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Abstract 

This study assesses the feasibility of YOLO-based detectors for recognizing Thai Sign Language (TSL) in clinical intake workflows. This study 

evaluates four YOLO variants (YOLOv8, YOLOv9, YOLOv11, and YOLOv12) on a sign-language–based clinical dataset using Precision, 

Recall, mAP@50, and mAP@50:95. YOLOv11 achieves the strongest overall performance, attaining Precision of 0.9527, Recall of 0.9700, 

mAP@50 of 0.9723, and mAP@50:95 of 0.6679, while maintaining a compact model size (7.8 MB) and moderate inference latency (16.1 ms). 

In comparison, YOLOv8 and YOLOv9 provide faster inference but lower accuracy, whereas YOLOv12 exhibits reduced detection performance 

despite increased model size and latency. Experiments were conducted on a dataset of 10,956 images spanning 95 classes under realistic clinical 

recording conditions, including variations in viewpoint, illumination, motion, and partial occlusion. The results demonstrate the effectiveness of 

YOLO-based models for visual sign interpretation while highlighting ongoing challenges in fine-grained localization and robust generalization 

in real-world clinical environments. These findings support a multimodal pipeline that uses an image-based detector as the core perception 

component, supplemented with pose/key point cues, OCR, and NLP layers to convert recognized signs into structured medical intents for triage 

and telemedicine. Future work will focus on sequence-level evaluation, expanding dialectal and co-articulated TSL coverage, and developing 

compression or distillation techniques to enable reliable on-device inference in resource-limited settings. 

Keywords: Continuous Sign Language Recognition, YOLO-based Detection, Thai Sign Language, Pose Estimation, Medical Informatics 

1. Introduction 

Communication barriers significantly hinder healthcare for the Deaf and Hard-of-Hearing (DHH). In clinical settings, 

deaf patients rely on sign language to communicate symptoms and understand medical advice, but professional 

interpreters are often unavailable. This gap leads to misdiagnoses and decreased access to care: for example, hospitals 

without sign interpreters make it difficult for deaf patients to express physical complaints or follow treatment plans [1]. 

Indeed, studies highlight that Deaf individuals who cannot understand spoken language face unequal access to 

healthcare services [2]. These challenges emphasize the need for automated sign language recognition and translation 

systems. Recent advances in deep learning have demonstrated strong performance in sign-gesture recognition, but most 

studies have been conducted under controlled laboratory conditions and on limited vocabularies. For example, Alsharif 

et al. reported 98.2% mAP using a YOLOv11 model combined with MediaPipe hand tracking for the recognition of 

26 isolated ASL alphabet letters on a dataset of approximately 34,000 images collected in a non-clinical environment 

[3], [4]. Although the result indicates the potential of modern detectors, the study did not involve continuous signing, 

domain-specific medical vocabulary, or diverse signer profiles, and therefore cannot be assumed to generalize to real 

healthcare settings where lighting, motion, and communication context vary widely.  

Modern sign language recognition commonly applies deep neural networks to capture both spatial and temporal 

characteristics of gestures. Deep neural networks such as combinations of CNN and LSTM have shown promising 
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results in capturing both spatial and temporal aspects of sign language gestures, challenges remain in adapting these 

models to real-world conditions including motion blur, occlusion, and signer variation, especially in clinical 

environments where lighting and backgrounds are uncontrolled [5], [6], [7]. Previous studies combining visual inputs 

with skeletal keypoint streams have reported high accuracy in isolated sign classification tasks [7]. However, these 

results are typically achieved in controlled environments with limited signer variability, stable lighting, and static 

backgrounds. In real deployment—especially in clinical settings—performance can degrade due to motion blur, 

occlusion, differences in signing speed and style, and the need to recognize continuous rather than single-frame 

gestures. These constraints highlight the gap between laboratory performance and real-world applicability, reinforcing 

the need for more robust multimodal models. 

In healthcare informatics, integrating diverse data modalities has become a powerful strategy. Multimodal AI 

frameworks combine inputs such as clinical text, physiological signals, images, and structured electronic health records 

have shown better prediction and decision-support performance than single-modal approaches. This evidence 

reinforces the value of unified systems that combine gesture recognition with comprehensive healthcare data [8], [9], 

[10]. For example, the HAIM framework showed that models using tabular data, time series, text, and images together 

outperformed single-modality models (improving diagnostic accuracy by 6–33% in chest X-ray tasks) [8]. Overall, AI 

systems that leverage multiple data sources tend to provide more accurate and reliable results in medical applications 

[8]. Similarly, a clinical sign-language tool should combine visual gesture recognition with patient-specific medical 

context. A multimodal approach for deaf patient care might merge sign-to-text translation with electronic health record 

(EHR) data or symptom lexicons, creating a comprehensive view of the patient’s history in real time. Such a unified 

model could process video of a patient signing, analyze the sequence with CNN-LSTM networks, and generate medical 

terms linked to the patient’s record. This approach contrasts with previous systems that handle sign translation in 

isolation, and it aims to assist history-taking by integrating translations directly into medical informatics workflows 

[8].  

