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Abstract

Maternal healthcare is essential to safeguard the well-being of mothers and their children during pregnancy, childbirth, and the postpartum period.
This study aims to develop and evaluate a software application that predicts maternal and child health risks using the Naive Bayes algorithm as
the primary predictive model. The research focuses on enhancing early detection accuracy while ensuring that the system remains practical and
affordable for healthcare use. An Android-based software application was designed to analyze seven key maternal health variables patient code,
age, systolic and diastolic blood pressure, blood glucose level, body temperature, and heart rate to generate a single output representing the
predicted risk level. To validate the effectiveness of the Naive Bayes model, its performance was benchmarked against Neural Network (NN)
and Random Forest (RF) algorithms using a dataset of 1,015 maternal health records obtained from Kaggle. Model performance was assessed
based on accuracy, precision, recall, and F1-score. The Naive Bayes model achieved an accuracy of 63%, performing comparably to Random
Forest (67%) and better than Neural Network (48%). The estimated software development cost was IDR 1,635,913, confirming the feasibility of
producing a cost-effective health application for risk prediction. The proposed Naive Bayes—based software offers an accurate, low-cost, and
accessible solution for early detection of maternal and child health risks. It provides a valuable decision-support tool for healthcare providers and
pregnant women, enabling timely intervention and improved maternal care outcomes. The findings demonstrate the potential of machine
learning—based software in improving maternal health management. Future work may focus on enhancing prediction accuracy through larger
datasets and integrating additional clinical and demographic variables.
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1. Introduction

As of 2020, approximately 800 women die each day from pregnancy and childbirth-related causes that are largely
preventable. Sustainable Development Goal (SDG) 3.1 aims to reduce maternal mortality to fewer than 70 deaths per
100,000 live births by 2030. About 94% of maternal deaths occur in low-resource settings and are mostly avoidable.
Maternal health plays a critical role in perinatal outcomes, and many complications can be prevented during the first
trimester [1]. For example, rising obesity rates among women are connected to increased risks of fetal macrosomia,
gestational diabetes [2], hypertensive disorders during pregnancy, and the birth of large-for-gestational-age (LGA)
infants [3]. Furthermore, declining birth rates in developed countries have led to higher maternal age, which is
associated with greater risks of adverse pregnancy outcomes [4].

Assessing maternal health risks is crucial for protecting the well-being of pregnant women and reducing both maternal
mortality as well as morbidity. Maternal health comprises the mental, emotional, and social well-being of women
during pregnancy, childbirth, as well as the postpartum period [5]. It includes medical conditions, lifestyle factors,
access to healthcare as well as various social and economic influences [6].

Protecting the health of both mother and child requires continuous attention to maternal care from pregnancy through
the postpartum period [7]. At every stage, various health risks can seriously impact maternal and fetal outcomes [8].
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Obstetric emergencies such as hemorrhage, hypertensive disorders, sepsis, abortion, obstructed labor, ectopic
pregnancy, and embolism pose significant as well as immediate threats to maternal health [9]. Moreover, postpartum
hemorrhage remains the leading cause of maternal death worldwide, with approximately 24% of hemorrhage-related
deaths occurring during pregnancy [10]. Improving emergency obstetric care during labor is a major strategy for
prevention [11]. Healthcare delivery systems should be strengthened to effectively reduce maternal mortality. Despite
ongoing global efforts, maternal mortality remains a critical concern, particularly in regions with limited access to
healthcare services [ 12]. Improving maternal and child healthcare services requires the development of a more accurate
and cost-effective early screening method [13]. A proposed solution includes designing software that uses the Naive
Bayes algorithm to predict potential health risks for both mothers and children [14].

Numerous studies have explored maternal health risks, including a 2025 study by Pavagada [12], which showed the
importance of closely monitoring maternal health. This study examined the application of Machine Learning (ML)
models for predicting maternal health risks, with the Ensemble Bagged Trees method achieving the highest accuracy
at 84.12%, outperforming other models. The findings showed the potential of ML to provide timely and accurate risk
assessments for expectant mothers. In developing software to predict maternal and child health risks, the literature
review will incorporate studies on multi-algorithm frameworks [15], data mining, and ML applications [16]. For
example, a 2024 study by Makkiyah [17] explored the development of an application using a multi-algorithm method
to predict diabetes status. Another relevant study by Nia [ 18] evaluated the use of Artificial Intelligence (Al) in disease
diagnosis and prediction. The finding showed that Al could reduce physician workload, minimize diagnostic errors and
time, as well as improve the total effectiveness of disease detection.

