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Abstract 

Maternal healthcare is essential to safeguard the well-being of mothers and their children during pregnancy, childbirth, and the postpartum period. 

This study aims to develop and evaluate a software application that predicts maternal and child health risks using the Naive Bayes algorithm as 

the primary predictive model. The research focuses on enhancing early detection accuracy while ensuring that the system remains practical and 

affordable for healthcare use. An Android-based software application was designed to analyze seven key maternal health variables patient code, 

age, systolic and diastolic blood pressure, blood glucose level, body temperature, and heart rate to generate a single output representing the 

predicted risk level. To validate the effectiveness of the Naive Bayes model, its performance was benchmarked against Neural Network (NN) 

and Random Forest (RF) algorithms using a dataset of 1,015 maternal health records obtained from Kaggle. Model performance was assessed 

based on accuracy, precision, recall, and F1-score. The Naive Bayes model achieved an accuracy of 63%, performing comparably to Random 

Forest (67%) and better than Neural Network (48%). The estimated software development cost was IDR 1,635,913, confirming the feasibility of 

producing a cost-effective health application for risk prediction. The proposed Naive Bayes–based software offers an accurate, low-cost, and 

accessible solution for early detection of maternal and child health risks. It provides a valuable decision-support tool for healthcare providers and 

pregnant women, enabling timely intervention and improved maternal care outcomes. The findings demonstrate the potential of machine 

learning–based software in improving maternal health management. Future work may focus on enhancing prediction accuracy through larger 

datasets and integrating additional clinical and demographic variables. 
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1. Introduction  

As of 2020, approximately 800 women die each day from pregnancy and childbirth-related causes that are largely 

preventable. Sustainable Development Goal (SDG) 3.1 aims to reduce maternal mortality to fewer than 70 deaths per 

100,000 live births by 2030. About 94% of maternal deaths occur in low-resource settings and are mostly avoidable. 

Maternal health plays a critical role in perinatal outcomes, and many complications can be prevented during the first 

trimester [1]. For example, rising obesity rates among women are connected to increased risks of fetal macrosomia, 

gestational diabetes [2], hypertensive disorders during pregnancy, and the birth of large-for-gestational-age (LGA) 

infants [3]. Furthermore, declining birth rates in developed countries have led to higher maternal age, which is 

associated with greater risks of adverse pregnancy outcomes [4]. 

Assessing maternal health risks is crucial for protecting the well-being of pregnant women and reducing both maternal 

mortality as well as morbidity. Maternal health comprises the mental, emotional, and social well-being of women 

during pregnancy, childbirth, as well as the postpartum period [5]. It includes medical conditions, lifestyle factors, 

access to healthcare as well as various social and economic influences [6]. 

Protecting the health of both mother and child requires continuous attention to maternal care from pregnancy through 

the postpartum period [7]. At every stage, various health risks can seriously impact maternal and fetal outcomes [8]. 
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Obstetric emergencies such as hemorrhage, hypertensive disorders, sepsis, abortion, obstructed labor, ectopic 

pregnancy, and embolism pose significant as well as immediate threats to maternal health [9]. Moreover, postpartum 

hemorrhage remains the leading cause of maternal death worldwide, with approximately 24% of hemorrhage-related 

deaths occurring during pregnancy [10]. Improving emergency obstetric care during labor is a major strategy for 

prevention [11]. Healthcare delivery systems should be strengthened to effectively reduce maternal mortality. Despite 

ongoing global efforts, maternal mortality remains a critical concern, particularly in regions with limited access to 

healthcare services [12]. Improving maternal and child healthcare services requires the development of a more accurate 

and cost-effective early screening method [13]. A proposed solution includes designing software that uses the Naive 

Bayes algorithm to predict potential health risks for both mothers and children [14]. 

Numerous studies have explored maternal health risks, including a 2025 study by Pavagada [12], which showed the 

importance of closely monitoring maternal health. This study examined the application of Machine Learning (ML) 

models for predicting maternal health risks, with the Ensemble Bagged Trees method achieving the highest accuracy 

at 84.12%, outperforming other models. The findings showed the potential of ML to provide timely and accurate risk 

assessments for expectant mothers. In developing software to predict maternal and child health risks, the literature 

review will incorporate studies on multi-algorithm frameworks [15], data mining, and ML applications [16]. For 

example, a 2024 study by Makkiyah [17] explored the development of an application using a multi-algorithm method 

to predict diabetes status. Another relevant study by Nia [18] evaluated the use of Artificial Intelligence (AI) in disease 

diagnosis and prediction. The finding showed that AI could reduce physician workload, minimize diagnostic errors and 

time, as well as improve the total effectiveness of disease detection. 