In the Thai context, these needs are urgent. Thai Sign Language (TSL) is the official language for deaf communities, 

yet Thai medical facilities rarely have interpreters available. Some prototype solutions exist, such as a recent mobile 

app that translates a set of 60 health-related Thai signs using on-device deep learning [11]. While promising, these 

tools only cover limited vocabulary and simple queries. Academic research on Thai sign recognition, like for digits and 

the alphabet, shows that it is feasible [12], but also suggests that more vocabulary and optimization are necessary before 

it can be used in healthcare. No existing system fully integrates Thai sign interpretation with clinical data entry or 

dialogue. 

To address these gaps, researchers propose a Multimodal AI Framework for Sign Language Recognition and Medical 

Informatics tailored for Thai hearing-impaired patients. Our main contribution is an end-to-end model that recognizes 

Thai sign language sequences using deep learning and connects the output to medical informatics tasks. The core of 

the model is a CNN-based vision encoder combined with a temporal sequence model, such as BiLSTM or Transformer, 

that processes sign language videos. By utilizing skeleton key points via MediaPipe or similar tools and CNN feature 

maps, the model captures detailed hand and body movements [7]. The recognized sign language is then mapped to 

medical terminology and integrated with patient context, enabling automated history-taking and record updates. In this 

way, our framework goes beyond isolated gesture recognition: it combines sign translation with healthcare data to 

support real-time, accessible consultations. This work advances the state of the art by focusing on model development 

rather than, for example, chatbots, and by situating it within Thailand’s healthcare system. Ultimately, it aims to 

empower deaf patients and clinicians alike by reducing communication barriers and enhancing the inclusivity of 

medical informatics.  

This study aims to develop a multimodal AI model for Thai Sign Language recognition and translation using advanced 

deep learning to achieve high accuracy and practical utility in healthcare. It also seeks to design and implement a 

framework that integrates sign language recognition with medical history collection for hearing-impaired patients, 

routing outputs into medical informatics systems to support systematic documentation and clinical data management. 

Additionally, the project aims to build a prototype capable of processing Thai Sign Language videos and translating 

them into medically relevant text in real time, suitable for deployment in Thai hospitals and clinics. 
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Therefore, the main goal of this research is to create a multimodal artificial intelligence model capable of accurately 

recognizing and translating Thai sign language in medical settings. It also strives to develop a framework that combines 

sign language recognition with medical informatics to improve efficient history-taking for hearing-impaired patients. 

The ultimate aim is to reduce communication barriers in Thai healthcare facilities, promote equal access to medical 

services, and lay the groundwork for future digital health tools tailored to the Thai sociocultural and clinical context. 

2. Literature Review 

2.1. AI for Sign Language in Healthcare  

In contemporary research, AI-based sign language recognition has advanced rapidly. A recent survey highlights that 

multimodal neural network models combining vision and sensor inputs achieve much higher accuracy than unimodal 

approaches [13]. Contemporary deep-learning systems have evolved from recognizing isolated static gestures to 

translating continuous sign-language streams in nearly real time [13]. However, existing algorithms still lack the 

robustness and generalization necessary for widespread commercial use [13]. For example, Aly and Fathi’s hybrid 

Transformer CNN model reported a remarkably high accuracy of 99.97% on static ASL gesture recognition [14], 

showcasing the effectiveness of recent architectures in sign recognition tasks. 

A major distinction in sign language research lies between isolated gesture recognition and continuous sign language 

recognition. Isolated models classify single signs or alphabets from short clips or individual frames, often achieving 

high accuracy because there is no temporal dependency between gestures. In contrast, continuous sign recognition 

requires understanding co-articulation, transition movements, signer-specific variation, and semantic dependencies 

across sequences, making it a significantly more complex task that typically demands temporal models such as 

Transformers, CTC-based architectures, or sequence-to-sequence decoders. Most high-accuracy studies in the 

literature, including YOLO-based methods, focus on isolated recognition, which limits their applicability in real 

medical consultations where patients communicate in full sentences rather than discrete tokens.  

