
Journal of Applied Data Sciences 

Vol. 7, No. 1, January 2026, pp. 506-516 

ISSN 2723-6471 

506 

 

 

 

  Enhancing the Robustness of Adaptive Class Activation Mapping (AD-

CAM) Against Noisy Facial Expression Data Using Preprocessing and 

Adaptive Normalization 

Dwi Sugianto1,*, , Taqwa Hariguna2, , Fandy Setyo Utomo3,   

 1,2,3Magister of Computer Science, Amikom Purwokerto University, Indonesia 

(Received: June 25, 2025; Revised: August 15, 2025; Accepted: December 1, 2025; Available online: January 14, 2026) 

Abstract 

In real-world computer vision applications, visual data is often corrupted by noise, reducing both the accuracy and interpretability of deep learning 

models. This study proposes an enhanced AD-CAM framework that integrates noise-aware preprocessing and adaptive normalization to improve 

robustness in both prediction and visual explanation. Experiments were conducted on the FER2013 facial expression dataset augmented with 

Gaussian, salt-and-pepper, and speckle noise. Using ResNet-50 as the backbone, the proposed method demonstrated significant gains across 

multiple evaluation metrics, including Robust Accuracy (RA), Drop Coherence (DC), Area Under Robustness Curve (AURC), and Signal-to-

Noise Ratio (SNR). Compared to the baseline, the model achieved over 10% accuracy improvement and up to 0.16 DC reduction under noise. 

Qualitative visualizations showed that the improved model consistently highlighted semantically relevant facial regions, maintaining 

interpretability even under severe input degradation. These results support the adoption of noise-aware interpretability frameworks for more 

reliable and trustworthy deployment in real-world vision systems. 
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1. Introduction  

Deep learning has revolutionized computer vision tasks, achieving impressive performance in areas such as image 

classification, object detection, and facial expression recognition [1], [2]. However, these models are often criticized 

for their black-box nature, which limits their applicability in safety-critical domains that require transparency and trust 

[3], [4]. To address this, several interpretability techniques have been proposed, with Class Activation Mapping (CAM) 

and its variants such as Grad-CAM and Score-CAM emerging as widely adopted tools for visual explanation. These 

methods generate heatmaps that highlight the image regions most influential in the model's decision-making process 

[5], [6]. 

Among them, AD-CAM refines the standard Grad-CAM technique by adjusting the weighting of feature maps through 

gradient flow, resulting in more precise localization of relevant regions. AD-CAM has been particularly useful in 

emotion recognition, where interpretability plays a crucial role in validating model predictions [7], [8]. However, a 

critical limitation of most CAM-based methods, including AD-CAM, is their sensitivity to input degradation. In 

practical settings such as surveillance, low-resolution video calls, or mobile vision systems images are often affected 

by noise, poor lighting, motion blur, or compression artifacts [9], [10]. 

Several studies have attempted to enhance the robustness of deep learning models under noise by employing 

preprocessing techniques or adversarial defenses [11], [12]. However, these efforts have primarily focused on 

improving classification accuracy, with little attention paid to the robustness of interpretability itself. As a result, 

activation maps generated under noisy conditions frequently shift attention to irrelevant or unstable regions, 

undermining the trustworthiness of model explanations [13], [14]. 
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This reveals a clear research gap: while model robustness has been widely studied in terms of prediction accuracy, the 

stability and reliability of visual explanations under noise remain largely unaddressed. Moreover, no prior work has 

systematically explored the combination of noise-specific preprocessing and adaptive normalization strategies to 

improve both interpretability and prediction robustness in AD-CAM frameworks. 