2. Literature Review  

This study will adopt an experimental method to develop software that predicts maternal and child health risks using 

the Naive Bayes algorithm. The accuracy of the model will be evaluated by comparing it with other algorithms, 

including RF and NN. The aim is to support risk prediction during pregnancy and facilitate early identification of 

potential complications. Several previous studies have addressed maternal and child health risk prediction. For instance, 

a 2024 study by Jamel [19] focused on maternal healthcare services throughout pregnancy, childbirth, and the 

postpartum period. The study showed the importance of early risk detection and maternal vulnerability during these 

stages. It proposed a prediction model that began with Principal Component Analysis (PCA) to extract major features, 

followed by a stacked ensemble voting classifier combining ML and a deep learning model. The PCA-based model 

achieved strong performance—98.25% accuracy, 99.17% precision, 99.16% recall, and a 99.16% F1-score, 

outperforming several state-of-the-art methods. Another significant study by [4] introduced the Mud Ring Algorithm 

(MRA) for parameter optimization in maternal health risk prediction. In the first phase, MRA optimized a Support 

Vector Machine (SVM) model, tested across 13 real-world datasets. In the second phase, the study addressed class 

imbalance using a crossover oversampling strategy. Additional models such as RF and K-Nearest Neighbor were also 

tested. The MRA-enhanced models showed substantial performance gains, where accuracy increased by 11.8% for 

MRA-SVM, 9.11% for MRA-RF, and 17.08% for MRA-KNN. These models outperformed six other optimization 

methods across metrics such as Accuracy, G-mean, F-measure, MCC, and Kappa [4]. A 2023 study by [6] explored 

the use of Exploratory Data Analysis (EDA) in predicting maternal health risks. This study conducted a comprehensive 

analysis of relevant datasets to build a robust ML model and incorporate Explainable AI (XAI) methods to interpret 

the decision-making process of top-performing algorithms [6]. Following the discussion, a 2025 study by [20] 

introduced molecular biomarker profiling as a developing method in maternal-fetal health. By analyzing maternal blood 

for biomarkers, the method provided perceptions of placental function, enabling early diagnosis and intervention. The 

study signified that traditional tools such as ultrasound and Doppler imaging might not detect placental dysfunction 

before clinical symptoms appear. Since the placenta plays a critical role in fetal development, early detection is 

important for preventing serious complications such as preeclampsia [20]. 

Previous studies have explored various approaches to improving maternal health risk prediction. For instance, [19] 

applied PCA with a stacked ensemble classifier to enhance feature extraction and achieve high predictive accuracy. 

While this highlights the potential of complex ensemble and dimensionality-reduction methods, such techniques 

require substantial computational resources and are less suitable for real-time healthcare applications in low-resource 
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settings. In contrast, the present study adopts the Naive Bayes algorithm, prioritizing simplicity, interpretability, and 

low computational cost for deployment on mobile devices. Similarly, [4] introduced the MRA to optimize machine 

learning parameters across multiple datasets. Although their method significantly improved classification performance, 

it involves advanced optimization processes not easily integrated into lightweight applications. This study, therefore, 

emphasizes practicality and ease of implementation over complex optimization, aiming to produce an accessible tool 

for healthcare providers. 

Most existing studies on maternal and child health risk prediction have focused on algorithm development, with limited 

progress toward practical software applications. To address this gap, the proposed software aims to function as an early 

diagnostic tool for hospitals, healthcare providers, and pregnant women in assessing potential health risks during 

pregnancy. The application will be developed for the Android platform and use seven input variables, namely patient 

code, age, systolic blood pressure, diastolic blood pressure, blood glucose level, body temperature, and heart rate, to 

generate a single output known as the predicted risk level. 

3. Methodology  

The following were the stages of software to predict maternal and child health risks with Naive Bayes, NN, and RF. 

Figure 1 showed the stages of software development predict maternal and child health risks using Naive Bayes, NN, 

and RF. The initial steps included problem identification, problem analysis, design, and coding, followed by application 

implementation [21]. The process comprised two main inputs, namely data from pregnant women and medical records 

based on seven variables. The outcomes included a dataset on maternal and child health risks as well as a comparison 

of prediction results for maternal and child health status using NN, RF, and NN algorithms. 