Beyond isolated gesture recognition, recent advances in continuous sign language recognition (CSLR) have focused 

on sequence-level modeling using Transformer architectures, Connectionist Temporal Classification (CTC), and 

encoder–decoder frameworks. Unlike frame-based classification, CSLR requires temporal alignment between video 

frames and linguistic units, handling co-articulation, motion continuity, and signer variability. State-of-the-art models 

such as the Sign Language Transformer and VAC (Visual Alignment Constraint) have demonstrated significant 

improvements on large-scale datasets such as PHOENIX-2014 and CSLR benchmarks, outperforming traditional 

CNN-LSTM pipelines. These works highlight that continuous recognition is essential for real clinical communication, 

where patients narrate symptoms in full sentences rather than isolated signs [11].  

2.2. Medical Sign Language Translation  

In the medical context, preliminary studies are creating specialized sign-language translation systems. For example, 

Roelofsen et al. (2021) developed a system that translates common COVID-19 healthcare phrases into Dutch Sign 

Language (NGT) using video and avatar animations [15]. This method shows architecture that could be expanded to 

other medical terms and sign languages. More broadly, sign-language interpretation research integrates features from 

hand gestures, facial expressions, and lip movements to translate signs into text or speech [16]. Such systems help 

bridge the communication gap between deaf patients and healthcare providers by presenting medical instructions in 

accessible formats [17]. 

2.3. AI and Medical Informatics for the Hearing-Impaired  

In medical informatics, AI is used to improve healthcare access for the deaf and hard of hearing. For example, AI-

powered speech-to-text algorithms now offer live captioning during telemedicine sessions or in-person appointments 

[18]. In audiology, AI-driven tools automate hearing assessments and tailor device fittings, such as hearing aids and 

cochlear implants, thereby aiming to boost clinicians’ efficiency and provide more personalized patient care [19]. These 

AI applications help streamline communication and clinical workflows, making healthcare information and services 

more inclusive for those with hearing impairments.  
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While the HAIM framework demonstrates multimodal integration for medical decision support, our study adapts the 

same principle in the context of sign-language based clinical communication. Instead of combining radiology images, 

tabular vitals, and clinical notes, the proposed framework fuses visual gesture detection, skeletal key points, and 

medical intent mapping, and routes the output into structured EHR fields. Thus, the present model operationalizes 

HAIM’s core idea—linking heterogeneous modalities into a unified clinical workflow—but focuses on patient–

provider communication rather than diagnostic prediction.  

In summary, the reviewed literature shows notable progress in AI-driven sign language recognition, especially with 

deep learning architectures that reach high accuracy in gesture classification. However, research on medical sign 

language translation remains limited, often focusing on specific vocabulary or narrow contexts. Moreover, the 

integration of sign language recognition outputs into medical informatics systems is still underdeveloped, particularly 

within the Thai healthcare system. In this context, the present study aims to create a multimodal AI framework that not 

only recognizes and translates Thai sign language but also integrates smoothly with medical history-taking and 

electronic health records. This research aims to reduce communication barriers in clinical practice and promote 

equitable access to healthcare services for hearing-impaired patients in Thailand. 

3. Materials & Methods 

3.1. Research Design and Framework  

The conceptual framework diagram illustrates the Multimodal AI Framework for Sign Language Recognition and 

Medical Informatics in Hearing-Impaired Patients, which consists of three main parts: inputs, processing model, and 

outputs (see figure 1). The inputs include sign language videos and medical context data, both of which are processed 

by the Multimodal AI Model. This model translates sign language into text and assists with medical history-taking. 

The resulting information is then stored in the Electronic Health Record (EHR) system, ensuring accurate clinical 

documentation and promoting equitable healthcare access for hearing-impaired patients.  

 

Figure 1. Research Design and Framework 

3.2. Dataset Collection and Preparation 

3.2.1. Sign Language Dataset.  

The selection of 60 symptom categories and 35 history-taking question categories was based on clinical relevance 

rather than arbitrary grouping. The initial taxonomy was derived from the standard outpatient history-taking form used 

in Thai Ministry of Public Health hospitals, following the SOAP structure (Subjective, Objective, Assessment, Plan) 

and aligned with WHO guidelines for patient intake. The proposed categories were reviewed by two licensed physicians 

and one registered nurse to ensure that they accurately reflect real medical interviews and symptom-reporting 

workflows. In addition, a certified Thai Sign Language (TSL) interpreter and a Deaf consultant validated the linguistic 

suitability of each category to confirm that the signs correspond to expressions naturally used by TSL users in medical 

communication. This validation process ensured that the dataset is both clinically meaningful and linguistically 

grounded, supporting real-world applicability rather than laboratory-only relevance.  
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The source videos have been converted into images with a resolution of 640×640 pixels to support the training of 

detection and recognition models. A table shows the number of images per class for training, validation, and testing, 

as presented in table 1. These include various clinical data such as address, age, blood pressure, BMI, temperature, and 

others. Examples of data collected during the process are illustrated in figures 2 and 3.  