2. Literature Review

This study will adopt an experimental method to develop software that predicts maternal and child health risks using
the Naive Bayes algorithm. The accuracy of the model will be evaluated by comparing it with other algorithms,
including RF and NN. The aim is to support risk prediction during pregnancy and facilitate early identification of
potential complications. Several previous studies have addressed maternal and child health risk prediction. For instance,
a 2024 study by Jamel [19] focused on maternal healthcare services throughout pregnancy, childbirth, and the
postpartum period. The study showed the importance of early risk detection and maternal vulnerability during these
stages. It proposed a prediction model that began with Principal Component Analysis (PCA) to extract major features,
followed by a stacked ensemble voting classifier combining ML and a deep learning model. The PCA-based model
achieved strong performance—98.25% accuracy, 99.17% precision, 99.16% recall, and a 99.16% F1-score,
outperforming several state-of-the-art methods. Another significant study by [4] introduced the Mud Ring Algorithm
(MRA) for parameter optimization in maternal health risk prediction. In the first phase, MRA optimized a Support
Vector Machine (SVM) model, tested across 13 real-world datasets. In the second phase, the study addressed class
imbalance using a crossover oversampling strategy. Additional models such as RF and K-Nearest Neighbor were also
tested. The MRA-enhanced models showed substantial performance gains, where accuracy increased by 11.8% for
MRA-SVM, 9.11% for MRA-RF, and 17.08% for MRA-KNN. These models outperformed six other optimization
methods across metrics such as Accuracy, G-mean, F-measure, MCC, and Kappa [4]. A 2023 study by [6] explored
the use of Exploratory Data Analysis (EDA) in predicting maternal health risks. This study conducted a comprehensive
analysis of relevant datasets to build a robust ML model and incorporate Explainable Al (XAI) methods to interpret
the decision-making process of top-performing algorithms [6]. Following the discussion, a 2025 study by [20]
introduced molecular biomarker profiling as a developing method in maternal-fetal health. By analyzing maternal blood
for biomarkers, the method provided perceptions of placental function, enabling early diagnosis and intervention. The
study signified that traditional tools such as ultrasound and Doppler imaging might not detect placental dysfunction
before clinical symptoms appear. Since the placenta plays a critical role in fetal development, early detection is
important for preventing serious complications such as preeclampsia [20].

Previous studies have explored various approaches to improving maternal health risk prediction. For instance, [19]
applied PCA with a stacked ensemble classifier to enhance feature extraction and achieve high predictive accuracy.
While this highlights the potential of complex ensemble and dimensionality-reduction methods, such techniques
require substantial computational resources and are less suitable for real-time healthcare applications in low-resource
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settings. In contrast, the present study adopts the Naive Bayes algorithm, prioritizing simplicity, interpretability, and
low computational cost for deployment on mobile devices. Similarly, [4] introduced the MRA to optimize machine
learning parameters across multiple datasets. Although their method significantly improved classification performance,
it involves advanced optimization processes not easily integrated into lightweight applications. This study, therefore,
emphasizes practicality and ease of implementation over complex optimization, aiming to produce an accessible tool
for healthcare providers.

Most existing studies on maternal and child health risk prediction have focused on algorithm development, with limited
progress toward practical software applications. To address this gap, the proposed software aims to function as an early
diagnostic tool for hospitals, healthcare providers, and pregnant women in assessing potential health risks during
pregnancy. The application will be developed for the Android platform and use seven input variables, namely patient
code, age, systolic blood pressure, diastolic blood pressure, blood glucose level, body temperature, and heart rate, to
generate a single output known as the predicted risk level.