To address this gap, this paper proposes a noise-aware enhancement of AD-CAM that incorporates tailored image 

preprocessing filters and adaptive normalization layers within a CNN-based architecture. Specifically, Gaussian 

filtering, median filtering, and bilateral filtering are applied depending on the type of noise, while normalization layers 

are dynamically adjusted to accommodate noisy feature statistics. The framework is evaluated on the FER2013 dataset 

[15], augmented with three common noise types: Gaussian, salt-and-pepper, and speckle noise. Multiple performance 

metrics including RA, DC, AURC, and SNR are used to assess the model's robustness in both prediction and 

interpretability [16]. By focusing on interpretability under imperfect conditions, this work contributes a novel approach 

to building more trustworthy and resilient vision systems, especially for applications in emotion recognition, driver 

monitoring, and low-quality video analytics. 

2. Literature Review  

Interpretability in deep learning has become a critical area of research as models are increasingly deployed in sensitive 

domains such as healthcare, autonomous driving, and human-computer interaction. Early works in interpretability 

focused on feature visualization and saliency maps [17], which attempt to show what parts of the input influence a 

model's decision. Among these, CAM techniques have emerged as the most practical due to their ability to localize 

discriminative image regions with respect to specific class predictions [18]. 

Grad-CAM, proposed by Selvaraju et al., improved on earlier CAM variants by incorporating gradient information 

from the target class to weight convolutional feature maps [19]. Variants like Grad-CAM++, Score-CAM, and Layer-

CAM introduced improvements in localization precision and class-specificity [20], [21], [22]. Adaptive CAM (AD-

CAM) further refined the process by adaptively adjusting feature weights based on gradient magnitude and distribution, 

resulting in smoother and more context-aware heatmaps [23]. These techniques have shown effectiveness in tasks such 

as medical diagnosis, object detection, and emotion recognition. 

However, a persistent challenge in these methods is their sensitivity to input perturbations. Studies have shown that 

even minor noise whether Gaussian, salt-and-pepper, or adversarial can significantly distort attention maps, leading to 

unreliable or misleading interpretations [24], [25]. While some works have proposed smoothing techniques or feature 

denoising modules to address this, most have focused exclusively on improving classification accuracy rather than the 

stability of the interpretability itself [26]. 

In terms of robustness, several approaches have been proposed to mitigate the impact of noise, such as adversarial 

training, input filtering, and feature regularization [27], [28]. While these methods improve model performance under 

distortion, they are rarely extended to examine whether the model’s attention remains consistent. Robustness in 

interpretability such as how stable activation maps remain under noisy input—is often overlooked, despite its critical 

role in model trustworthiness. 

Few studies have investigated interpretability robustness directly. For example, Yeh et al. introduced metrics like drop 

probability and mask perturbation to measure explanation stability, while Adebayo et al. proposed sanity checks to 

detect explanation degradation [29], [30]. Nevertheless, there is still limited exploration of how preprocessing and 

normalization strategies can improve both prediction robustness and interpretability in CAM-based methods. 

This study builds upon this emerging area by proposing a dual-focused framework that improves both classification 

and interpretability stability under noise. Unlike previous work that treats interpretability and robustness separately, 

this research introduces a unified approach using adaptive filtering and normalization mechanisms to enhance AD-

CAM explanations, particularly for emotion recognition tasks under degraded visual conditions. 
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3. Methodology  

This study introduces a robustness-oriented framework for interpretable deep learning by advancing the AD-CAM 

mechanism. The proposed system is built on a ResNet-50 backbone, augmented with two key enhancements: noise-

aware preprocessing and adaptive normalization. These additions aim to improve both the model's predictive 

performance and the reliability of its interpretability, particularly under noisy image conditions. As shown in figure 1, 

the pipeline begins with the input image undergoing artificial noise injection to simulate real-world degradations such 

as Gaussian noise, salt-and-pepper noise, and speckle noise. The noisy input is then passed through a preprocessing 

filter tailored to the type of noise present. After standard normalization, the image is processed through the ResNet-50 

feature extraction layers. 

 
Figure 1. Research Framework 

Following this, the architecture diverges into two parallel streams. One stream continues through an adaptive 

normalization module and proceeds to a classification head, which generates the final emotion prediction. The second 

stream utilizes the same adaptively normalized features to extract gradients and feature maps necessary for computing 

AD-CAM heatmaps. These heatmaps are then upsampled and overlaid on the original image to visualize the model’s 

attention. This dual-path structure enables the system to maintain high classification accuracy while providing stable, 

semantically meaningful visual explanations, even when inputs are distorted. 