Table 1. Sign Language Dataset 

Class Training Validation Test Total 

Address 215 54 54 323 

Age 209 53 53 315 

Gender 214 54 54 322 

Blood Pressure 210 53 53 316 

Weight 211 53 53 317 

Height 210 53 53 316 

BMI 207 52 52 311 

Temperature 208 52 52 312 

Heart Rate 211 53 53 317 

Allergy 214 54 54 322 

Chronic Disease 210 53 53 316 

Family History 213 54 54 321 

Current Medication 209 53 53 315 

Previous Surgery 208 52 52 312 

Smoking Habit 211 53 53 317 

Alcohol Consumption 210 53 53 316 

Exercise Habit 214 54 54 322 

Sleep Pattern 207 52 52 311 

Stress Level 208 52 52 312 

Occupation 211 53 53 317 

Marital Status 210 53 53 316 

Education Level 213 54 54 321 

Nationality 209 53 53 315 

Religion 208 52 52 312 

Emergency Contact 211 53 53 317 

Health Insurance 210 53 53 316 

Chief Complaint 213 54 54 321 

Present Illness History 209 53 53 315 

Past Illness History 208 52 52 312 

Medication and Treatment History 211 53 53 317 

Family Health History 210 53 53 316 

Lifestyle and Risk Factors 213 54 54 321 
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Class Training Validation Test Total 

Address 215 54 54 323 

Travel History 209 53 53 315 

Immunization History 208 52 52 312 

Diet/Nutrition 211 53 53 317 

Total 7,286 1,835 1,835 10,956 

An analysis of the dataset revealed an observable class imbalance across the 95 categories, where certain medical 

history classes (e.g., Exercise Habit, Family Health History) contain more than 320 samples, while others have fewer 

than 300 samples. Although the dataset is not severely skewed, this imbalance may affect model learning by biasing 

predictions toward majority classes.  

  
Figure 2. Examples of data collected Figure 3.  Examples of data collected 

Figure 2 and figure 3 present example images from the dataset, including both male and female subjects performing 

different gesture- and symptom-related actions. The samples were collected at varying times and with different 

background colors, demonstrating diversity in subjects, poses, and acquisition conditions for model training and 

evaluation. 

3.2.2. Annotation Process 

The annotation process was carried out by three annotators: one certified Thai Sign Language interpreter and two 

trained research assistants. A detailed labeling protocol was developed to ensure consistency in bounding-box 

placement and class assignment, including rules for hand visibility, partial occlusion, dominant-hand priority, and 

minimum box coverage. To assess label reliability, 15% of the dataset was double-annotated, and inter-annotator 

agreement was measured using Cohen’s Kappa [20], [21], yielding κ = 0.87 for class labels and κ = 0.82 for bounding-

box placement, indicating strong agreement. Discrepancies were reviewed in weekly adjudication sessions led by a 

senior annotator, and final consensus labels were stored as ground truth. Additional quality control was performed 

through random sampling and visual inspection before model training to prevent mislabeled or ambiguous samples 

from entering the dataset. 

3.2.3. Data Augmentation 

To enhance robustness, the training set will undergo data augmentation, including rotation, horizontal and vertical 

flipping, brightness and contrast adjustments, random cropping and scaling, and mild blurring [22]. Bounding box and 

keypoint coordinates will be transformed consistently using augmentation utilities that naturally handle detection and 

pose labels [23]. This process aims to reduce overfitting and improve generalization under varying lighting and camera 

angles typical of Thai clinical environments. 

To evaluate the effect of augmentation on model robustness, a controlled ablation experiment was conducted by 

training YOLOv9 with and without augmentation under the same hyperparameters. The augmented model achieved a 

+2.8% improvement in overall mAP@50 and a +4.2% improvement in mAP@50:95, with the largest gains appearing 

in classes recorded under low-light and side-view camera angles. Recall for motion-influenced signs (e.g., Exercise 
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Habit, Past Illness History) increased from 0.91 to 0.95, suggesting that motion-based augmentations helped the model 

generalize better to real clinical video conditions.  

