and random sampling to improve the 

model's performance. This study has several batch sizes, indicating how many data samples are used in one iteration. 

This research uses a batch size of 15. 

Dataset 1 - After preprocessing, there are 4,272 data samples, with 3,249 labeled as positive and 1,023 labeled as 

negative. The ratio of training data to testing data in this study is 70:30, with 2,990 samples for training and 1,282 

samples for testing. A small subset of data comprising 149 samples, or 5% of the entire training data, is used for the 

initial iteration. In contrast, the remaining data is stored in a variable called "pool," which consists of 2,841 samples. 

Fig. 1 shows a graph displaying the accuracy results for each model. The logistic regression model achieved a final 

accuracy of 80.10% using margin sampling, while it obtained a final accuracy of 77.84% when using random sampling. 

The random forest model achieved a final accuracy of 81.12% using margin sampling and 78.70% using random 

sampling. The F1-score results are displayed in labels (c) and (d) for each model. The logistic regression model 

achieved a final F1-score of 88.12% using margin sampling and 86.87% using random sampling. The random forest 

model achieved a final F1-score of 88.60% using margin sampling and 87.43% using random sampling. The F1-score 
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results are displayed in labels (c) and (d) for each model. The logistic regression model achieved a final F1-score of 

88.12% using margin sampling and 86.87% using random sampling. The random forest model achieved a final F1-

score of 88.60% using margin sampling and 87.43% using random sampling. 

Dataset 2 - There are 5,055 data samples after preprocessing, with 2,638 labeled negative and 2,417 labeled positive. 

The ratio of training data to testing data in this study is 80:20, with 4,044 samples for training and 1,011 samples for 

testing. A subset of data comprising 202 samples, 5% of the actual training data, is also used for the initial iteration. At 

the same time, the remaining data is stored in a variable called "pool," consisting of 3,842 data samples. Based on Fig. 

2, the accuracy results are shown in labels (a) and (b) for each model. The logistic regression model achieved a final 

accuracy of 74.87% using margin sampling, while it obtained a final accuracy of 72.79% when using random sampling. 

The random forest model achieved a final accuracy of 70.52% using margin sampling and 69.13% using random 

sampling. The F1-score results are displayed in labels (c) and (d) for each model. The logistic regression model 

achieved a final F1-score of 77.07% using margin sampling and 74.39% using random sampling. The random forest 

model achieved a final F1-score of 74.18% using margin sampling and 72.56% using random sampling. 

 

Figure 1. Accuracy and F1-score of logistic regression (top) and random forests (bottom) on Dataset 1 with a batch 

size of 15. 

The evaluation of the two trained models aims to select the best-performing model based on the required performance 

during training. The results of the active learning implementation, including accuracy and F1-score, for the first and 

last iterations of each model using random sampling and margin sampling query strategies, are shown in Table 1. It 

can be observed that when using passive learning with the entire training data, the accuracy and F1-score values are 

lower compared to active learning. In active learning, the model is initially built using a small portion of the training 
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data, specifically 5% of the training data, which amounts to 149 data points. Then, the active learning process is 

repeated until the final iteration. 

For the logistic regression model, using 5% of the training data initially and conducting 67 iterations resulted in an 

accuracy of 35% of the pool set, totaling 1005 data points selected by the query strategy. Similarly, the F1-score for 

logistic regression, starting with the same 5% of the training data, reached its final iteration by including 38% of the 

pool set, corresponding to 1080 data points selected by the query strategy. 

The random forest model selected 1305 data points from the pool set after 87 iterations, starting with 5% of the training 

data. Similarly, the F1-score for the random forest model selected 1515 data points from the pool set after 101 iterations, 

starting with the same 5% of the training data. Similarly, the F1-score for the random forest model selected 1515 data 

points from the pool set after 101 iterations, starting with the same 5% of the training data. The results indicate the 

advantages of active learning, where the model is trained on a smaller initial dataset but can achieve higher performance 

by iteratively selecting and incorporating informative data points from the pool set. 