3.1. ResNet-50 Architecture and AD-CAM Integration 

The ResNet-50 convolutional neural network is used as the base model due to its ability to learn deep hierarchical 

representations with residual learning. The final fully connected layer is modified to produce class scores for the seven 

emotion categories in FER2013. AD-CAM is implemented by extracting feature maps and gradients from the last 

convolutional block, known as layer4. The spatial attention map is calculated by averaging the gradients across spatial 

dimensions to generate weights for each feature channel. Mathematically, the class activation map for class ccc is 

computed as 

𝑀𝑐 = 𝑅𝑒𝐿𝑈(∑𝑎𝑘
𝑐𝐴𝑘

𝑐

𝑘=1

) (1) 
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where 𝐴𝑘 is the 𝑘 -th activation map and 𝑎𝑘
𝑐  is the gradient-based importance weight defined by 

𝑎𝑘
𝑐 =

1

𝑍
∑∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑊

𝑗=1

𝐻

𝑖=1

 (2) 

with 𝑦𝑐 being the logit score for class ccc, and 𝑍 = 𝐻 ×𝑊 representing the total number of pixels. To enhance 

interpretability, this study also enables multi-layer CAM generation by fusing activations from both layer3 and layer4 

using normalized summation. 

3.2. Noise Augmentation and Preprocessing 

Three types of common noise are introduced to simulate real-world distortion (see table 1): Gaussian noise, salt-and-

pepper noise, and speckle noise. Gaussian noise is modeled as additive white noise with zero mean, salt-and-pepper 

noise randomly corrupts pixels with black or white values, and speckle noise applies multiplicative granular distortion. 

Each noise type is addressed using a corresponding image restoration technique before input normalization. Gaussian 

noise is mitigated using Gaussian blur, salt-and-pepper noise is addressed with a median filter, and speckle noise is 

reduced using a bilateral filter that preserves edges. 

Table 1. Noise Types and Denoising Filters 

Noise Type Noise Model Denoising Filter Parameters 

Gaussian Noise 𝑥 + 𝑁(0, 𝜎2) Gaussian Blur Kernel size = 3, σ = 1.0 

Salt-and-Pepper Random pixel corruption with prob. 𝑝 Median Filter Kernel size = 3 

Speckle Noise 𝑥 + 𝑥 ∙ 𝑁(0, 𝜎2) Bilateral Filter d = 5, σColor = 75, σSpace = 75 

This preprocessing stage is applied immediately before model inference and helps stabilize the input features under 

distortion without introducing additional model complexity. 

3.3. Adaptive Normalization 

To further improve robustness, the model integrates adaptive normalization layers within the convolutional blocks. 

These layers differ from standard batch normalization by estimating local statistics based on the noise characteristics 

of each input. The adaptively normalized activation 𝑥𝑖 is computed as 

𝑥𝑖 =
𝑥𝑖 − 𝜇𝜂

√𝜎𝜂
2 + 𝜖

∙ 𝛾 + 𝛽 
(3) 

where 𝜇𝜂 and 𝜎𝜂
2 are estimated from a dynamic context-aware window influenced by noise level 𝜂. Parameters 𝛾 and 

𝛽 are learnable and updated through backpropagation. This mechanism enables the model to adjust internal feature 

distributions depending on the distortion present in each image, stabilizing both learning and interpretability. 

3.4. Evaluation Metrics 

The model’s performance is assessed using four core metrics (table 2): RA, DC, AURC, and SNR. RA measures the 

percentage of correctly classified samples under noisy input. DC evaluates the similarity between clean and noisy 

attention maps using structural similarity index (SSIM). AURC represents the integral of accuracy degradation across 

varying noise levels, reflecting how gradually performance declines. SNR quantifies the clarity of internal features 

under noise by comparing the power of clean signals to residual noise. 