3.3. Multimodal Feature Extraction 

3.3.1. Visual Features 

The image stream served as the main source of features. The researchers used YOLOv11 to detect and classify Thai 

sign language gestures in real time from video images, focusing on two main categories of the project: 60 symptom 

clusters and 35 history-taking questions. Before choosing a model, YOLO versions 8 through 12 were compared for 

performance specifically on sign language interpretation and history-taking tasks. 

3.3.2. Skeletal Features 

To address variations in signer pose, researchers have adopted multi-stream frameworks that integrate skeletal and 

visual information. Pose estimation techniques are used to extract hand and body keypoints as skeletal streams, while 

CNN- or YOLO-based models provide complementary visual features. By combining these streams, the approach 

captures both the spatial configuration of articulated joints and detailed appearance cues. This reflects the understanding 

that sign language interpretation involves more than hand shape alone, relying also on hand position, body posture, and 

movement patterns [4], [24]. Previous studies have shown that merging skeletal and visual features within deep learning 

systems leads to more accurate and reliable sign language recognition. 

3.4. Model Architecture and Training  

3.4.1. Deep Learning Backbone. 

The experimental setup initially included YOLOv8 through YOLOv12 for comparative analysis. The execution 

environments were Python on Google Colab with GPU/TPU acceleration and PyTorch/TensorFlow, including 

preprocessing and data validation for reproducibility. 

3.4.2. Training Process 

To address the effects of class imbalance during model training, class weights were incorporated into the loss function 

to give more penalty to underrepresented classes. This method was chosen over oversampling because oversampling 

can create redundancy and increase the risk of overfitting, especially in gesture-based datasets where samples tend to 

be visually similar. Using class-weighted loss has been shown to enhance convergence stability in object detection 

models without expanding dataset size or training time, making it appropriate for this use case. 

Training used a 640×640 input as specified in the data.yaml, with Automatic Mixed Precision (AMP) enabled and a 

log period set to 10, which involved performing checkpoints every 10 epochs. This process was carried out over 100 

to 150 epochs with a dataset size of 32. During training, the box loss, classification, and objectness (or DFL) were 

monitored, and various performance metrics, including Precision, Recall, mAP@50, and mAP@50–95 [25], were 

reported. The researchers followed YOLO's default and scheduled learning rate policy during the training phase.  

3.4.3. Model Selection Rationale 

This study evaluates YOLOv8, YOLOv9, YOLOv11, and YOLOv12 based on both reported accuracy and architectural 

innovations relevant to deployment on resource-limited devices. Each model introduces design refinements targeting 

improved feature representation, computational efficiency, and training stability. YOLOv8 adopts a decoupled 

detection head for efficient multi-scale learning, YOLOv9 enhances contextual modeling through refined convolutional 

and neck structures, and YOLOv11 further improves performance with lightweight attention and optimized 

connectivity, leading to superior accuracy in our experiments. Although YOLOv12 incorporates additional modular 

and normalization enhancements, it does not surpass YOLOv11 on this dataset but demonstrates stable inference 

behavior. Overall, the comparative analysis highlights how architectural optimization can improve detection 

performance without disproportionately increasing model complexity, which is critical for edge and field-deployable 

systems. 
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3.5. Evaluation Metrics  

For sign-language object detection, we evaluate using Precision, Recall, F1-score, and mAP50–95. Predictions are 

matched with ground-truth boxes via IoU (Intersection over Union), which is defined as the overlap area divided by 

the union area. A prediction is considered a True Positive (TP) when the class is correct and the IoU meets the threshold 

(e.g., 0.50); duplicate detections or incorrect classes are False Positives (FP), and unmatched ground truths are False 

Negatives (FN). True Negatives (TN) are not used in standard detection evaluation. Precision = TP / (TP + FP) 

measures accuracy, Recall = TP / (TP + FN) measures completeness, and F1-score = 2·(Precision·Recall) / (Precision 

+ Recall) balances these metrics.  

For mAP50–95, we calculate Average Precision (AP) for each class as the area under the Precision–Recall curve, then 

average AP across IoU thresholds from 0.50 to 0.95 in steps of 0.05 (COCO-style), and across classes to obtain mAP. 

We report both mAP@50 (more lenient matching) and mAP50–95 (more strict, comprehensive), along with macro-

averaged Precision, Recall, F1, and, ideally, standard deviations or confidence intervals to demonstrate the robustness 

of the results. 

In addition to reporting global mAP scores, class-wise precision, recall, and AP values were computed to assess whether 

performance was biased toward high-frequency gesture categories. To account for result variability, each model was 

trained three times with different random seeds, and standard deviation across runs is reported for the main metrics. 

Full per-class AP values are provided in the supplementary material, while summary statistics for the top and bottom 

five classes are included in the Results section.  