 

Figure 1. Research flow design 

Figure 2 showed the study framework of software designed to predict maternal and child health risks using the Naive 

Bayes method. This framework was flexible and could be developed according to different needs. The stages included 

pregnant women or doctors logging in and when the login was successful, experts could input data as well as medical 

records of pregnant women with variables such as patient code, age, systolic/diastolic blood pressure, blood glucose, 

body temperature, and heart rate. Based on these seven input variables, the system produced a risk level status using 

Naive Bayes. This output formed the maternal and child health risk results, which were stored in a dataset database. 

The dataset was then exported as a CSV file and loaded into Google Colab, where scripting was performed using 

Python. To measure accuracy, the expert used the orange widget tool. From the above process, prediction results were 

obtained from NN [21], RF [22], and Naive Bayes [23]. While the current implementation relies on Google Colab for 

model training and evaluation, future work may integrate these processes directly into the Android system or a secure 

web server. This enhancement would allow real-time risk prediction and reduce dependency on manual CSV data 

exchange, improving system efficiency and scalability. Although Orange was primarily chosen for its user-friendly 

interface and compatibility with scikit-learn, future research may incorporate additional platforms such as Weka or 

TensorFlow to enable deeper algorithmic customization and scalability testing. Cross-validation of results using 

multiple tools would further strengthen methodological transparency and reproducibility. 
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Figure 2. Study framework software to predict maternal and child health risks with Naive Bayes, NN, and RF 

4. Results and Discussion 

The stages of the software developed to predict maternal and child health risks using Naive Bayes began with 

generating a dataset by inputting data and medical records of pregnant women based on seven variables. The system 

then predicted the risk level status using NN, RF, and Naive Bayes algorithms. At this stage, the problem was identified 

as the need to develop software to predict maternal and child health risks using the Naive Bayes method, based on 

seven input variables and one output variable. 

4.1. Problem Identification 

Problem identification was conducted during this stage, the development of software capable of predicting maternal 

and child health risks using the Naive Bayes method is essential to support effective decision-making and the 

implementation of appropriate policies in healthcare services for pregnant women. The resulting predictive model 

should be designed to ensure its applicability within real healthcare settings, enabling practitioners to utilize it as part 

of routine maternal and child health services. Furthermore, this study includes an evaluation of prediction accuracy by 

comparing the performance of the Naive Bayes algorithm with NN and RF, thereby providing comprehensive insights 

into the model’s reliability and suitability for clinical use [24], [25]. The problem analysis in this study is 

communicating with tool users to understand the software expectations from both pregnant women and doctors. 

4.2. Design Software to Predict Maternal and Child Health Risk with NB, NN, and RF 

The software used during this analysis was developed for the Android platform [26]. Several interfaces shown in figure 

3 were presented in the following image. 
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Figure 3. Software display to predict maternal and child health risks with Naive Bayes, NN, and RF 

4.3. Practical Complexity of Software to Predict Maternal and Child Health Risks  

At this stage, effort estimation was conducted using Use Case Point (UCP) method, which served as the basis for 

determining the required time, personnel, and costs. The process began with calculating the Unadjusted Actor Weight 

(UAW) [27], which was obtained by categorizing the actors of the system and assigning a weight to each category 

based on each role in the system [28]. After determining the weights for actors and use cases, the next step was to 

calculate UAW and the Unadjusted Use Case Weight (UUCW). In this study, actors refer to the primary entities that 

interact with the maternal health risk prediction software, including pregnant women as end users, doctors or midwives 

as data input and review agents, and the system administrator responsible for managing user access and database 

updates. 

The results of UAW and UUCW calculation were presented in table 1. Average (Weight = 2) represents actors that 

interact through a standard user interface with limited validation. These classifications determine the UAW value by 

multiplying the number of actors in each category by the corresponding weight. A similar process was applied to the 

UUCW calculation, where each use case (such as “Input Patient Data,” and “View Risk Prediction,”) was assigned a 

complexity level and weighted accordingly. The next stage was to calculate the value of the unadjusted use case point 

(UUCP) which was the result of adding the total UAW and UUCW values. The resulting subtotals are then summed, 

yielding a total UAW value of 6. In parallel, the UUCW calculation assigns weights to the use cases associated with 

each actor and multiplies them by their respective quantities. The sum of all UUCW subtotals results in a total value 

of 40. Finally, the UUCP value is obtained by adding the total UAW and UUCW, producing a final UUCP score of 46, 

which represents the unadjusted functional size of the system prior to the application of technical and environmental 

adjustment factors.  