Table 2. Evaluation Metrics Definitions 

Metric Mathematical Expression Desired Outcome 

RA 

𝑅𝐴 =
1

𝑁
∑1[𝑓(𝑥′𝑖) = 𝑦𝑖]

𝑁

𝑖=1

 

Higher is better 
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DC 𝐷𝐶 = 1 − 𝑆𝑆𝐼𝑀(𝑀𝑐𝑙𝑒𝑎𝑛
𝑐 , 𝑀𝑛𝑜𝑖𝑠𝑦

𝑐 ) Lower is better 

AURC Area under accuracy curve across noise levels (Simpson approximation) Higher is better 

SNR 
𝑆𝑁𝑅 = 10log10 (

‖𝑆‖2

‖𝑆 − 𝑠̂‖2
) 

Higher (in dB) is better 

These metrics offer a balanced view of model reliability in both predictive output and interpretability, particularly 

under challenging visual conditions. 

4. Results and Discussion 

4.1. Experimental Setup 

To evaluate the robustness and interpretability of AD-CAM, this study utilized the FER2013 dataset, a publicly 

available benchmark comprising 35,887 grayscale facial expression images (48×48 pixels) categorized into seven 

emotion classes: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. These images were resized to 224×224 

pixels and normalized using ImageNet mean and standard deviation for compatibility with pretrained models. 

To simulate real-world distortions, the dataset was augmented with three types of synthetic noise: Gaussian noise 

(standard deviations σ = 0.1, 0.2, 0.3), salt-and-pepper noise (densities = 2%, 5%, 8%), and speckle noise (variances = 

0.04, 0.06, 0.08). These noise types reflect common environmental conditions such as poor lighting, sensor limitations, 

and compression artifacts in practical applications like surveillance or low-quality video conferencing. 

The classification model was based on a pretrained ResNet-50 architecture. The final fully connected layer was 

replaced with a 7-class output layer. AD-CAM was integrated into the model by registering gradient and activation 

hooks on the final convolutional block (layer4). For additional robustness, an extended version used multi-layer Grad-

CAM that averaged activations from layer3 and layer4. 

To improve robustness in the proposed setup, two techniques were added. First, a noise-specific preprocessing pipeline 

was applied. Gaussian noise was mitigated with a 5×5 Gaussian filter (σ = 1.0), salt-and-pepper noise with a 3×3 

median filter, and speckle noise with a bilateral filter (d = 9, σColor = 75, σSpace = 75). Second, adaptive normalization 

was used in the feature extraction layers by modifying batch normalization to dynamically adjust feature statistics 

based on estimated noise levels. 

Training was conducted using Adam optimizer with a learning rate of 1e-4 and batch size of 64 over 30 epochs. The 

loss function used was CrossEntropyLoss. All experiments were run on a machine equipped with an Intel Core i5-12th 

Gen processor, 16GB RAM, and an NVIDIA RTX 4050 GPU (6GB). The entire pipeline was implemented in PyTorch 

using torchvision and cv2 for image augmentation and denoising. 

To assess the robustness and interpretability performance, four metrics were used: RA, AURC, DC, and SNR. These 

metrics respectively measured the classification accuracy under noise, interpretability stability across noise levels, 

consistency of heatmap localization, and retention of signal in feature maps. Table 3 below summarizes the key 

experimental parameters used throughout this study. 

Table 3. Experimental Configuration and Parameters 

Component Description / Value 

Dataset FER2013 (7 facial expression classes, 48×48 grayscale images) 

Input Preprocessing Resize to 224×224, Normalize with ImageNet mean and std 

Noise Types Gaussian (σ = 0.1, 0.2, 0.3), Salt-and-Pepper (2%, 5%, 8%), Speckle (0.04–0.08) 

Backbone Architecture ResNet-50 pretrained on ImageNet 

CAM Integration AD-CAM via hook on layer4; optional multi-layer (layer3 + layer4) 

Preprocessing Filters Gaussian Filter (5×5), Median Filter (3×3), Bilateral Filter (d=9, σ=75) 

Adaptive Normalization Modified BatchNorm with noise-aware statistical adjustments 

Training Parameters Adam optimizer, LR = 1e-4, batch size = 64, epochs = 30 

Evaluation Metrics RA, AURC, DC, SNR 
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Hardware Specs Intel Core i5-12th Gen, 16 GB RAM, NVIDIA RTX 4050 (6GB VRAM) 

This experimental configuration enables a rigorous and realistic evaluation of how AD-CAM performs under various 

noise conditions, both in terms of classification performance and the reliability of model interpretability. 