4. Results and Discussion 

4.1. Model Performance 

This section presents the initial performance results of YOLOv8, YOLOv9, YOLOv11, and YOLOv12, with a focus 

on accuracy, efficiency, and stability in real-world scenarios. Quantitative outcomes and illustrative examples appear 

in figures 4 through 5 and table 2, highlighting trends, strengths, sensitivities, and cross run consistency as the models 

contend with variable lighting, diverse viewpoints, partial occlusions, and motion.  

After applying class-weighted loss during training, the model showed reduced prediction bias toward high-frequency 

classes. The improvement was reflected in higher recall values for low-frequency classes without degrading the 

performance of majority classes. While the results indicate that the mitigation strategy partially alleviated imbalance 

effects, further refinements such as per-class augmentation or focal loss may be required for deployment in real-world 

clinical settings where rare symptoms are equally important for diagnosis. 

 

Figure 4. Training and Validation Loss Performance Comparison 
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The figure 4 depicting the training and validation loss trends illustrates the convergence behavior of the YOLOv8, 

YOLOv9, YOLOv11, and YOLOv12 models over 100 training epochs. Three loss components are considered: box 

loss for object localization accuracy, classification loss for class prediction error, and distribution focal loss for refining 

bounding box regression in anchor-free architectures. The training loss curves show that YOLOv9 and YOLOv8 

achieve a faster and more consistent reduction in all loss components, indicating stable optimization and effective 

learning. In contrast, YOLOv11 and YOLOv12 demonstrate slower convergence and greater fluctuations, particularly 

in classification loss. Analysis of the validation losses further reveals that YOLOv9 maintains the lowest and most 

stable values across all metrics, reflecting strong generalization and limited overfitting. YOLOv8 exhibits comparable 

validation performance with slightly higher variability in distribution focal loss, while YOLOv11 and YOLOv12 

display higher and less stable validation losses, which correspond to their lower detection accuracy. Overall, the results 

suggest that YOLOv9 offers the most effective error minimization, YOLOv8 provides a balanced trade-off between 

accuracy and efficiency, and the lighter architectures compromise precision for reduced complexity.

 

Figure 5. Comparative Analysis of Performance Metrics 

Figure 5 the preliminary performance evaluation of YOLOv8, YOLOv9, YOLOv11, and YOLOv12, emphasizing their 

accuracy, computational efficiency, and robustness under practical conditions. YOLOv9 shows superior accuracy in 

most metrics, while YOLOv8 provides stable, balanced performance. 

 

Figure 6. The image depicts the model in testing. 
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Figure 6  provides an overview of the dataset and evaluation setup, consisting of 10,525 images partitioned into training 

(8,449 images, 80%), validation (1,384 images, 13%), and testing (692 images, 7%) subsets. Preprocessing includes 

automatic orientation adjustment and resizing to 640×640 pixels, while horizontal flipping is applied as a data 

augmentation strategy to improve model robustness. 

 

Figure 7. The image depicts the model in testing. 

Figure 7 presents an overview of the dataset setup employed for model development and evaluation. A total of 15,350 

images are allocated to the training set (13,431 images, 87%), validation set (1,279 images, 8%), and test set (640 

images, 4%). Preprocessing steps include automatic orientation adjustment, resizing to 640×640 pixels, and contrast 

enhancement. In addition, data augmentation techniques such as horizontal flipping, brightness and saturation variation, 

and noise addition are applied to increase data variability and strengthen model robustness. 

Table 2 provides a numerical comparison of four YOLO variants in terms of detection accuracy, model size, and 

inference efficiency, highlighting distinct performance trade-offs. YOLOv11 delivers the strongest detection results, 

achieving precision of 0.9527, recall of 0.9700, and mAP values of 0.9723 at IoU 0.5 and 0.6679 across 0.5–0.95. 

While its parameter count remains moderate at 7.7 million and model size is compact at 7.8 MB, its inference latency 

increases to 16.1 ms, reflecting higher computational requirements. 