Table 1. Calculating UAW value 

Actor Type 
Weight 

(UAW) 
Qty 

Subtotal 

(UAW) 

Weight 

(UUCW) 
Qty 

Subtotal 

(UUCW) 

System Administrator Simple 2 1 2 10 1 10 

Pregnant Woman Average 2 1 2 10 1 10 

Doctor/Midwife Complex 2 1 2 15 1 20 

Total    6   40 

Table 2 presents the calculation of the Technical Complexity Factor (TCF) used to adjust the Unadjusted Use Case 

Points based on the system’s technical characteristics. The table lists 13 technical factors (T1–T13), such as distributed 

system requirements, response time, security features, and ease of use. Each factor is assigned a predefined weight that 

reflects its relative importance and a score ranging from 0 to 5 that represents the degree to which the factor applies to 

the system. The product of the weight and the score (B * S) is calculated for each factor, and all results are summed to 
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obtain the total technical factor (TF) value of 53.5. The TCF is then calculated using the standard formula TCF = 0.6 

+ (0.01 * TF). Substituting the obtained TF value results in a TCF of 1.135. This TCF value serves as a technical 

adjustment multiplier that reflects the overall technical complexity of the system and is later applied to refine the system 

size estimation. 

Table 2. Calculating TCF value 

No Technical factor Weight Score (0–5) B * S 

T1 Distributed system required 2 4 8 

T2 Response time 2 3 6 

T3 End-user efficiency 1 4 4 

T4 Complex internal processing required 1 2 2 

T5 Reusable code 1 3 3 

T6 Easy to Install 0.5 3 1.5 

T7 Easy to use 0.5 4 2 

T8 Portable 2 3 6 

T9 Easy to Change 1 5 5 

T10 Concurrent 1 4 4 

T11 Security features 1 4 4 

T12 Access for Third Parties 1 4 4 

T13 Special training required 1 4 4 

Total TF 53.5 

Total TCF (0.6 + (0.01 * TF)) 1.135 

Table 3 shown the calculation of the Environmental Complexity Factor (ECF), which reflects the influence of 

environmental and team-related conditions on the software development process. It consists of eight environmental 

factors (E1–E8), including familiarity with the project, application and object-oriented programming experience, 

analyst capability, team motivation, requirement stability, staff availability, and programming language difficulty. Each 

factor is assigned a specific weight and a score ranging from 0 to 5 based on its relevance to the project. The product 

of the weight and the score (B * S) is calculated for each factor, and all values are summed to obtain a total 

Environmental Factor (EF) score of 31. The ECF is then calculated using the formula ECF = 1.4 + (−0.03 * EF). 

Substituting the EF value into the formula yields an ECF of 0.47. This ECF value represents the overall impact of the 

development environment on the project and is used as an adjustment multiplier to refine the final use case point 

estimation. 

Table 3. Calculating ECF value 

No Environment Factor Weight Score (0-5) B * S 

E1 Familiarity with the project 1.5 4 6 

E2 Application experience 0.5 4 2 

E3 Oo programming experience 1 4 4 

E4 Lead analyst capability 0.5 4 2 

E5 Motivation 1 4 4 

E6 Stable requirements 2 3 6 

E7 Part time staff 1 3 3 

E8 Difficult programming language 1 4 4 

Total EF 31 

Total ECF (1.4 + (-0.03 * EF)) 0.47 

After obtaining the TCF and ECF values, the next step is to calculate the Use Case Points (UCP) to estimate system 

size and development effort. The UCP is computed by multiplying the Unadjusted Use Case Points (UUCP) by the 

TCF and ECF values. With a UUCP value of 46, the calculation yields UCP = 46 * 1.135 * 0.47 = 24.54. Finally, the 

development effort is estimated by multiplying the UCP value by a productivity factor of 20 hours per UCP, resulting 

in an estimated effort of approximately 490.77 person-hours, which represents the total development effort required 

for the system. 

While the UCP methodology offered a systematic approach for estimating development effort, it does not fully account 

for contextual factors that may influence estimation accuracy. Elements such as project risk, requirement volatility, 
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and variations in team experience or technical expertise can significantly affect productivity levels and cost outcomes. 

In this study, the estimation relied on standard Technical and Environmental Complexity Factors, which partially reflect 

environmental stability and team capability. However, a more comprehensive risk assessment incorporating factors 

such as project uncertainty, developer familiarity with machine learning frameworks, and software validation 

complexity could enhance the reliability of future estimations. Integrating risk sensitivity or hybrid estimation models, 

such as UCP combined with COCOMO II or Function Point Analysis, is recommended to improve precision in software 

project planning, particularly for healthcare applications where system reliability is critical. The next step was to 

calculate the estimated time and costs required for developing the software shown in table 4. 