4.2. Robust Accuracy Results 

RA was employed to assess the model's ability to maintain reliable classification performance when exposed to various 

types of noise. This metric quantifies the proportion of correct predictions under degraded input conditions and serves 

as a key indicator of model resilience in real-world scenarios. The evaluation was carried out by comparing the baseline 

AD-CAM configuration against the proposed method, which integrates targeted image preprocessing and adaptive 

normalization. 

As summarized in table 4, the proposed method consistently achieved higher RA scores across all tested noise types. 

Under Gaussian noise with moderate variance, the baseline model recorded an accuracy of 68.5%, whereas the 

proposed configuration reached 80.1%, yielding an improvement of 11.6 percentage points. For salt-and-pepper noise, 

which introduces random pixel corruption, the baseline achieved 65.7%, while the proposed method improved 

performance to 78.4%, marking a 12.7% gain. Similarly, in the case of speckle noise—a multiplicative distortion often 

found in low-light or medical imaging—the baseline scored 70.2%, and the proposed approach increased accuracy to 

82.6%, representing a 12.4% enhancement. 

These results highlight that the inclusion of domain-specific preprocessing filters and adaptive feature normalization 

mechanisms can significantly enhance the robustness of convolutional neural networks when visual noise is present. 

All improvements exceeded 10%, demonstrating the practical value of these enhancements in preserving classification 

reliability under imperfect input conditions. 

Table 4. Robust Accuracy Comparison Under Noisy Conditions 

Noise Type Baseline AD-CAM RA (%) Proposed Method RA (%) Accuracy Gain (%) 

Gaussian Noise 68.5 80.1 +11.6 

Salt-and-Pepper 65.7 78.4 +12.7 

Speckle Noise 70.2 82.6 +12.4 

These robust accuracy gains confirm the effectiveness of the proposed method in stabilizing model predictions under 

noisy visual conditions, making it more suitable for deployment in unconstrained or degraded environments. 

4.3. Drop Coherence Performance 

To evaluate the stability and reliability of visual interpretations generated by the model, the metric DC was employed. 

Drop Coherence quantifies the change in attention maps produced by AD-CAM when input data is subjected to noise. 

It is calculated as the cosine distance between the activation maps generated from clean and noisy images. Lower DC 

values indicate better preservation of semantic focus in the model’s visual explanations, thereby reflecting higher 

interpretability robustness. 

The results, presented in table 5, demonstrate that the proposed method significantly reduces the impact of noise on 

activation map stability. When exposed to Gaussian noise, the baseline model exhibited a DC value of 0.25, indicating 

substantial deviation in the heatmap interpretation. After applying preprocessing and adaptive normalization, this value 

was reduced to 0.11, marking a decrease of 0.14. Under salt-and-pepper noise, the baseline DC was 0.29, which 

dropped to 0.13 with the proposed method reflecting the highest coherence improvement of 0.16. In the case of speckle 

noise, DC decreased from 0.22 to 0.10, yielding a 0.12 improvement. 

These results confirm that the proposed enhancements effectively stabilize the spatial focus of the AD-CAM heatmaps. 