3. Methodology

The following were the stages of software to predict maternal and child health risks with Naive Bayes, NN, and RF.
Figure 1 showed the stages of software development predict maternal and child health risks using Naive Bayes, NN,
and RF. The initial steps included problem identification, problem analysis, design, and coding, followed by application
implementation [21]. The process comprised two main inputs, namely data from pregnant women and medical records
based on seven variables. The outcomes included a dataset on maternal and child health risks as well as a comparison
of prediction results for maternal and child health status using NN, RF, and NN algorithms.
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Figure 1. Research flow design

Figure 2 showed the study framework of software designed to predict maternal and child health risks using the Naive
Bayes method. This framework was flexible and could be developed according to different needs. The stages included
pregnant women or doctors logging in and when the login was successful, experts could input data as well as medical
records of pregnant women with variables such as patient code, age, systolic/diastolic blood pressure, blood glucose,
body temperature, and heart rate. Based on these seven input variables, the system produced a risk level status using
Naive Bayes. This output formed the maternal and child health risk results, which were stored in a dataset database.
The dataset was then exported as a CSV file and loaded into Google Colab, where scripting was performed using
Python. To measure accuracy, the expert used the orange widget tool. From the above process, prediction results were
obtained from NN [21], RF [22], and Naive Bayes [23]. While the current implementation relies on Google Colab for
model training and evaluation, future work may integrate these processes directly into the Android system or a secure
web server. This enhancement would allow real-time risk prediction and reduce dependency on manual CSV data
exchange, improving system efficiency and scalability. Although Orange was primarily chosen for its user-friendly
interface and compatibility with scikit-learn, future research may incorporate additional platforms such as Weka or
TensorFlow to enable deeper algorithmic customization and scalability testing. Cross-validation of results using
multiple tools would further strengthen methodological transparency and reproducibility.
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Figure 2. Study framework software to predict maternal and child health risks with Naive Bayes, NN, and RF
4. Results and Discussion

The stages of the software developed to predict maternal and child health risks using Naive Bayes began with
generating a dataset by inputting data and medical records of pregnant women based on seven variables. The system
then predicted the risk level status using NN, RF, and Naive Bayes algorithms. At this stage, the problem was identified
as the need to develop software to predict maternal and child health risks using the Naive Bayes method, based on
seven input variables and one output variable.

4.1. Problem Identification

Problem identification was conducted during this stage, the development of software capable of predicting maternal
and child health risks using the Naive Bayes method is essential to support effective decision-making and the
implementation of appropriate policies in healthcare services for pregnant women. The resulting predictive model
should be designed to ensure its applicability within real healthcare settings, enabling practitioners to utilize it as part
of routine maternal and child health services. Furthermore, this study includes an evaluation of prediction accuracy by
comparing the performance of the Naive Bayes algorithm with NN and RF, thereby providing comprehensive insights
into the model’s reliability and suitability for clinical use [24], [25]. The problem analysis in this study is
communicating with tool users to understand the software expectations from both pregnant women and doctors.

4.2. Design Software to Predict Maternal and Child Health Risk with NB, NN, and RF

The software used during this analysis was developed for the Android platform [26]. Several interfaces shown in figure
3 were presented in the following image.
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Figure 3. Software display to predict maternal and child health risks with Naive Bayes, NN, and RF
4.3. Practical Complexity of Software to Predict Maternal and Child Health Risks

At this stage, effort estimation was conducted using Use Case Point (UCP) method, which served as the basis for
determining the required time, personnel, and costs. The process began with calculating the Unadjusted Actor Weight
(UAW) [27], which was obtained by categorizing the actors of the system and assigning a weight to each category
based on each role in the system [28]. After determining the weights for actors and use cases, the next step was to
calculate UAW and the Unadjusted Use Case Weight (UUCW). In this study, actors refer to the primary entities that
interact with the maternal health risk prediction software, including pregnant women as end users, doctors or midwives
as data input and review agents, and the system administrator responsible for managing user access and database
updates.

The results of UAW and UUCW calculation were presented in table 1. Average (Weight = 2) represents actors that
interact through a standard user interface with limited validation. These classifications determine the UAW value by
multiplying the number of actors in each category by the corresponding weight. A similar process was applied to the
UUCW calculation, where each use case (such as “Input Patient Data,” and “View Risk Prediction,”) was assigned a
complexity level and weighted accordingly. The next stage was to calculate the value of the unadjusted use case point
(UUCP) which was the result of adding the total UAW and UUCW values. The resulting subtotals are then summed,
yielding a total UAW value of 6. In parallel, the UUCW calculation assigns weights to the use cases associated with
each actor and multiplies them by their respective quantities. The sum of all UUCW subtotals results in a total value
of 40. Finally, the UUCP value is obtained by adding the total UAW and UUCW, producing a final UUCP score of 46,
which represents the unadjusted functional size of the system prior to the application of technical and environmental
adjustment factors.