Table 4. Practical complexity of software to predict maternal and child health risks with NB, NN, and RF 

Effort 490.77 Productivity Factor 

Productivity Factor (Karner. 1993). PF 28 20 10 5 4 2 

Duration (hours) 13741.7 9815.8 4907.4 2453.7 1963.10 981.5 

Duration (week) 286.28 204.49 102.24 51.12 40.90 20.45 

Duration (month) 37.55 26.82 13.41 6.70 5.36 2.68 

Table 5 shown the estimation of development time and cost based on different productivity factor (PF) scenarios, 

namely PF = 2 and PF = 4. The table identifies two project roles involved in the development process, namely a System 

Analyst and a Programmer, with one person assigned to each role. For the PF = 2 scenario, each role is assumed to 

work 2 hours per day, equivalent to 4 hours per week. Based on the previously calculated total effort, this workload 

results in a total of 82 working hours per role. With an hourly salary rate of 10,000, the estimated cost for each role is 

817,957, producing a total project cost of 1,635,913. In the PF = 4 scenario, the assumed workload increases to 8 hours 

per week for each role, reflecting a higher productivity or more intensive work allocation. Under this condition, the 

total workload for each role becomes 327 hours. Using the same hourly salary rate of 10,000, the estimated cost for 

each role is 3,271,827, resulting in a total project cost of 6,543,653. Overall, the table demonstrates how variations in 

the productivity factor and weekly workload significantly affect the estimated project duration and development cost, 

providing alternative planning scenarios for resource allocation and budgeting. 

Table 5. Calculate estimated time and cost 

No Role Qty 
Workload 

(hours/day) 

Workload 

(hours/week) 

Total 

(hours/week) 

Workload 

Total 

Salary 

(Per 

Hour) 

Sum 

Salary 

Calculate estimated time and cost with PF=2 

1 
System 

Analyst 
1 2 4 4 82 10,000 817,957 

2 Programmer 1 2 4 4 82 10,000 817,957 

 Total 2      1,635,913 

Calculate estimated time and cost with PF=4 

1 
System 

Analyst 
1 2 8 8 327 10,000 3,271,827 

2 Programmer 1 2 8 8 327 10,000 3,271,827 

 Total 2      6,543,653 

The selection of PF = 2 in the final estimation represents an optimistic but feasible scenario for a small, well-scoped 

academic project with low environmental uncertainty. In professional or industrial settings, higher PF values (e.g., 5–

10) would likely be more appropriate to account for larger teams, evolving requirements, and higher validation 

demands. Future studies may refine PF calibration using empirical productivity data from comparable health-

informatics projects to improve estimation accuracy. 

4.4. Dataset Database 

The dataset used to evaluate the accuracy of the maternal and child health risk prediction software using RF, Naive 

Bayes, and NN algorithms was shown in table 6 [29]. The dataset sourced from Kaggle contains 1,015 anonymized 

maternal health records. Prior to model training, data quality was assessed for completeness, outliers, and missing 

values. Normalization was applied to ensure consistent feature scales. Ethical considerations regarding data privacy 
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and secondary use were also reviewed, as the dataset is publicly available and anonymized in accordance with Kaggle’s 

open-data policy. The seven input variables age, systolic and diastolic blood pressure, blood glucose level, body 

temperature, and heart rate were selected based on a combination of clinical relevance and preliminary data analysis. 

Consultation with maternal health experts confirmed that these indicators are among the most critical physiological 

variables routinely measured during antenatal visits and directly linked to maternal morbidity risks such as 

preeclampsia and gestational diabetes. To confirm their relevance, pairwise correlation and feature importance analysis 

(using Random Forest) were conducted, showing that these six physiological variables had the highest information 

gain relative to the target “risk level” class. Other available attributes were excluded due to redundancy or low 

correlation. Patient code was retained as an identifier but omitted from the training process.  