Despite the presence of high-frequency pixel distortions, the model retained attention to relevant facial regions, such 

as the eyes, brows, and mouth areas critical to emotion classification. This interpretive consistency is crucial in real-

world applications where noisy data is common and misinterpretation can affect decision-making in human-centered 

systems. 
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Table 5. Drop Coherence Comparison 

Noise Type Baseline DC Proposed DC DC Reduction 

Gaussian Noise 0.25 0.11 –0.14 

Salt-and-Pepper 0.29 0.13 –0.16 

Speckle Noise 0.22 0.10 –0.12 

The significant reductions in Drop Coherence values across all noise types demonstrate that the proposed method 

improves not only classification robustness but also the semantic fidelity of interpretability, preserving the model's 

explanatory focus under adverse visual conditions. 

4.4. AURC and SNR Observations 

To further analyze the robustness of interpretability under noisy conditions, this study employed the AURC as a 

quantitative metric. AURC captures the relationship between interpretability performance and increasing noise 

intensity by integrating activation consistency and prediction quality across a range of perturbation levels. A higher 

AURC score reflects greater stability in the attention maps as noise levels increase, indicating stronger interpretability 

resilience. 

As shown in table 6, the proposed method consistently outperformed the baseline across all types of noise. Under 

Gaussian noise, the baseline configuration achieved an AURC of 0.42, whereas the proposed method improved this to 

0.58. For salt-and-pepper noise, AURC increased from 0.39 to 0.56. In the case of speckle noise, which introduces 

fine-grained texture distortions, the AURC rose from 0.45 to 0.61. These results suggest that the proposed 

enhancements help preserve interpretability quality even as input degradation increases, enabling smoother and more 

reliable visual explanation responses. 

In conjunction with interpretability metrics, SNR was computed to evaluate the clarity of internal feature 

representations extracted by the model under noisy conditions. SNR is expressed in decibels (dB) and measures the 

proportion of meaningful signal relative to background noise in the convolutional feature maps. The proposed method 

demonstrated a notable improvement in SNR, with gains averaging approximately 4.5 dB across all noise types. 

Specifically, SNR increased from 17.3 dB to 21.8 dB for Gaussian noise, from 15.1 dB to 19.6 dB under salt-and-

pepper noise, and from 16.4 dB to 20.9 dB in the presence of speckle noise. These increases indicate that the 

preprocessing filters and adaptive normalization mechanisms effectively suppress irrelevant noise while preserving 

essential signal content necessary for reliable prediction and interpretation. 

The combined improvements in both AURC and SNR clearly indicate that the proposed method not only enhances 

interpretability robustness but also contributes to the extraction of higher-quality features under visually challenging 

conditions. This dual benefit is critical for deploying interpretable deep learning systems in real-world applications 

where noise is an inevitable factor. 

Table 6. AURC and SNR Comparison 

Noise Type AURC (Baseline) AURC (Proposed) SNR (Baseline, dB) SNR (Proposed, dB) 

Gaussian Noise 0.42 0.58 17.3 21.8 

Salt-and-Pepper 0.39 0.56 15.1 19.6 

Speckle Noise 0.45 0.61 16.4 20.9 

These findings validate the efficacy of the proposed enhancements in strengthening both the interpretability and internal 

feature fidelity of CNN-based models, offering a promising approach for improving the transparency and 

trustworthiness of AI systems in noisy environments. 

4.5. Qualitative Visualization 

Beyond numerical evaluation, qualitative analysis through visual inspection of activation maps further substantiates 

the interpretability advantages of the proposed method. Figure 2 illustrates heatmap visualizations produced by four 

different CAM techniques applied to the same noisy test image: baseline Grad-CAM, Adaptive-CAM, Multi-layer 
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Grad-CAM, and Multi-layer Adaptive-CAM. These visual explanations correspond to the model’s predicted class 

“disgust,” a challenging expression that involves subtle muscle activations around the eyes, brows, and mouth. 

 

(baseline Grad-CAM) (Adaptive-CAM) (Multi-layer Grad-CAM) (Multi-layer Adaptive-CAM) 
Note: The black shape is a facial sensor to avoid recognition, not a computational result. 

Figure 2. CAM Visualization 

In the baseline Grad-CAM visualization, the activation map displays a broad and diffuse focus, extending into irrelevant 

facial regions and even background textures. This dispersion is indicative of instability under noise, where the model 

struggles to isolate discriminative regions. Adaptive-CAM provides a modest improvement in focus, but still exhibits 

leakage into non-informative zones. 