Table 1. Calculating UAW value

R T
System Administrator Simple 2 1 2 10 1 10
Pregnant Woman Average 2 1 2 10 1 10
Doctor/Midwife Complex 2 1 2 15 1 20
Total 6 40

Table 2 presents the calculation of the Technical Complexity Factor (TCF) used to adjust the Unadjusted Use Case
Points based on the system’s technical characteristics. The table lists 13 technical factors (T1-T13), such as distributed
system requirements, response time, security features, and ease of use. Each factor is assigned a predefined weight that
reflects its relative importance and a score ranging from 0 to 5 that represents the degree to which the factor applies to
the system. The product of the weight and the score (B * S) is calculated for each factor, and all results are summed to
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obtain the total technical factor (TF) value of 53.5. The TCF is then calculated using the standard formula TCF = 0.6
+ (0.01 * TF). Substituting the obtained TF value results in a TCF of 1.135. This TCF value serves as a technical
adjustment multiplier that reflects the overall technical complexity of the system and is later applied to refine the system
size estimation.

Table 2. Calculating TCF value

No Technical factor Weight Score (0-5) B*S
Tl Distributed system required 2 4 8
T2 Response time 2 3 6
T3 End-user efficiency 1 4 4
T4 Complex internal processing required 1 2 2
TS Reusable code 1 3 3
T6 Easy to Install 0.5 3 1.5
T7 Easy to use 0.5 4 2
T8 Portable 2 3 6
T9 Easy to Change 1 5 5
T10 Concurrent 1 4 4
TI1 Security features 1 4 4
T12 Access for Third Parties 1 4 4
T13 Special training required 1 4 4
Total TF 53.5
Total TCF (0.6 + (0.01 * TF)) 1.135

Table 3 shown the calculation of the Environmental Complexity Factor (ECF), which reflects the influence of
environmental and team-related conditions on the software development process. It consists of eight environmental
factors (E1-ES8), including familiarity with the project, application and object-oriented programming experience,
analyst capability, team motivation, requirement stability, staff availability, and programming language difficulty. Each
factor is assigned a specific weight and a score ranging from 0 to 5 based on its relevance to the project. The product
of the weight and the score (B * S) is calculated for each factor, and all values are summed to obtain a total
Environmental Factor (EF) score of 31. The ECF is then calculated using the formula ECF = 1.4 + (-0.03 * EF).
Substituting the EF value into the formula yields an ECF of 0.47. This ECF value represents the overall impact of the
development environment on the project and is used as an adjustment multiplier to refine the final use case point
estimation.

Table 3. Calculating ECF value

No Environment Factor Weight Score (0-5) B*S
El Familiarity with the project 1.5 4 6
E2 Application experience 0.5 4 2
E3 Oo programming experience 1 4 4
E4 Lead analyst capability 0.5 4 2
E5 Motivation 1 4 4
E6 Stable requirements 2 3 6
E7 Part time staff 1 3 3
E8 Difficult programming language 1 4 4
Total EF 31
Total ECF (1.4 + (-0.03 * EF)) 0.47

After obtaining the TCF and ECF values, the next step is to calculate the Use Case Points (UCP) to estimate system
size and development effort. The UCP is computed by multiplying the Unadjusted Use Case Points (UUCP) by the
TCF and ECF values. With a UUCP value of 46, the calculation yields UCP =46 * 1.135 * 0.47 = 24.54. Finally, the
development effort is estimated by multiplying the UCP value by a productivity factor of 20 hours per UCP, resulting
in an estimated effort of approximately 490.77 person-hours, which represents the total development effort required
for the system.

While the UCP methodology offered a systematic approach for estimating development effort, it does not fully account
for contextual factors that may influence estimation accuracy. Elements such as project risk, requirement volatility,
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and variations in team experience or technical expertise can significantly affect productivity levels and cost outcomes.
In this study, the estimation relied on standard Technical and Environmental Complexity Factors, which partially reflect
environmental stability and team capability. However, a more comprehensive risk assessment incorporating factors
such as project uncertainty, developer familiarity with machine learning frameworks, and software validation
complexity could enhance the reliability of future estimations. Integrating risk sensitivity or hybrid estimation models,
such as UCP combined with COCOMO II or Function Point Analysis, is recommended to improve precision in software
project planning, particularly for healthcare applications where system reliability is critical. The next step was to
calculate the estimated time and costs required for developing the software shown in table 4.