Table 6. Dataset maternal and child health risks 

Code Patient Age 
Systolic 

Blood Pressure 

Diastolic 

Blood Pressure 

Blood 

Glucose 

Body 

Temperature 

Heart 

rate 
Risk Level Status 

M-0001 25 130 80 15 98 86 high risk 

M-0002 35 140 90 13 98 70 high risk 

M-0003 29 90 70 8 100 80 high risk 

M-0004 30 140 85 7 98 70 high risk 

M-0005 35 120 60 6.1 98 76 low risk 

M-0006 23 140 80 7.01 98 70 high risk 

M-0007 23 130 70 7.01 98 78 mid risk 

M-0008 35 85 60 11 102 86 high risk 

M-0009 32 120 90 6.9 98 70 mid risk 

M-0010 42 130 80 18 98 70 high risk 

M-0011 23 90 60 7.01 98 76 low risk 

M-0012 19 120 80 7 98 70 mid risk 

M-0013 25 110 89 7.01 98 77 low risk 

M-0014 20 120 75 7.01 100 70 mid risk 

M-0015 48 120 80 11 98 88 mid risk 

The unequal distribution of risk classes in the dataset may have influenced model performance, particularly for minority 

categories such as high risk. While stratified sampling was used to maintain proportional representation, the absence 

of balancing methods such as Synthetic Minority Oversampling (SMOTE) or cost-sensitive weighting could have 

limited the model’s ability to generalize to underrepresented cases. Future research should investigate the use of these 

techniques or collect a more balanced dataset to enhance sensitivity and ensure equitable prediction accuracy across all 

risk levels. 

4.5. Application of Neural Network Algorithm 

Table 7 showed a sample of the normalized dataset during the process. The normalization process converted the original 

test data to a range between 0.1 and 0.9, using a formula designed to accommodate the sigmoid activation function, 

which operated with values greater than 0 [30]. Prior to training the neural network, all continuous input features (age, 

systolic and diastolic blood pressure, blood glucose, body temperature, heart rate) were rescaled using min–max 

normalization to the range [0.1, 0.9]. For each feature we computed the training-set minimum 𝑥𝑚𝑖𝑛 and maximum 

𝑥𝑚𝑎𝑥 and applied the transform: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 0.1 + 0.8 ×
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (1) 

The factor 0.8 equals 0.9 − 0.1. This range was chosen to keep inputs away from the extreme tails of the sigmoid 

activation function used in the network, reducing saturation and preserving gradient magnitude during training. All 

 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 values were calculated only on the training partition and then reused to transform the validation and 

test partitions to prevent data leakage. If a feature had zero variance in the training set (i.e. 𝑥𝑚𝑎𝑥 = 𝑥𝑚𝑖𝑛), that feature’s 

scaled value was set to 0.5 for all samples. After scaling we clipped values to [0.9 − 0.1] to guard against numerical 

drift. Identifier fields (e.g., patient code) were excluded from the feature set and the target risk class was encoded as 

label-encoded for single-output classification. Alternative preprocessing options (standardization, robust scaling, or 



Journal of Applied Data Sciences 

Vol. 7, No. 1, January 2026, pp. 567-579 

ISSN 2723-6471 

575 

 

 

 

batch normalization) were considered but min–max scaling to [0.1,0.9] was adopted because of the sigmoid activations 

and the small number of features. 

Table 7. Dataset normalization 

Code Patient Age 
Systolic 

Blood Pressure 

Diastolic 

Blood Pressure 

Blood 

Glucose 

Body 

Temperature 

Heart 

rate 
Risk Level Status 

M-0001 0.5333 0.4862 0.1125 0 0.0656 high risk 0.2 

M-0002 0.6222 0.6431 0.0875 0 0.0523 high risk 0.3333 

M-0003 0.1777 0.3294 0.0250 0.32 0.0606 high risk 0.2533 

M-0004 0.6222 0.5647 0.0125 0 0.0523 high risk 0.2666 

M-0005 0.4444 0.1725 0.0012 0 0.0573 low risk 0.3333 

M-0006 0.6222 0.4862 0.0126 0 0.0523 high risk 0.1733 

M-0007 0.5333 0.3294 0.0126 0 0.0589 mid risk 0.1733 

M-0008 0.1333 0.1725 0.0625 0.64 0.0656 high risk 0.3333 

M-0009 0.4444 0.6431 0.0112 0 0.0523 mid risk 0.2933 

M-0010 0.5333 0.4862 0.1500 0 0.0523 high risk 0.4266 

M-0011 0.1777 0.1725 0.0126 0 0.0573 low risk 0.1733 

M-0012 0.4444 0.4862 0.0125 0 0.0523 mid risk 0.1200 

M-0013 0.3555 0.6274 0.0126 0 0.0581 low risk 0.2000 

M-0014 0.4444 0.4078 0.0126 0.32 0.0523 mid risk 0.1333 

M-0015 0.4444 0.4862 0.0625 0 0.0672 mid risk 0.5066 

4.6. Multi-algorithm Performance 

We divided the dataset into two parts: 90% training data and 10% testing data, with stratification and random states 

equaling 2. The performance of the NN, RF, and Naive Bayes algorithms is shown in table 8. 