In contrast, both multi-layer variants demonstrate significantly refined localization. The Multi-layer Grad-CAM 

focuses more tightly on the upper facial regions particularly the brow furrows and eye areas while Multi-layer 

Adaptive-CAM yields the most semantically consistent heatmap, highlighting both the glabella and nasolabial regions. 

These areas are highly aligned with facial action units (FAUs) known to characterize disgust, such as AU9 (nose 

wrinkler) and AU15 (lip corner depressor). 

These observations validate that the proposed enhancements multi-scale integration and noise-aware normalization 

guide the model not only toward correct predictions but also toward physiologically meaningful regions during 

interpretation. This improvement in spatial attention fidelity under noisy conditions reinforces the reliability and 

transparency of the model's decision-making process. 

4.6. Discussion 

The findings of this study reveal critical insights into the limitations and enhancements of interpretable deep learning 

models when faced with degraded visual input. The baseline implementation of AD-CAM, while effective under clean 

conditions, exhibits a marked decline in both classification performance and visual explanation quality when exposed 

to common types of noise. This vulnerability is particularly problematic for real-world applications where image 

quality is frequently compromised due to environmental factors such as lighting variation, compression, or sensor 

noise. 

The integration of preprocessing filters tailored to each noise type and adaptive normalization mechanisms into the 

AD-CAM pipeline resulted in consistent and significant improvements across all key evaluation metrics. These 

enhancements not only boosted classification accuracy under noisy conditions (as shown by improved Robust 

Accuracy and Signal-to-Noise Ratio) but also led to greater stability and semantic fidelity in activation maps 

(demonstrated through reduced Drop Coherence and increased AURC scores). Qualitative visualization confirmed that 

the proposed method directs the model’s attention to physiologically meaningful facial regions, even when the input is 

distorted. 

These results highlight the dual importance of robustness in both model prediction and model interpretability. In high-

stakes applications such as emotion recognition in human-computer interaction, driver state monitoring, or low-

resolution video analytics, interpretability is not just a diagnostic tool but a requirement for safe and trustworthy 

deployment. A model that makes accurate predictions but focuses on irrelevant or unstable regions under noise cannot 

be considered reliable or transparent. 
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Therefore, this study emphasizes the need to adopt noise-aware interpretability frameworks in the development and 

evaluation of computer vision systems. Future work may extend this approach to other vision tasks such as object 

detection or medical imaging, and explore deeper multi-layer fusion techniques or dynamic filter selection strategies 

for further improving robustness under uncertainty. 

5. Conclusion 

This study proposed an enhanced AD-CAM framework designed to improve interpretability robustness under noisy 

input conditions. By incorporating targeted preprocessing techniques and adaptive normalization into the existing AD-

CAM pipeline, the model demonstrated significant gains in both predictive accuracy and visual explanation stability. 

Experimental evaluations on the FER2013 dataset augmented with Gaussian, salt-and-pepper, and speckle noise 

confirmed consistent improvements across multiple metrics, including Robust Accuracy, Drop Coherence, AURC, and 

Signal-to-Noise Ratio. 

Quantitative results revealed that the proposed method not only mitigates the detrimental effects of noise on 

classification performance but also preserves semantically relevant attention regions in the generated heatmaps. 

Qualitative visualizations further validated that the model’s interpretability becomes more focused and consistent, 

particularly in facial regions associated with emotional expression. 

These findings underscore the importance of evaluating interpretability performance alongside predictive outcomes, 

particularly for applications operating in uncontrolled or degraded visual environments. The proposed enhancements 

offer a practical and effective solution for increasing the trustworthiness and reliability of deep learning models in real-

world human-centered vision tasks. 

Future research may explore extending this approach to multi-modal emotion recognition systems, as well as adapting 

the framework for other noise-sensitive domains such as medical imaging, autonomous driving, and security 

surveillance. 
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