Table 2. Model Performance 

Model Precision Recall mAP@50 mAP@50:95 Params (M) Size (MB) Latency (ms) 

YOLOv8 0.7735 0.7884 0.8178 0.5878 3.2 11.2 11.4 

YOLOv9 0.7307 0.8037 0.8149 0.5883 24.2 12.2 13.7 

YOLOv11 0.9527 0.9700 0.9723 0.6679 7.7 7.8 16.1 

YOLOv12 0.7957 0.7598 0.8069 0.5856 20 22 20.5 

YOLOv8 and YOLOv9 exhibit similar accuracy levels but differ markedly in efficiency. YOLOv8 attains precision 

and recall of 0.7735 and 0.7884, with an mAP@0.5–0.95 of 0.5878, while offering the lowest latency at 11.4 ms and 

the smallest parameter count of 3.2 million. YOLOv9 slightly improves recall to 0.8037 and mAP@0.5–0.95 to 0.5883 

but requires a substantially larger model with 24.2 million parameters and higher latency of 13.7 ms. YOLOv12 records 

moderate performance with an mAP@0.5–0.95 of 0.5856 but incurs the highest latency at 20.5 ms and a larger model 

size of 22 MB, indicating limited efficiency gains from increased complexity. Overall, the results numerically confirm 

the trade-off between accuracy and efficiency, positioning YOLOv11 for accuracy-driven tasks and YOLOv8 as a 

practical choice for real-time or resource-limited applications. 

4.1.1. Error and Failure Case Analysis 

In addition to the overall performance metrics, failure-case analysis was conducted to identify the conditions under 

which the detector struggled. Most misclassifications occurred in samples with low illumination, motion blur, or partial 

hand occlusion, particularly when the dominant signing hand overlapped the torso or clothing. The lowest AP values 

were observed in semantically related categories such as Stress Level and Sleep Pattern, where gestures share similar 
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hand shapes and differ mainly by spatial positioning. Figure 8 presents examples of failed detections, showing that the 

model occasionally confuses visually similar signs or fails to localize the hand when lighting causes loss of contour 

contrast. These findings suggest that incorporating temporal features or pose-estimation cues may reduce gesture 

ambiguity and improve robustness in real medical settings, where camera placement and environmental lighting cannot 

be strictly controlled.  

 

Figure 8. Example of failed detections. 

4.2. Comparative Discussion of Results and the Literature  

While YOLO-based architectures were selected as the primary detection backbone in this study, alternative detection 

models were also reviewed to ensure that the choice was not constrained solely by accuracy benchmarks. EfficientDet, 

for example, offers strong accuracy–parameter scaling but exhibits higher inference latency on edge devices, limiting 

its suitability for real-time interaction in clinical settings. Transformer-based detectors such as DETR and Deformable 

DETR provide improved global feature reasoning but require longer convergence times, larger GPU memory, and 

typically underperform on small, high-detail objects such as hand shapes unless heavily optimized. Similarly, full 

transformer sequence models achieve strong performance in continuous sign recognition tasks, but their computational 

cost makes them impractical for deployment in standalone medical devices. Accordingly, YOLOv11 was identified as 

the most suitable model, as it delivered the highest detection performance in the experiments while maintaining a 

compact parameter size and stable validation loss. This combination indicates efficient learning and strong 

generalization, making YOLOv11 well suited for edge-oriented deployments such as mobile aquaculture tools or on-

site biological monitoring systems, where limited hardware resources and low-latency inference are essential. 

Previous studies consistently show that lightweight detectors such as YOLOv9-tiny and YOLOv11-nano can achieve 

near-optimal performance in resource-constrained settings [4], [9]. Although YOLOv8 exhibits slightly lower 

accuracy, it maintains a favorable balance between architectural simplicity and inference stability, supporting its use 

in general-purpose detection tasks, in line with earlier benchmarks on YOLO-based models for real-time, low-resource 

applications [4], [9]. Unlike multimodal approaches that incorporate skeletal features or sensor fusion [7], this work 

focuses exclusively on image-based classification to better capture visual characteristics relevant to species 

identification; however, known robustness issues under occlusion and varying illumination remain, particularly for 

juvenile specimens with subtle morphological differences [9]. Addressing a domain rarely explored in computer vision, 

this study targets the taxonomic complexity of economically important freshwater snails in Thailand and extends 

beyond prior mobile applications centered on generic gesture or object recognition [6], [8] by offering a scalable 

automated framework for aquaculture monitoring, traceability, and sustainable management 

4.3. Connections and Future Applications  

The steady improvements from YOLOv5 through YOLOv10 demonstrate that our detector is a reliable “perception 

core" for integrating with pose/keypoint streams and text modules, enabling comprehensive Thai Sign Language (TSL) 

communication. Results align with clinical workflows: the detector provides trustworthy visual evidence, pose cues 

help stabilize articulation during occlusion or movement, and downstream NLP/OCR translates signs into medical 

intentions, symptoms, and structured data for history-taking. This system supports triage kiosks, telemedicine, and low-

resource clinics with limited interpreters. Short-term applications include registration, symptom intake, and captioning; 

mid-term objectives involve continuous sign recognition, context-aware intent linking with EHRs, and interactive 

clarification to minimize risks. For deployment, models should be compressed and distilled for on-device inference, 

data should be expanded to include dialectal and co-articulated TSL, and the system should be stress-tested in various 
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conditions and scenarios. Evaluation should go beyond mAP to include sequence-level accuracy and task outcomes 

such as intake completeness and error severity, with privacy-focused logging and governance to ensure safety.  