Table 8. Multi-algorithm performance 

Algorithm Accuracy Precision Recall F1-Score 

Neural Network 0.48 0.35 0.48 0.40 

Random Forest 0.67 0.68 0.67 0.64 

Naive Bayes 0.63 0.67 0.61 0.61 

In table 8, the Random Forest algorithm achieved the highest accuracy (67%), followed by Naive Bayes (63%) and 

Neural Network (48%). Although Random Forest obtained slightly higher accuracy, this difference is relatively small 

and was not verified through statistical significance testing. Therefore, Random Forest can be described as performing 

marginally better rather than conclusively superior to Naive Bayes for this dataset. Future research should include 

statistical validation, such as cross-validation and McNemar’s or paired t-tests, to determine whether these differences 

are significant. Although Random Forest achieved the highest accuracy among the tested algorithms, potential 

overfitting remains a concern. The model evaluation was based on a single 90/10 train–test split, which may not fully 

capture the model’s generalization capability. Given that Random Forest can yield inflated accuracy on limited datasets, 

more rigorous validation techniques such as k-fold cross-validation, stratified sampling, or repeated hold-out testing 

should be applied in future studies. These methods would help ensure that model performance reflects true predictive 

power rather than overfitting to the training data. Additionally, hyperparameter optimization (e.g., number of trees, 

maximum depth, and feature selection per split) could further reduce overfitting risk and improve model robustness. 

The absence of confidence intervals or error margins in the reported metrics represents a limitation of this study. While 

the comparative accuracy and F1-scores suggest that Random Forest performs slightly better than Naive Bayes, the 

lack of statistical variability analysis limits the certainty of this conclusion. Incorporating repeated cross-validation or 

bootstrapped confidence intervals in future work would enhance the interpretability and robustness of the findings. 

4.7. ROC Analysis 

Receiver Operating Characteristic (ROC) curves were used to show and evaluate the performance of NN, RF, and 

Naive Bayes algorithms [26], [27]. Figure 4 showed ROC curves for RF, Naive Bayes, and NN, with the target risk 

classes, comprising “Low Risk,” “Mid Risk,” and “High Risk” represented in cyan is NN, orange is NB, as well as 

blue is RF. 
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Figure 4. Performance curves of the NN, NB, and RF algorithms 

4.8. Comparison of NB, NN, and RF Algorithms Prediction of Mater-nal and Child Health 

Figure 5 showed a comparison of NN, Naive bayes, and RF algorithms for predicting maternal and child health risk. 

 
Figure 5. Results of the comparison of NN, NB, and RF algorithms on predicting maternal and child health risks 

Table 9 presents the validation results comparing the actual risk level with predictions from the NN, Naive Bayes, and 

RF algorithms. In the digital version, color coding was originally used (green for correct predictions, red for 

mismatches). To ensure accessibility in grayscale or printed copies, we added alternative markers: an asterisk (*) 

indicates a mismatch between the predicted and actual classes, while a dash (–) denotes a correct match. For example, 

in the Naive Bayes column, five entries are marked with *, corresponding to cases where the predicted risk level differs 

from the actual outcome. This dual notation enables clear interpretation regardless of color or format. 

Table 9. Validation results of predicting maternal and child health between NN, NB, and RF algorithms 

1 2 3 4 5 6 7 8 9 10 11 12 12 14 

M-0001 0.2000 0.5333 0.4862 0.1125 0.00 0.0656 high risk- 0.9614 high risk- 0.9246 high risk- 0.8611 high risk- 

M-0002 0.3333 0.6222 0.6431 0.0875 0.00 0.0523 high risk- 0.9721 high risk- 0.9489 high risk- 1.0000 high risk- 

M-0003 0.2533 0.1777 0.3294 0.0250 0.32 0.0606 high risk- 0.5676 mid risk* 0.5840 high risk- 0.4500 mid risk* 

M-0004 0.2666 0.6222 0.5647 0.0125 0.00 0.0523 high risk- 0.7251 high risk- 0.7722 mid risk* 1.0000 high risk- 

M-0005 0.3333 0.4444 0.1725 0.0012 0.00 0.0573 low risk- 0.7244 mid risk* 0.5916 mid risk* 0.6750 low risk- 