Table 4. Practical complexity of software to predict maternal and child health risks with NB, NN, and RF

Effort 490.77 Productivity Factor

Productivity Factor (Karner. 1993). PF 28 20 10 5 4 2
Duration (hours) 13741.7 9815.8 4907.4 2453.7 1963.10 981.5
Duration (week) 286.28 204.49 102.24 51.12 40.90 20.45
Duration (month) 37.55 26.82 13.41 6.70 5.36 2.68

Table 5 shown the estimation of development time and cost based on different productivity factor (PF) scenarios,
namely PF =2 and PF = 4. The table identifies two project roles involved in the development process, namely a System
Analyst and a Programmer, with one person assigned to each role. For the PF = 2 scenario, each role is assumed to
work 2 hours per day, equivalent to 4 hours per week. Based on the previously calculated total effort, this workload
results in a total of 82 working hours per role. With an hourly salary rate of 10,000, the estimated cost for each role is
817,957, producing a total project cost of 1,635,913. In the PF = 4 scenario, the assumed workload increases to 8 hours
per week for each role, reflecting a higher productivity or more intensive work allocation. Under this condition, the
total workload for each role becomes 327 hours. Using the same hourly salary rate of 10,000, the estimated cost for
each role is 3,271,827, resulting in a total project cost of 6,543,653. Overall, the table demonstrates how variations in
the productivity factor and weekly workload significantly affect the estimated project duration and development cost,
providing alternative planning scenarios for resource allocation and budgeting.

Table 5. Calculate estimated time and cost

Salary

No Role ot Workload Workload Total Workload (Per Sum
y (hours/day) (hours/week) (hours/week) Total Hour) Salary
Calculate estimated time and cost with PF=2
j  System ] 2 4 4 82 10,000 817,957
Analyst
2 Programmer 1 2 4 4 82 10,000 817,957
Total 2 1,635,913
Calculate estimated time and cost with PF=4
j System 1 2 8 8 327 10,000 3,271,827
Analyst
2 Programmer 1 2 8 8 327 10,000 3,271,827
Total 2 6,543,653

The selection of PF = 2 in the final estimation represents an optimistic but feasible scenario for a small, well-scoped
academic project with low environmental uncertainty. In professional or industrial settings, higher PF values (e.g., 5—
10) would likely be more appropriate to account for larger teams, evolving requirements, and higher validation
demands. Future studies may refine PF calibration using empirical productivity data from comparable health-
informatics projects to improve estimation accuracy.

4.4. Dataset Database

The dataset used to evaluate the accuracy of the maternal and child health risk prediction software using RF, Naive
Bayes, and NN algorithms was shown in table 6 [29]. The dataset sourced from Kaggle contains 1,015 anonymized
maternal health records. Prior to model training, data quality was assessed for completeness, outliers, and missing
values. Normalization was applied to ensure consistent feature scales. Ethical considerations regarding data privacy



Journal of Applied Data Sciences ISSN 2723-6471
Vol. 7, No. 1, January 2026, pp. 567-579 574

and secondary use were also reviewed, as the dataset is publicly available and anonymized in accordance with Kaggle’s
open-data policy. The seven input variables age, systolic and diastolic blood pressure, blood glucose level, body
temperature, and heart rate were selected based on a combination of clinical relevance and preliminary data analysis.
Consultation with maternal health experts confirmed that these indicators are among the most critical physiological
variables routinely measured during antenatal visits and directly linked to maternal morbidity risks such as
preeclampsia and gestational diabetes. To confirm their relevance, pairwise correlation and feature importance analysis
(using Random Forest) were conducted, showing that these six physiological variables had the highest information
gain relative to the target “risk level” class. Other available attributes were excluded due to redundancy or low
correlation. Patient code was retained as an identifier but omitted from the training process.