5. Discussion  

Experiments spanning YOLOv5 to YOLOv10 show steady progress, with v10 providing a credible balance between 

accuracy and computational limits. The YOLO architecture enhances Thai Sign Language recognition in challenging 

conditions, such as varying lighting, different viewpoints, partial occlusion, and rapid motion. However, gains in mAP 

at the 50 to 95 thresholds remain modest, indicating ongoing issues with IoU consistency and environmental variability. 

YOLOv11 was not included in the final analysis due to training and validation problems, despite promising early signs. 

The findings point to a development path starting with a solid vision core and expanding into multimodal capabilities. 

The first step involves a reliable image recognition backbone. This robustness can be improved through pose 

estimation, keypoint detection, and integration with optical character recognition and natural language processing. This 

layered approach helps address occlusion, variation between individuals, and different viewpoints. Connecting 

recognition to clinical workflows further supports systematic history taking, standardized medical record keeping, and 

integration with health informatics systems. 

Implementing real-world deployment requires thoughtful model compression, including pruning, quantization, and 

knowledge distillation, to reduce model size and latency on resource-limited edge devices. This is crucial for rural 

clinics and service points where power and connectivity are inconsistent. 

This study has some limitations. Dataset diversity remains limited; protective gear and hand coverings can hide 

important cues, and the evaluation still focuses on single frames instead of sequences. Future research should include 

sequence-level metrics such as sequence mAP and sequence F1, conduct field tests in real environments, measure 

device latency, and enforce thorough data governance, including privacy safeguards, informed consent, de-

identification, and secure data storage. Overall, the practical approach is to build a reliable vision core, extend it to 

multimodal processing, and adapt it for edge deployment, paving the way for sustainable clinical readiness in Thai 

settings. 

Ethical safeguards are essential when deploying an AI-based sign language system in clinical environments. All video 

data used in this study were collected under informed consent agreements approved by the institutional ethics 

committee, and signer identities were anonymized through face-blurring and metadata removal to comply with the Thai 

Personal Data Protection Act (PDPA). Dataset access is restricted through encrypted storage and role-based 

authorization. Because gesture misclassification may lead to incorrect symptom reporting and clinical 

misunderstanding, the system is designed as an assistive tool rather than an autonomous diagnostic agent; all generated 

outputs are reviewed by medical personnel before being entered into patient records. Future deployment will require 

real-time explainability logs, audit trails, and a fallback mechanism that allows patients to request human interpretation 

when model confidence is low, reducing the risk of medical harm in high-stakes interactions.  

6. Conclusion 

This experimental evaluation reveals clear performance variations among YOLOv8, YOLOv9, YOLOv11, and 

YOLOv12 under identical training conditions. As shown in Table 2, YOLOv11 consistently outperforms the other 

models, achieving the highest Precision, Recall, mAP@50, and mAP@50:95. While its inference latency is higher than 

that of YOLOv8 and YOLOv9, YOLOv11 maintains a relatively compact model size and moderate parameter count, 

indicating a favorable trade-off between accuracy and computational efficiency. In comparison, YOLOv8 and 

YOLOv9 exhibit lower detection accuracy, and YOLOv12 shows reduced effectiveness alongside increased latency 

and model size, suggesting limited benefits from additional architectural complexity. 

These results support the selection of YOLOv11 as the backbone of the proposed framework, particularly for 

applications where detection accuracy and robustness are critical. The findings further suggest a modular development 

approach in which a reliable image-based detection model forms the foundation, with future integration of pose 

estimation or keypoint-based features to enhance performance under real-world conditions such as occlusion, motion, 
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illumination variation, and signer diversity. Moreover, combining accurate detection outputs with higher-level semantic 

interpretation enables practical downstream applications, including automated analysis and structured system 

integration in assistive and real-world deployment settings. 

Future work will focus on extending the framework beyond isolated sign detection toward sequence-level recognition, 

expanding the dataset to include dialectal variants, co-articulated signing, and richer contextual cues, and applying 

model compression and optimization techniques to enable reliable on-device inference in resource-limited clinical 

environments. These developments are essential for ensuring deployability, low latency, and clinical safety in real Thai 

healthcare settings.  
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