M-0006 0.1733 0.6222 0.4862 0.0126 0.00 0.0523 high risk- 0.5028 mid risk* 0.8304 mid risk* 0.7000 high risk- 

M-0007 0.1733 0.5333 0.3294 0.0126 0.00 0.0589 mid risk- 0.7488 mid risk- 0.8232 mid risk- 0.9966 mid risk- 

M-0008 0.3333 0.1333 0.1725 0.0625 0.64 0.0656 high risk- 0.8170 high risk- 0.7800 high risk- 1.0000 high risk- 

M-0009 0.2933 0.4444 0.6431 0.0112 0.00 0.0523 mid risk- 0.6726 low risk* 0.5361 mid risk- 0.6616 mid risk- 

M-0010 0.4266 0.5333 0.4862 0.1500 0.00 0.0523 high risk- 0.8586 high risk- 0.8629 high risk- 0.6305 mid risk* 
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M-0011 0.1733 0.1777 0.1725 0.0126 0.00 0.0573 low risk- 0.7390 low risk- 0.7123 low risk- 0.9000 low risk- 

M-0012 0.1200 0.4444 0.4862 0.0125 0.00 0.0523 mid risk- 0.5610 low risk* 0.5311 low risk* 0.7843 mid risk- 

M-0013 0.2000 0.3555 0.6274 0.0126 0.00 0.0581 low risk- 0.6998 low risk- 0.4992 mid risk* 0.6250 low risk- 

M-0014 0.1333 0.4444 0.4078 0.0126 0.32 0.0523 mid risk- 0.6692 mid risk- 0.5700 mid risk- 0.4750 mid risk- 

M-0015 0,5066 0,4444 0,4862 0,0625 0.00 0.0672 mid risk- 0.6837 high risk- 0.7843 high risk- 0.6431 high risk- 

Note: 1=Code patient, 2=Age, 3=Systolic Blood Pressure, 4=Diastolic Blood Pressure, 5=Blood Glucose, 6=Body Temperature, 7=Heart rate, 

8=Risk level Status, 9=Neural Network Numerical, 10=Neural Network Validation Against Actual, 11=Naive Bayes Numerical, 12= Naive 

Bayes Validation Against Actual, 13= Random Forest Numerical, 14= Random Forest Validation Against Actual. 

Table 9 showed the validation of maternal and child health risk predictions between the NN, Naive Bayes, and RF 

algorithms against the actual risk level results. The actual results were represented in green color in the "Risk level 

status" column. In addition, validation of NN algorithm was shown in the "NN validation against actual" column, where 

five data points were marked in red and differed from the "Risk level status" values. For the Naive Bayes algorithm 

validation in the "Validation of Naive Bayes against actual" column, there were also 5 data points that differed from 

the "Risk level status" and were marked in red. Meanwhile, the validation results of RF algorithm in the "Validation of 

RF against actual" column showed two data points that differed from the "Risk level status" and were marked in red. 

The software developed in this study successfully predicts maternal and child health risks using the Naive Bayes 

algorithm and demonstrates its feasibility as a cost-effective decision-support tool. Comparative analysis with Random 

Forest and Neural Network models confirmed that the proposed approach achieves competitive accuracy while 

maintaining simplicity and accessibility for healthcare settings. However, several limitations should be acknowledged. 

The dataset was obtained from an open-source platform and may not fully represent diverse maternal populations or 

real-world clinical variability, limiting the model’s generalizability. Additionally, the relatively small sample size and 

lack of external validation restrict the robustness of the predictive outcomes. Ethical considerations must also be 

addressed before clinical implementation, particularly concerning data privacy, informed consent, and the potential 

consequences of algorithmic misclassification in medical decision-making. Future work should focus on validating the 

model using larger, clinically verified datasets and integrating safeguards to ensure ethical, transparent, and responsible 

AI deployment in maternal healthcare. 

5. Conclusion 

In conclusion, a software tool for predicting maternal and child health risks was developed using the Naive Bayes 

algorithm. The software's prediction accuracy was evaluated by comparing three algorithms: NN, RF, and Naive Bayes. 

The software analyzes seven input variables, including patient code, age, systolic and diastolic blood pressure, blood 

glucose, body temperature, and heart rate, to predict a single output. This output, known as the risk level status, is 

designed for use by pregnant women and healthcare providers. Testing on a maternal dataset showed that RF achieved 

67% accuracy, followed by Naive Bayes at 63%, and NN at 48%, which yielded the lowest accuracy of the three. The 

total cost of developing the application is estimated at IDR 1,635,913. 
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