Table 6. Dataset maternal and child health risks

. Systolic Diastolic Blood Bod Heart .
Code Patient  Age Bloog Pressure Blood Pressure Glucose Tempethure rate Risk Level Status
M-0001 25 130 80 15 98 86 high risk
M-0002 35 140 90 13 98 70 high risk
M-0003 29 90 70 8 100 80 high risk
M-0004 30 140 85 7 98 70 high risk
M-0005 35 120 60 6.1 98 76 low risk
M-0006 23 140 80 7.01 98 70 high risk
M-0007 23 130 70 7.01 98 78 mid risk
M-0008 35 85 60 11 102 86 high risk
M-0009 32 120 90 6.9 98 70 mid risk
M-0010 42 130 80 18 98 70 high risk
M-0011 23 90 60 7.01 98 76 low risk
M-0012 19 120 80 7 98 70 mid risk
M-0013 25 110 89 7.01 98 77 low risk
M-0014 20 120 75 7.01 100 70 mid risk
M-0015 48 120 80 11 98 88 mid risk

The unequal distribution of risk classes in the dataset may have influenced model performance, particularly for minority
categories such as high risk. While stratified sampling was used to maintain proportional representation, the absence
of balancing methods such as Synthetic Minority Oversampling (SMOTE) or cost-sensitive weighting could have
limited the model’s ability to generalize to underrepresented cases. Future research should investigate the use of these
techniques or collect a more balanced dataset to enhance sensitivity and ensure equitable prediction accuracy across all
risk levels.

4.5. Application of Neural Network Algorithm

Table 7 showed a sample of the normalized dataset during the process. The normalization process converted the original
test data to a range between 0.1 and 0.9, using a formula designed to accommodate the sigmoid activation function,
which operated with values greater than 0 [30]. Prior to training the neural network, all continuous input features (age,
systolic and diastolic blood pressure, blood glucose, body temperature, heart rate) were rescaled using min—max
normalization to the range [0.1, 0.9]. For each feature we computed the training-set minimum X,,;, and maximum
Xmax and applied the transform:

X — Xmin (1)

Xmax — Xmin

The factor 0.8 equals 0.9 — 0.1. This range was chosen to keep inputs away from the extreme tails of the sigmoid
activation function used in the network, reducing saturation and preserving gradient magnitude during training. All
Xmin and X4, values were calculated only on the training partition and then reused to transform the validation and
test partitions to prevent data leakage. If a feature had zero variance in the training set (i.e. X;p4x = Xmin), that feature’s
scaled value was set to 0.5 for all samples. After scaling we clipped values to [0.9 — 0.1] to guard against numerical
drift. Identifier fields (e.g., patient code) were excluded from the feature set and the target risk class was encoded as
label-encoded for single-output classification. Alternative preprocessing options (standardization, robust scaling, or

Xscaled = 0.1+0.8 x
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batch normalization) were considered but min—max scaling to [0.1,0.9] was adopted because of the sigmoid activations
and the small number of features.

Table 7. Dataset normalization

Systolic Diastolic Blood Body Heart

Code Patient Age Blood Pressure  Blood Pressure  Glucose Temperature rate Risk Level Status
M-0001 0.5333 0.4862 0.1125 0 0.0656 high risk 0.2
M-0002 0.6222 0.6431 0.0875 0 0.0523 high risk 0.3333
M-0003 0.1777 0.3294 0.0250 0.32 0.0606 high risk 0.2533
M-0004 0.6222 0.5647 0.0125 0 0.0523 high risk 0.2666
M-0005 0.4444 0.1725 0.0012 0 0.0573 low risk 0.3333
M-0006 0.6222 0.4862 0.0126 0 0.0523 high risk 0.1733
M-0007 0.5333 0.3294 0.0126 0 0.0589 mid risk 0.1733
M-0008 0.1333 0.1725 0.0625 0.64 0.0656 high risk 0.3333
M-0009 0.4444 0.6431 0.0112 0 0.0523 mid risk 0.2933
M-0010 0.5333 0.4862 0.1500 0 0.0523 high risk 0.4266
M-0011 0.1777 0.1725 0.0126 0 0.0573 low risk 0.1733
M-0012 0.4444 0.4862 0.0125 0 0.0523 mid risk 0.1200
M-0013 0.3555 0.6274 0.0126 0 0.0581 low risk 0.2000
M-0014 0.4444 0.4078 0.0126 0.32 0.0523 mid risk 0.1333
M-0015 0.4444 0.4862 0.0625 0 0.0672 mid risk 0.5066

4.6. Multi-algorithm Performance

We divided the dataset into two parts: 90% training data and 10% testing data, with stratification and random states
equaling 2. The performance of the NN, RF, and Naive Bayes algorithms is shown in table &.