 

Figure 2. Accuracy and F1-score of logistic regression (top) and random forests (bottom) on Dataset 2 with batch 

size of 15. 
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Table 1. Model Evaluation on Dataset 1 

Models Metrics Passing 

Learning (%) 

Random Sampling Margin Sampling 

Initial (%) End (%) Initial (%) End (%) 

Logistic 

Regression 

Accuracy 78.70 75.43 77.84 75.43 80.10 

F1-score 87.50 85.99 86.87 85.99 88.02 

Random 

Forests 

Accuracy 79.32 75.43 78.70 75.43 81.12 

F1-score 87.84 85.89 87.43 85.89 88.60 

Table 2.  Model Evaluation on Dataset 2 

Models Metrics Passing 

Learning (%) 

Random Sampling Margin Sampling 

Initial (%) End (%) Initial (%) End (%) 

Logistic 

Regression 

Accuracy 72.40 61.42 72.79 61.42 74.87 

F1-score 75.15 65.36 74.39 65.36 77.07 

Random Forests Accuracy 67.16 59.54 69.13 59.54 70.52 

F1-score 72.65 69.59 72.56 69.59 74.18 

Based on Table 2, it can be observed that when using passive learning with the entire training data, the accuracy and 

F1-score values are lower than active learning. In active learning, the model is initially built using a small portion of 

the training data, specifically 5% of the training data, which amounts to 202 data points. Then, the active learning 

process is repeated until the final iteration. 

The logistic regression model, starting with 5% of the training data, reached its final iteration by including 80% of the 

pool set after 205 iterations, totaling 3075 data points selected by the query strategy. Similarly, the F1-score for logistic 

regression, starting with the same 5% of the training data, reached its final iteration by including 80% of the pool set 

after 205 iterations, resulting in 3075 data points selected by the query strategy. 

The random forest model reached its final iteration after 160 iterations, including 62% of the pool set, which consisted 

of 2400 data points selected by the query strategy. Similarly, the F1-score for the random forest model reached its final 

iteration after 232 iterations, including 90% of the pool set, which consisted of 3480 data points selected by the query 

strategy, starting with the same 5% of the training data. Similarly, the F1-score for the random forest model reached 

its final iteration after 232 iterations, including 90% of the pool set, which consisted of 3480 data points selected by 

the query strategy, starting with the same 5% of the training data.  

4. Conclusion 

Active learning can reduce the training data used in model training. Despite reducing the amount of training data, active 

learning can enhance model performance. In Dataset 1, active learning can save 45% to 65% of the total training data, 

meaning an average of only 1323 data points are needed to train each model. In Dataset 2, active learning can save 

10% to 44% of the total training data, meaning an average of only 2810 data points are needed to train each model. 

This study achieved the best performance results using a batch size of 15. Therefore, the more data used in a single 

iteration of the active learning query strategy, the better the performance obtained. 

The margin sampling can improve the classification performance of logistic regression and random forest models for 

both datasets in sentiment analysis on Twitter data. It achieved higher performance compared to models using random 

sampling query strategies. Accuracy values improved performance by about 2% to 4%, and F1-score values also 

increased by approximately 2% to 4% compared to models using random sampling query strategies. In Dataset 1, the 

best model obtained was the random forest classification model with margin sampling query strategy, achieving the 

highest accuracy and F1-score values compared to the logistic regression model. In Dataset 1, using an average of 1323 

data points, the random forest model achieved an accuracy of 81.12% and an F1-score of 88.60%. In Dataset 2, the 
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best model obtained was the logistic regression classification model with the margin sampling query strategy, achieving 

the highest accuracy and F1-score values compared to the random forest model. In Dataset 2, using an average of 2810 

data points, the logistic regression model achieved an accuracy of 74.87% and an F1-score of 77.07%. 

This paper demonstrates the combination of active learning strategies and machine learning algorithms for sentiment 

analysis task with two classes. This can extend to multiclass classification problems in the future. The investigation of 

the potential overfitting and underfitting during training phase is also crucial topics which is not cover yet. In addition, 

various active learning query strategies can be explored, such as other variants of uncertainty sampling, like least 

confident and entropy sampling, or different query strategies.  
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