Table 8. Multi-algorithm performance

Algorithm Accuracy Precision Recall F1-Score
Neural Network 0.48 0.35 0.48 0.40
Random Forest 0.67 0.68 0.67 0.64
Naive Bayes 0.63 0.67 0.61 0.61

In table 8, the Random Forest algorithm achieved the highest accuracy (67%), followed by Naive Bayes (63%) and
Neural Network (48%). Although Random Forest obtained slightly higher accuracy, this difference is relatively small
and was not verified through statistical significance testing. Therefore, Random Forest can be described as performing
marginally better rather than conclusively superior to Naive Bayes for this dataset. Future research should include
statistical validation, such as cross-validation and McNemar’s or paired t-tests, to determine whether these differences
are significant. Although Random Forest achieved the highest accuracy among the tested algorithms, potential
overfitting remains a concern. The model evaluation was based on a single 90/10 train—test split, which may not fully
capture the model’s generalization capability. Given that Random Forest can yield inflated accuracy on limited datasets,
more rigorous validation techniques such as k-fold cross-validation, stratified sampling, or repeated hold-out testing
should be applied in future studies. These methods would help ensure that model performance reflects true predictive
power rather than overfitting to the training data. Additionally, hyperparameter optimization (e.g., number of trees,
maximum depth, and feature selection per split) could further reduce overfitting risk and improve model robustness.
The absence of confidence intervals or error margins in the reported metrics represents a limitation of this study. While
the comparative accuracy and F1-scores suggest that Random Forest performs slightly better than Naive Bayes, the
lack of statistical variability analysis limits the certainty of this conclusion. Incorporating repeated cross-validation or
bootstrapped confidence intervals in future work would enhance the interpretability and robustness of the findings.

4.7. ROC Analysis

Receiver Operating Characteristic (ROC) curves were used to show and evaluate the performance of NN, RF, and
Naive Bayes algorithms [26], [27]. Figure 4 showed ROC curves for RF, Naive Bayes, and NN, with the target risk
classes, comprising “Low Risk,” “Mid Risk,” and “High Risk” represented in cyan is NN, orange is NB, as well as
blue is RF.
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Figure 4. Performance curves of the NN, NB, and RF algorithms

Figure 5 showed a comparison of NN, Naive bayes, and RF algorithms for predicting maternal and child health risk.
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Figure 5. Results of the comparison of NN, NB, and RF algorithms on predicting maternal and child health risks

Table 9 presents the validation results comparing the actual risk level with predictions from the NN, Naive Bayes, and
RF algorithms. In the digital version, color coding was originally used (green for correct predictions, red for
mismatches). To ensure accessibility in grayscale or printed copies, we added alternative markers: an asterisk (*)
indicates a mismatch between the predicted and actual classes, while a dash (—) denotes a correct match. For example,
in the Naive Bayes column, five entries are marked with *, corresponding to cases where the predicted risk level differs
from the actual outcome. This dual notation enables clear interpretation regardless of color or format.

Table 9. Validation results of predicting maternal and child health between NN, NB, and RF algorithms

1 2 3 4 5 6 7 8 9 10 11 12 12 14

M-0001 0.2000  0.5333 04862 0.1125 0.00 0.0656  highrisk-  0.9614  highrisk- 0.9246  highrisk-  0.8611  high risk-
M-0002  0.3333  0.6222  0.6431 0.0875 0.00 0.0523  highrisk- 0.9721  highrisk-  0.9489  highrisk-  1.0000  high risk-
M-0003  0.2533  0.1777  0.3294  0.0250 0.32  0.0606  highrisk- 0.5676  midrisk*  0.5840  highrisk- 0.4500  mid risk*
M-0004  0.2666  0.6222  0.5647 0.0125 0.00 0.0523  highrisk- 0.7251  highrisk-  0.7722  mid risk*  1.0000  high risk-
M-0005  0.3333 04444 0.1725 0.0012 0.00 0.0573  lowrisk-  0.7244  midrisk*  0.5916 midrisk*  0.6750  low risk-
M-0006  0.1733  0.6222 04862 0.0126  0.00  0.0523  highrisk- 0.5028 midrisk*  0.8304 midrisk*  0.7000  high risk-
M-0007  0.1733  0.5333  0.3294 0.0126  0.00 0.0589  midrisk- 0.7488  midrisk- 0.8232  midrisk-  0.9966  mid risk-
M-0008  0.3333  0.1333  0.1725 0.0625 0.64 0.0656  highrisk- 0.8170  highrisk- 0.7800  highrisk-  1.0000  high risk-
M-0009  0.2933 04444 0.6431 0.0112 0.00 0.0523 midrisk- 0.6726  lowrisk*  0.5361 midrisk- 0.6616  mid risk-
M-0010 04266 0.5333 04862  0.1500 0.00 0.0523  highrisk- 0.8586  highrisk- 0.8629  highrisk-  0.6305  mid risk*
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M-0011 0.1733 0.1777  0.1725 0.0126 0.00 0.0573 low risk- 0.7390 low risk- 0.7123 low risk- 0.9000 low risk-

M-0012 0.1200 0.4444 0.4862 0.0125 0.00 0.0523 mid risk- 0.5610 low risk* 0.5311 low risk* 0.7843 mid risk-

M-0013 0.2000  0.3555 0.6274  0.0126  0.00 0.0581 low risk- 0.6998 low risk- 0.4992 mid risk* 0.6250 low risk-

M-0014 0.1333 0.4444  0.4078 0.0126  0.32  0.0523 mid risk- 0.6692 mid risk- 0.5700 mid risk- 0.4750 mid risk-

M-0015 0,5066 04444 04862 0,0625 0.00 0.0672 mid risk- 0.6837  highrisk-  0.7843 highrisk-  0.6431 high risk-
Note: 1=Code patient, 2=Age, 3=Systolic Blood Pressure, 4=Diastolic Blood Pressure, 5=Blood Glucose, 6=Body Temperature, 7=Heart rate,
8=Risk level Status, 9=Neural Network Numerical, 10=Neural Network Validation Against Actual, 11=Naive Bayes Numerical, 12= Naive
Bayes Validation Against Actual, 13= Random Forest Numerical, 14= Random Forest Validation Against Actual.

Table 9 showed the validation of maternal and child health risk predictions between the NN, Naive Bayes, and RF
algorithms against the actual risk level results. The actual results were represented in green color in the "Risk level
status" column. In addition, validation of NN algorithm was shown in the "NN validation against actual" column, where
five data points were marked in red and differed from the "Risk level status" values. For the Naive Bayes algorithm
validation in the "Validation of Naive Bayes against actual" column, there were also 5 data points that differed from
the "Risk level status" and were marked in red. Meanwhile, the validation results of RF algorithm in the "Validation of
RF against actual" column showed two data points that differed from the "Risk level status" and were marked in red.

The software developed in this study successfully predicts maternal and child health risks using the Naive Bayes
algorithm and demonstrates its feasibility as a cost-effective decision-support tool. Comparative analysis with Random
Forest and Neural Network models confirmed that the proposed approach achieves competitive accuracy while
maintaining simplicity and accessibility for healthcare settings. However, several limitations should be acknowledged.
The dataset was obtained from an open-source platform and may not fully represent diverse maternal populations or
real-world clinical variability, limiting the model’s generalizability. Additionally, the relatively small sample size and
lack of external validation restrict the robustness of the predictive outcomes. Ethical considerations must also be
addressed before clinical implementation, particularly concerning data privacy, informed consent, and the potential
consequences of algorithmic misclassification in medical decision-making. Future work should focus on validating the
model using larger, clinically verified datasets and integrating safeguards to ensure ethical, transparent, and responsible
Al deployment in maternal healthcare.

5. Conclusion

In conclusion, a software tool for predicting maternal and child health risks was developed using the Naive Bayes
algorithm. The software's prediction accuracy was evaluated by comparing three algorithms: NN, RF, and Naive Bayes.
The software analyzes seven input variables, including patient code, age, systolic and diastolic blood pressure, blood
glucose, body temperature, and heart rate, to predict a single output. This output, known as the risk level status, is
designed for use by pregnant women and healthcare providers. Testing on a maternal dataset showed that RF achieved
67% accuracy, followed by Naive Bayes at 63%, and NN at 48%, which yielded the lowest accuracy of the three. The
total cost of developing the application is estimated at IDR 1,635,913.
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